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ABSTRACT. In this article we discuss the number of pairwise
orthogonal Latin squares and obtain the estimate n. < 8(r +
1)2% for r > 2.

1 Imntroduction

A Latin square of side n is an n x n array based on some set X of n symbols,
with the property that every row and every column contains every symbol
exactly once. In other words, every row and every column is a permutation
of X.

Two Latin squares A and B of the same side n are called orthogonal if
the n? ordered pairs (a;;,b;;) formed by superimposing one square on the
other are all different.

Let Ay, Ay, ..., Ai be Latin squares of the same side n. We call {A,, 42,
..., Ax} a set of k mutually orthogonal Latin squares if A; is orthogonal to
Aj; for any 4,5 = 1,2,...,k whenever i # j. Let N(m) denote the largest
number of pairwise orthogonal Latin squares of order m.

Latin squares were first defined by Euler in 1782. He discussed orthog-
onality and in particular he considered the problem of thirty-six military
officers, and conjectured that no pair of orthogonal Latin squares of side
n can exist when n is congruent 2 modulo 4. G. Tarry [14] carried out a
complete census of Latin squares of side 6, and proved Euler’s conjecture
is correct in that case. However, the rest of Euler’s conjecture is wrong;
Bose, Parker and Shrikhande proved in [4] that there is a pair of orthogo-
nal Latin squares of every side greater than 6, a short proof of which was
given by Stinson [13] and Zhu [17]. It was proved by Chowla et al. [8]
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with the help of the Sieve methods of Brun that N(nr) > %n* for all suf-
ficiently large integers. After improvement by Rogers [12] and Wang [15],
a crucial break through was obtained by Wilson [16] who proved the esti-
mate N(n) > n¥ for sufficiently large integers. Based on an analysis of
the combinatorial trick employed by R.M. Wilson, Beth (3] obtained the
estimate N(n) > ntd® for sufficiently large integers by using substantially
more exact results from the theory of Sieves.

Latin squares have an important role in the construction of block designs
and are one of the most essential concepts in the field of design theory. Many
mathematicians have worked on them; in addition to the works already
cited, see [2], [6], [7], [9], [10].

Let n, denote the smallest number such that N(n) > r if and only if
n > n,. Beth’s asymptotic estimate N(n) > nT3 for n large provides a
lower bound n, < r14® for r large. But we do not know for how large r the
lower bound n, < r14-8 is valid. In this article we will give a lower bound
of n, for any integer r > 2.

2 Preliminaries

Let 7, denote the product of all primes p < n. We quote Lemma 8.2.5 and
Theorem 8.2.4 from pages 382-388 in [11] as follows.

Lemma 2.1. If real number z > 2, then 3_ ., Inp < (2In 2)z.

Lemma 2.2. For any real number z > 1, there exists a prime p such that
z<p<2r.

Corollary 2.3. If n > 2, m,, < (210 2)n,

Proof: It is immediate from Lemma 2.1. a
We also need the following Lemmas.

Lemma 2.4. Suppose that n = p{'py®...p2* where the p; are distinct
primes and each a; > 1. Then

N(n)> m‘in(p?‘ -1).

Lemma 2.5. [16] If 0 < u < g, then for any integer m

N(mg +u) 2 min{N(m), N(m +1), N(g) — 1, N(v)}.
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3 The estimate of n,

In this section we will provide a bound on n,. First we give the following
Lemmas.

Lemma 38.1. For any odd integer r > 5, there is an integer m prime to
(r +1)! satisfying m < 2" — 1, such that N(m) >r and N(m +1) > r.

Proof: By Lemma 2.2, there is an odd prime p such that

%<p$n

Let g be any prime divisor of 27 — 1 and let

Since 2”7 =1 (mod g), by the definition of g, and since 29-! =1 (mod g¢),
by Fermat’s theorem, we get 2¢ = 1 (mod q), thus d # 1. This implies
d = p. From (1) we get p|(g—1). Since p is an odd prime, ¢ > 2p+1 > r+1.
Since r < ¢—1, each prime divisor ¢ of 27 —1 satisfies N(g) > r. By Lemma
2.4 we have N(2?—-1) > r and a N(2P) =2P—1 > r. Also, 2P —1 is prime to
(r+1)! because each prime divisor q is greater than r+1. Define m = 2P 1.
Then m is prime to (r + 1)! as well as to #,4; and

m=2P-1<2"-1.
O

Lemma 3.2. Let m,r be defined as in Lemma 3.1. For any positive
integer n, define h = 0 (if n is even) or any given positive integer (if n is
odd). Then there are odd integers t and u such that N(|t|), N(u) > r+1,
0 <u < 2"mm,,; and

n=2"mt+u.

Proof: By Lemma 3.1, (m, (r + 1)!) = 1. By the definition of k, for every
prime ¢ < r + 1, there exists an odd integer ¢, satisfying the following
congruences

tg #0, n—2"mt, #0 (mod g). 2)
By the Chinese Remainder Theorem the congruences
t=t;, (mod g), for every prime ¢ < r+1,

have a simultaneous solution ¢. By (2), (¢,q) = 1 for every prime ¢ < r+1,
which implies N(|¢]) > r+1. Now put u = n—2"mt, congruences (2) imply
u # 0 (mod g) for any prime ¢ < r + 1. It follows that N(ju|) > r + 1. So

n=2"mt+uand N(|t|), N(Ju|) > r +1. (3)
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It is easy to show that ¢ £ 7,41 and u £ 2*mm, ., satisfy (3). Hence, we
may assume that 0 < u < 2*mn,.,; with N(u) >r+1. a

Lemma 8.8. When r > 5, n, < (2" — 1)27F}(r 4+ D)mppr.

Proof: By taking h = |logy(r+1)] +1 (if nis odd ) or 0 (if n is even ) in
Lemma 3.2, any n > (27 — 1)2"+!(r + 1)7,41 can be written as

n=2"mt +u, 0 <u<2"mmyy 4)
where N(Jt]), N(u) >2r+1. So

mt+u > (27 —1)2 M (r + D7pys.
By Lemma 3.1, noticing that m < 2" — 1 and 2*~! < r + 1, we have

2Pmt > (2" - 1)27F(r + Dmpyr —u
> (2" - 1)27(r + Dmpyr — 2Pmareyy
> (20— 127 (r + 1)pys = 2(r + 1)(27 — D
=2(2" - 1)(r + )7p41(2" - 1)

and
2Pmt < 2(r 4+ 1)(2" - 1)t.

Thus
t>np41(27-1) >0. (5)
By (4) and (5), we have
0<u<2mmyy <222 - Dmppr < 20t

Applying Lemma 2.5 with g = 2"¢, noticing that N(g) = N(t) >r+1 (if
n is even) and N(g) > min{N(2"), N(t)} > r + 1 (if n is odd), we obtain

N(n) = N(mg +v) 2 min{N(m), N(m + 1), N(g) - 1, N(u)} > .

Therefore, we get
ne < (27 = 12" (r + )7, 41.

Lemma 3.4. [1, 5] np £ 7,n3 <11, ny <43, ns <63, ng < 77.
Theorem. If r > 2, then n, < 8(r + 1)2%r.

Proof: When r > 5, the conclusion follows by Corollary 2.3 and Lemma
3.3. When 2 < r < 5, by Lemma 3.4 it is easy to directly check that
ny < 8(r +1)2%r, (m]
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