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ABSTRACT. It is known that triangle-free graphs of diameter 2
are just maximal triangle-free graphs. Kantor ([5]) showed that
if G is a triangle-free and 4-cycle free graph of diameter 2,
then G is either a star or a Moore-graph of diameter 2; if G
is a 4-cycle free graph of diameter 2 with at least one triangle,
then G is either a star-like graph or a polarity graph (defined
from a finite projective plane with polarities) of order r? +
r + 1 for some positive integer r (or P.-graph for short). We
study, by purely graph theoretical means, the structure of Pr-
graphs and construct P--graphs for small value of r. Further we
characterize graphs of diameter 2 without 5-cycles and 6-cycles
respectively. In general one can characterize Cx-free graphs of
diameter 2 with k > 6 with a similar approach.

1 Introduction

We consider, throughout this paper, finite simple undirected graphs. Terms
and notations not specified follow Bondy and Murty (3].

Let V be the vertex set, and E be the edge set of a graph G. Let n be
the order of G. Let N(v) be the set of neighbors of v in G. Call N(v)| the
degree of v in G and denote it by d(v). A cycle of length k is denoted by Ci.
A graph is Ci-free if it contains no cycles of length k. A graph is {Ck,Ci}-
free if it is Ci-free and Ci-free. The distance between two vertices in the
graph is the length of any shortest path between these two vertices. The
diameter d(G) of G is the maximum distance between any two vertices in
G. A graph is diameter critical if removing any edge increases the diameter.
A star-like graph is a graph obtained by taking a star and adding a set of
(possibly empty) independent edges between its end-vertices.
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Graphs of diameter 2 normally have a large number of edges, except
when the maximum degree of the graph is n — 1. One way to restrict
these graphs from having too many edges is to impose the condition of
nonexistence of certain small cycles. It turns out that triangle-free graphs
of diameter 2 are just maximal triangle-free graphs. Barefoot, et al. ([1])
proved that maximal triangle-free graphs are diameter critical, and for n >
5and 2n—5 < m < |(n—1)%/4] +1 there is a maximal triangle-free graph
of size m with diameter 2.

Suppose G is a Cy-free graph of diameter 2. If u and v are two non-
adjacent vertices in G, then » and v must have a unique common neighbor.
Denote this common neighbor of u and v by n(u, v). Clearly a Cy-free graph
of diameter 2 may contain triangles. For example, a star-like graph (not
a star) is Cy-free and diameter-2 which has at least one triangle. Besides
star-like graphs, there are other graphs which are C,-free and diameter-2,
and oontams at least one triangle. As shown in [2], these graphs are all of
order r2 4 r + 1 with r a positive integer. For simplicity, call these graphs

Pr-graphs.

Let P be a finite projective plane, and let = be a polarity of P (a one-
to-one mapping of points onto lines such that p € 7(g) whenever q € n(p)).
Then the polarity graph G(P, ) is the graph with vertex set the points of
P and edge set {(p,q) | p € 7(q),p # q}. Kantor [5] (independently, Bondy
et al. [2]) proved that a graph is a P.-graph if and only if it is a polarity
graph:

Theorem 1 (Kantor, [5]) Stars and Moore-graphs of diameter 2 are the
only {Cs, C4}-free graphs of diameter 2. Star-like graphs and polarity graphs
are the only Cy-free graphs of diameter 2 with at least one triangle.

Theoretically this result gives one way to construct P,-graphs from finite
projective planes with polarities of order r. But there is no good charac-
terization of finite projective planes with polarities, and even if we know
that a finite projective plane with polarities exists, finding all its polarities
does not appear to be easy. As a consequence, it is more practical to use
Theorem 1 (1) to show the non-existence of P,-graphs for certain r from
the known non-existence results of finite projective planes of order r with
polarities; (2) to construct finite projective planes with polarities of order
r from a P,-graph (if any).

As an example of (1), we quote the following result on finite projective
planes:

Theorem 2 (Bruck and Ryser, [4]) Ifr=1 or2 (mod 4) and r is not

a sum of two iniegral squares, then there is no finile projective plane of
order r.
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From Theorem 1 and Theorem 2 we have

Corollary 1 Ifr = 1 or 2 (mod 4) then there is no P.-graph unless r is
the sum of two inlegral squares.

This implies that P, graphs do not always exist for all . For example,
there is no Ps-graph. It is likely that P, graphs are rare.

As for (2), one can easily construct at least one finite projective plane of
order r with one polarity from a P,-graph in the way described in [2].

In light of the above arguments, we investigate, in section 2, the existence
of P,-graphs from a purely graphical point of view. We discuss some other
properties that Cy-free graphs of diameter 2 have. For instance, we prove
that almost all of these graphs are maximal and diameter critical.

In section 3, we consider graphs of diameter 2 without other small cycles.
Starting from the observation that {Cs, Cs}-free graphs of diameter 2 are
just complete bipartite graphs, we characterize Cs-free graphs of diameter 2.
The method can be extended to the characterization of diameter-2 graphs
with no cycles of length k for k > 6. To illustrate, we further characterize
Cé-free graphs of diameter 2.

2 P,-graphs

Suppose G is a P, graph. If r = 1, then G is a triangle, which is a star-
like graph; if r = 2 then it is not difficult to see that the graph shown in
Figure 1 is the unique P;-graph.

Figure 1: The unique P>-graph.

Suppose G is a P,-graph with r > 2. Let T = {1,2,3} be a triangle
in G. Let M = My U M, U M3 where M; = N({)\ T for i =1,2,3. Let
B =V \ (T UM). Here T stands for “top” or “triangle”, M for “middle”,
B for “bottom”. The following conclusions are drawn from the proof of
Theorem 1:

(I) Letp = r—1. Then |M| = |Ms| = [Ma| =p, |M| = 3p and | B| = p*.
Moreover each vertez in B has exactly one neighbor in M;.
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(I1) Each vertez in M has ezactly p neighbors in B;
Let M; = {a;, a2, ,a,} and B; = N(a;)N B fori=1,2,.-- ,p.

(II1) The p sets B; partition B in equal size; Moreover, every vertez in
B; has degree at most 1 in G[By);

Let E(A, B) be the set of those edges with one end in A and the other
in B. Sometimes we just list the elements of A or B or both.

(IV) E(Mj;; By) is a matching for j =2,3 and k=1,2,--. ,p;

(V) E(Bi; B;) # 0 if and only if (a:,a5) € E; if E(Bi; B;) # 0 for some
1 <i#j < p, then E(B;; B;) i3 a malching.

Let M = {by,bp,--- ,bp}. Suppose dy; = n(ay, b;), and ¢; = n(d,;, 3) for
i=12-...,p, then b = n(d1¢,2) and M3 = {Cl,cz,'“ ,c,,}. Let dij =
n(a‘sbj)r fori=2,3,---,pandj=1,2,---,p. Then B; = {dilodi2"" ;dl'p}
fori=1,2,.--,p.

(VI) For any 1 < i # j,k < p, dix,djx have no common neighbor in
M3 U B.

(VII) (¢, di) € E for alli=1,2,---,pand k=2,3,--- ,p.
We make two observations before constructing P,-graphs:

Lemma 1 If, in a P4-graph, the set M is always independent for every T,
then no vertez in M has two neighbors u,v in B such that (u,v) € E.

Proof: (By contradiction) Suppose two neighbors d;; and da; of b; are
adjacent, then d;; cannot be adjacent to any vertex in B; since otherwise,
if we take (dy1,b1,d2;) as T, the corresponding M will not be independent,
which violates our assumption. Now dj; can reach at most one vertex in
M3 (except by) through a vertex in B; (i = 3,4). Thus one vertex in M is
at distance at least 3 from d;,, a contradiction. a

Lemma 2 There is a triangle T in a Ps-graph G such that the correspond-
ing M is not independent.

Proof: Suppose, on the contrary, that for any given T, the correspond-
ing M is independent. We keep the notation mentioned above except the
adjacency between M and B.

Without loss of generality, suppose (d11,b1), (d11,¢:) € E and (b, dy;), (1,
dig) € E for i = 2,3,---,p. We assume that (d;;,di3) € E for all § =
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2,.--,p in order to have d(d11,a;) = 2. We deduce, by symmetry, that
E(B;; B;) forms a matching for all 1 <i# j <p.

Clearly d;3 (j = 3,4, ,p) is not adjacent to either dp; or dz2. We may
assume that (dps,dps) € E. Consider E(Bs;das,dys, - ,dps). As before,
there is a vertex, say di3 which is adjacent to dss (i # 1,3). We claim that
" i # 2; for otherwise, a 4-cycle occurs, namely (d11, dss, da3, dps, d11). Also
i # p, otherwise we have 4-cycle (d11, d2s, dps, dss, d11). Hence 2 < i < p.
This means we have two triangles (dy1, d23, dp3) and (di1, das, di3) sharing a
common vertex dy;. If we take one of these two triangles as T, then we end
up with an M which is not independent, a contradiction. This completes
the proof of Lemma 2. a

From the above preliminaries we can construct P,-graphs for r = 3,4,5
respectively if such graphs exist.

Proposition 1 There is a unigue Ps-graph (see Figure 2).

Figure 2: The unique Ps-graph.

Proof: Suppose G is a Ps-graph with vertices labeled from 1 to 13. Let
T={1,23}and M; = NG)NM = {21 +2,2i + 3} for i = 1,2,3 and
N(i)NB = {2i+2,2i+3} for i = 4,5. Without loss of generality, we assume
that (10, 6), (10, 8), (8,12) € E. By (IV) we have (7,11),(9,11),(9,13)€ E.
Now (6,12) ¢ E, since otherwise G has a 4-cycle (6,10,8,12,6). Hence
(6,13),(7,12)€ E.

If there is no edge in G[M], then to make vertex 10 have distance 2 from
vertices 7 and 9, we have to have (10, 11) € E; also vertex 10 has a neighbor
in {12,13} so as to make 10 distance 2 from 5. By symmetry, we see that
G|B] is 2-regular, and hence has a 4-cycle, a contradiction. So G[M] has
at least one edge. '

Suppose (4,5) € E. This implies that E£(10,11;12,13) = 0, i.e., there
is no edge with one end-vertex in {10,11} and the other in {12,13}. If
(6,7) & E, then for a similar reason we have (10,11), (12, 13) € E. However
if we take {1,4,5} as T instead of {1,2,3} we get a perfect matching in
G[M). So we can always assume that (4,5), (6,7),(8,9) € E. Now no more
edges can be added to the graph. Furthermore the graph obtained (see
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Figure 2) is Cy-free and is of diameter 2. Thus the Ps-graph exists and is
unique. a

Proposition 2 There are ezactly two Py-graphs (see Figure 3).

v’ X

KX
S
“}.’:”(\4{) ‘b

Figure 3: The two P;-graphs.

Proof: Let p = 3. Consider two cases:
Case 1: M is not independent in G, say (a1,a2)€ E. Then E(B;; Bs) =0.

If (dyi, dsi) € E for all ¢ = 1,2,3, we can assume, without loss of general-
ity, that (d11,dsz) € E. Then (d;2,dass), (di3,ds;) € E. Now (d21,d32)¢ E
(otherwise a 4-cycle (by,dy,, dsz, d21, by) occurs), and we have

(d21, da3), (d22,d31), (das, d32) € E.

To make d(d11, b3) = 2, we can add either (d;1, d;3) or (bs, bs) to G. But nei-
ther is possible, because of the paths: (dyy, b1, dai, d13) and (by, da;, das, ba).
Thus we may assume that (dy;,ds;) € E. Since (ds1,c1) € E, assume,
without loss of generality, that (da;,cz) € E. Then (cg,dsz),(c1,da3) €
E. By (VI) we have (c1,d22), (c2,d23), (c3,d21) € E. Because of the
path:(d1,ds;, c2,d12) we see that (dy1,di2) € E. To make d;; distance
2 from b2 and bs, we must have (b1, b2), (d11,d13) € E. Since (d1;,d31)€ E,
by (V) (dis,ds1) € E; also we have (d13,ds3) ¢ E as there is a path
(di3,d11,¢1,d33). Thus we must have (dj3,dz2) € E. By (V) we have
(dl2s d33)€ E.

Since (dy1,ds1) € E, (d21,d31) € E by (VI). G has a path (day, by, ba, ds)
which implies that (dy1,d22) ¢ E. Thus (d21,das) € E. Now (dp3,da3) ¢ E,
and (da2, d3;1) € E as there is a path (d2o, b2, b1, d31). Thus (do2,ds2) € E.
Finally by (V), (d2s,ds1)€ E.
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To make d(da2, bs) = 2, dz2 must be adjacent to either das or das. Since
(d21, ds3) € E, we know that (dgg, das) € E, thus (dg2,ds3) € E.

From (d;2, d13), (d12, d32) & E, we see that (cz, c3) € E in order to make
d(dy2,c3) = 2.
~ Now no more edges can be added to the graph G (see Figure 33.1) we

have just obtained. As one can check, G is a Py-graph.

Case 2: Suppose that for any T, the corresponding M is independent.

By Lemma 1 (dix, djx) € E if i # j. Without loss of generality, suppose
that (d11,d22), (d11, das) € E. Thus (d2, d2s), (d13, da1), (d12, d31), (d13, daz) €
E. In turn we have (dzs, ds; ), (d22, das), (d21, d32) € E. Consider the match-
ing E(Ms, B3). Since G has a path (3, d11, da2,ds3), (c1,dss) € E. This
gives (c1, ds2), (c2, d3s), (c3,ds1) € E.

Since (c1,4d11), (d11,d22) € E, by Lemma 1 we have (c;1,d22) € E. Thus
(c1,das), (c2,d21), (c3,d22) € E. By Lemma 1, each B; is independent, so
no more edges can be added to the graph G (see Figure 3.2) we have just
constructed. It is easy to check that G is Cj-free with diameter 2 and
thus a Ps-graph. The two P;-graphs found are not isomorphic since the
numbers of edges are different. In all we conclude that there are just two
Py-graphs. a

By a similar approach we prove that the Ps-graph is unique.

Proposition 8 The graph shown in Figure { is the unique Ps-graph.

Figure 4: The unique Ps-graph.

By Corollary 1, there is no Ps-graph.
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Corollary 2 The unique finile projective plane on 7, 18 or 81 points has a
unique polarity. Moreover, since the finile projective plane on 21 points is
known to be unique, it follows from Proposition 2 that this finite projective
plane has two different polarities.

Remark 1 It would be feasible to write a program, using a similar ap-
proach, to generate all the P.-graphs for r = 7,8,9 or even r = 11. Since
there is no finite projective plane of order 10 ([6]), there is no Pyo-graph.

It is clear that a maximal Cys-free graph has diameter at most 3. A
diameter 3 graph without 4-cycles is not necessarily a maximal Cj-free
graph. A 6-cycle would be a simple example. However, we have

Proposition 4 Every Cy-free graph G of diameter 2 is mazimal, except
when G i3 a star-like graph with two or more end-vertices.

Proof: Let G be a Cy-free graph of diameter 2. Without loss of generality,
suppose G is not a star-like graph. Let u and v be two non-adjacent vertices
in G. Since G is Cy-free with diameter 2, then u and v have a unique
common neighbor, say w = n(u,v). Since G is not a star-like graph, we
deduce that d(u),d(v) > 2. Let z € N(u) \ {w}, thus z # v and (z,v) ¢
E. Again, z and v have a common neighbor, say y. If y # w, then
(u,w,v,y,z,u) is a 5-cycle. If y = w, then d(u) > 2. If =’ is a vertex in
N(u)\ {z,w} then, as above, z’, u, w, v and n(z’,v) form a 5-cycle. In sum
u,w, v are in a 5-cycle. Now adding edge (u,v) to G would create a 4-cycle.
Thus G is maximal. a

Proposition 5 Every Cy-free graph G of diameter 2 is diameter critical,
ezcept when G is a star-like graph with at least one iriangle.

Proof: Again we assume that G is not a star-like graph. Let e = (u,v)
be an edge of G. If u and v have no common neighbor, then clearly the
distance between u and v is more than 2 in G\ e. If u and v have a common
neighbor w, then since G is not a star-like graph, we know that d(u) > 2.
If z is a vertex in N(u) \ {v,w}, then (z,v) € E as G is Cy-free. Also x
and v have no common neighbor in G\ ¢, since otherwise, if y is a common
neighbor of z and v in G \ ¢, then y # v and (u,v,y,z,u) is a 4-cycle of
G, a contradiction. Thus we see that the distance between z and v is at
least 3. Since e can be any edge of G, we have proved that G is diameter
critical. O

It is clear that a maximal Cy-free graph is not necessarily of diameter 2.
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38 Further discussions

In this section we consider graphs of diameter 2 without other small cycles
(not C4). The following is an easy observation:

Theorem 8 The only (Cs, Cs)-free graphs of diameter 2 are complete bi-
partite graphs.

Clearly complete bipartite graphs and star-like graphs are Cs-free graphs
of diameter 2. To characterize Cs-free graphs of diameter 2, we generalize
the concept of star-like graph to what we call a Wy.-graph: a graph obtained
by taking a star K, ,, say centered at o, and adding some edges among
vertices in V \ {0} such that no component of G — o has a path on k —1
vertices. For example, a W3-graph is just a star; a W4-graph is just a star-
like graph; and a W;-graph is a graph with a vertex of degree n — 1 such
that every block which is not isomorphic to K3 or K4 consists a number of
triangles with one edge in common.

By definition, a W-graph is also 8 Wy -graph. It is evident that W -
graphs are Cj-free graphs which have a spanning star.

Theorem 4 The only Cs-free graphs of diameter 2 are complete bipartite
graphs and Ws-graphs.

Proof: Suppose G is a Cs-free graph of diameter 2. If G is also triangle-
free, then by Theorem 3, G is a complete bipartite graph. Now suppose G
has a triangle, say (u,v,w) with d(u) > d(v) > d(w). Let S be the set of
common neighbors of u and v. We show that N(v) = SU {u}. In fact, if
there is a vertex z in N(v) \ (SU {u}), then since d(u) > d(v), we deduce
that u has a neighbor, say y, which is not in SU {v,z}. As (z,v,w,u, y)is
a path of G, we see that (z,y) ¢ E. Now by the choice of z and y we have
(z,u), (y,v) & E. Since G is of diameter 2, z and y must have a common
neighbor z which is distinct from u and v. But this time we have a 5-cycle:
(z,v,u,¥, 2 ), a contradiction.

Next we show that every vertex in S is of degree 2 if |S| # 2. It is true
if |S] = 1 because in this case we have 2 = d(v) > d(w) > 2. Next assume
that |S| > 2, say z1,%2,2z3 € S. If two vertices z,,z2 in S are adjacent,
then G has a 5-cycle (v,z;,T2,u,z3,v), Which is a contradiction. If z;
is adjacent to a vertex y in V' \ (SU {u,v}), then (y,u), (¥, v), (y,22) € E
since we have paths (y, z1,v, T2, u), (¥, Z1, 4, £2,), (¥, £1,%, v, Z2). Thus we
must have d(y, z2) = 2, and any common neighbor z of y and z2 must be
in V\ (SU {u,v}). But then we get a 5-cycle, (y,1,v,22,2, y), whichis a
contradiction. This proves that d(z) = 2 for any z € § if | S| # 2. Similarly
when |S| = 2, say S = {w, z}, we can prove that either d(z) = d(w)=2or
d(z) = d(w) = 3 with (z,w) € E.
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From the above we have d(u) = n —1 in order to make v distance 2 from
other vertices except u and vertices in S (if any). In fact we have proved
that if a block B of G is not isomorphic to K3 or K4, then B is the graph
composed of a set of triangles with one edge in common. Hence G is a
Wg-graph. This completes the proof of Theorem 4. a

Corollary 3 The only (Cs5,Cg)-free graphs of diameter 2 are K3, and
Wg-graphs.

Proof: Suppose G is a (Cs, Cg)-free graph of diameter 2. Clearly every
complete bipartite graph with no Cg must have one part with cardinality
no more than 2. Thus if G is a complete bipartite graph, then G is either a
star which is a Ws-graph, or K2, with m > 1. Notice that no Wg-graph
has cycles of length greater than 4. By Theorem 4 we see that Corollary 3
holds. (|

Theorem 5 The only Cs-free graphs of diameter 2 are (i) Ko m, (ii) We-
graphs, and (iii) the three families of graphs shown in Figure 5.

@ ) ©
Figure 5: Three families of Cs-free graphs of diameter 2.

Proof: Suppose G is a Ce-free graph of diameter 2. If G is also C-free,
then by Corollary 3, G is in class (i) or class (ii). Next suppose G has a
5-cycle: (u1,u2,:+- ,us,u;). Forany v € A C V, define d4(v) = IN(@)NA|.
Let S = {uy,uz,-- ,us} with ds(u;) = max{ds(u) | u € S}.

We say a vertex u; in S is duplicated if there is a vertex = which is
adjacent to both u;;; and u;_;. Here, and in what follows, the subtraction
and addition in the subscripts are taken modulo 5.

We make two observations based on the definition.

Claim 1: No two consecutive vertices on a 5-cycle can be duplicated simul-
taneously.

In fact if u; and u;; are duplicated by z; and x4 respectively, then we
have a 6-cycle (z1, ui—1,ui, T2, ui+2, Ui+1, 1), which is a contradiction.
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Claim 2: If u; is duplicated by z, then d(u;) = d(z) = 2.

Since = duplicates u, by definition, (z,u;+1), (%, ui-1) € E. Now G has
paths (i, %i41, T, Bi-1, Uit 3, Bit2), (Wi, Bim1, %, Uit1, Uit2, hi43). Since G is
Ci-free, we see that u; is not adjacent to u;;2 and u;y3. We prove that
u; is also not adjacent to any vertex in V' \ S. In fact if y is a vertex in
V \ S such that (u;,3) € E, then, by Claim 1, y cannot duplicate either
u;_; or uiyy. Therefore y is not adjacent to u;y2 nor u;y3. Hence is
the only neighbor of y in S. Since (ui,ui+2) € E and G is of diameter 2, y
and u;42 must have a common neighbor, say z, outside S. But this creates
a 6-cycle (v, u;, i1, Ui+3, Ui+2, 2,y), Which is a contradiction. This proves
that d(u;) = 2. By the same argument, using a new S in which z replaces
u; we see that z is also of degree 2.

Now we divide our proof into two cases:

Case 1: ds('ul) =4,

Let S’ = N(u;) N N(us) and S” = N(u;) N N(uq). By Claim 2, we
see that S’ U §” is an independent set of G if |S' U S”| > 2. Now we
show that us (and u4) has no neighbor outside S U S’ US". I, to the con-
trary, y € V\ (SUS'US") is a neighbor of ua, then because of the paths
(y1 us, U4, Us, U1, :B), (y’ ug, U2, U1, U4, z) and (y1 us, u2, U1, Us, ‘U4) (where zis
any vertex in S’ and z is any vertex in S”), y is not adjacent to any vertex
in $’US”U{ug}. Since y ¢ S, we have (u1,y) ¢ E. Let w be the common
neighbor of u; and y, then w is not in SU S’ U S”. This again creates
a 6-cycle (y, w, u1,us, us,us,y), which is a contradiction. Finally we have
d(u;) =n — 1 in order to have d(G) = 2. In this case G is C-free if and
only if each component of G — 4, has no path on five vertices; that is, Gis
a We-graph.

Case 2: ds('ul) <A4.

We make two more observations:

Claim 3: Suppose r is a vertez in V \ S such that (z,u%;) € E. Then z
duplicates ezactly one of ui— and uit1.

Clearly z is not adjacent to u;—; or ui41 since G has no 6-cycle. For the
same reason, = cannot be adjacent to both u;.o and u;3 simultaneously.
Now we show that z is adjacent to one of u;;2 and u;;s. In fact, since
ds(u;) < 4, without loss of generality suppose (u;,ui+2) € E. We know
that z and ;42 cannot have a common neighbor outside S, therefore z is
adjacent to either u;;3 or ui42 in order to make d(z,u;+2 < 2. Inall, z
is adjacent to exactly one of u;;2 and u;y3. This proves that z duplicates
exactly one of u;_; and u;4;.
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Claim 4: If dg(u;) = 3, then u; cannot be duplicated.

Without loss of generality, suppose (u;,u4) € E. If, to the contrary, u,
is duplicated by a vertex z € V' \ S, then (z, u2), (z,us) € E. Thus G has
a 6-cycle (z, u2, us, u4, 41, us, z), & contradiction.

Now consider the following three subcases:

(a) S has two chords, say (ui,us), (u2,u4) € E.

By Claim 4, u; through us cannot be duplicated. Thus by Claim 3,
d(ug) = d(uz) = 3. Also by Claim 3, N(u;)\ S = N(ug) \ S (i.e. every
vertex in the set duplicates ug). Let S’ = N(u;)N N(u4). Then by Claim 2
and 3, all vertices in S’ are of degree 2. Thus G belongs to class (iii-a).

(b) S has only one chord, say (u1,us).

By Claim 4, u; and u3 cannot be duplicated. By Claim 1, one of u,
and us, say u4 cannot be duplicated. Thus, by Claim 3, all neighbors of
ug outside S duplicate uz; all neighbors of u4 outside S duplicate us; all
neighbors of u; outside S duplicate either uz or us. Let §' = N(u;)NN (u3)
and $” = N(u;) N N(ug). Then, by Claim 2 and 3, the vertices in S’ U S”
are all of degree 2. Therefore G belongs to class (iii-b).

(c) S has no chord.

By Claim 1, we can assume without loss of generality, that u;, us and ug4
cannot be duplicated. By Claim 3, N(u3) \ S, N(u4)\ S € N(u;)\ S. By
Claim 2 and 3, all vertices in N(u1) N (N (u3) U N(uy) are of degree 2. Thus
G belongs to class (iii-c).

From the discussion above we see that G has to be in one of the three
families shown in Figure 5.

Combining Corollary 3 with the two cases above, we see that Theorem 5
holds. O

Using this method it is, in theory, possible to characterize all the graphs
of diameter 2 without cycles of length k for £ > 7; but it would become
more and more tedious with each increase in k.

Acknowledgement: I am grateful to Professor R.C. Read for his help and
guidance.
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