NC Algorithms for Antidirected Hamiltonian
Paths and Cycles in Tournaments

E. Bampis® Y. Manoussakis and I. Milist

LRI, Bat 490
Université de Paris Sud
91405 Orsay Cedex, France

ABSTRACT. Two classical theorems about tournaments state
that a tournament with no less than eight vertices admits an
antidirected Hamiltonian path and an even cardinality tourna-
ment with no less than sixteen vertices admits an antidirected
Hamiltonian cycle. Sequential algorithms for finding such a
path as well as a cycle follow directly from the proofs of the
theorems. Unfortunately, these proofs are inherently sequential
and can not be exploited in a parallel context. In this paper we
propose new proofs leading to efficient parallel algorithms.

1 Introduction

A simple path in a directed graph is said to be antidirected (ADP) if every
two adjacent arcs of the path have opposite orientations, in other words if no
two adjacent arcs of the path form a directed path. An antidirected Hamil-
tonian path (ADHP) in a digraph is a simple antidirected path containing
all the vertices. In a similar way, we define an antidirected Hamiltonian
cycle {ADHC). The problem of finding an ADHP in an arbitrary digraph
is trivially NP-complete. To see that, consider any symmetric digraph (i.e.
a digraph in which every arc is in a directed cycle of length two) with an
even number of vertices. Clearly, this digraph has an ADHC if and only
if it has a (directed) Hamiltonian cycle and it is well-known that this last
problem is NP-complete.

A tournament is an orientation of a complete graph, i.e. a digraph such
that between each pair of vertices there is exactly one arc. For this particu-

*LaMI, Université d’Evry, Bd des Coquibus, 91025 Evry Cedex, France
1Fellow of the E.E.C. program Human Capital and Mobility.

JCMCC 21 (1996), pp. 223-234

lar class of digraphs much work has been done in respect with ADHPs and
ADHCs. In [7] and [11] it has been shown that all tournaments have an
ADHP, except exactly three tournaments of sizes 3, 5 and 7, respectively. It
has been, also, shown that each tournament with no less than sixteen ver-
tices has an ADHC [9] [12] [14]. The proofs of these results imply efficient
sequential algorithms for finding ADHPs and ADHCs of complexities O(n)
and O(n?), respectively (n is the number of vertices of the tournament).
Such an algorithm for ADHPs is presented in the more general context of
(8]

Although many results have recently appeared in the literature on NC al-
gorithms for (directed) Hamiltonian paths and cycles in tournaments [1] [4]
[13], there are no analogous results for the antidirected case. Unfortunately,
the existing efficient algorithms for constructing ADHPs and ADHCs are
implied by inductive proofs and are inherently sequential. A natural ques-
tion, therefore, is: can ADHPs and ADHCs in tournaments be found by
NC algorithms?

In this paper we give a positive answer to the above question by pro-
viding NC algorithms for both problems. The development of these algo-
rithms is based on new proofs for the existence of ADHPs and ADHCs.
Our algorithms are in the well known CRCW PRAM model, where simul-
taneous reading is allowed while for simultaneous writing processors are
required to write the same value. The complexity of the algorithms pre-
sented are O(logn) time, O(n/logn) processors for finding ADHPs and
O(log® n) time, O(n?/logn) processors for finding ADHCs. Thus the first
algorithm is optimal and the second one is optimal up to a factor of logn,
in respect with the sequential complexities of the problems.

2 Definitions and Notation

Throughout this paper, T;, denotes a tournament with n vertices. A trivial,
but useful fact is that any induced subgraph, of a tournament is also a
tournament. If v, w are vertices of a tournament 7, then we say that v
dominates w if the arc (v, w) exists and denote this relation by v — w. Note
that since the directions of the arcs are arbitrary the domination relation
is not necessarily transitive. By I'"(v) and 't (v) we denote the sets of
vertices which, respectively, dominate and are dominated by the vertex ».
The indegree and the outdegree of v are defined as |[I'~(v)| and |I'*(v)| and
are denoted by d~(v) and d*{(v), respectively.

Following [11], we say that a vertex v is a starting vertex (resp. an ending
vertex) of an antidirected path, if the path is of the form v — vy « ...
(resp. v «— v1 — ...). If v is both a starting and an ending point we say
that v is a double point. It follows directly from this definition that one
of the extremities of an antidirected path with odd number of vertices,

224

¥4 — Up — -+ — Vgr41, is a double point. To see that, it is enough to
examine the arc between its extremities, i.e. if vo,; 1 — v; (resp. vory; +—
v1) then the double point is the vertex vy (resp. var+1).

We say that a tournament is transétive if the domination relation is tran-
sitive. Clearly the vertices of a transitive tournament is linearly ordered by
the domination relation and there is a unique such order, in which i — j if
and only if 7 < 7. In the following a transitive tournament, with n vertices
is denoted by T'T,, and its ordered vertex set by {1,2,...,n}.

We define, fianlly, a special type of transitive subtournaments that will
be used in the sequel.

Definition 1: A transitive subtournament TT, C T, is said to be nice
if for each vertex z € T,, — TT, there is at least one arc £ — 1 for some
1 € TTy.

3 Specified Transitive Subtournaments

Transitive subtournaments of a tournament 7, will be very helpful for the
problems examined in this paper because of their following interesting prop-
erty [11] :

Lemma 1. [11]. Let TT, be a transitive tournament with vertex set
{1,2,...,n}. (i) If n is even, then TT, contains an ADHP starting from i
and ending in j unless either i=n or j =1 or {t,5} = {1,2} or {i,5} =
{n - 1,n}. (ii) If n is odd, then TT, contains an ADHP with starting
(ending) vertices ,j unless either i =n (=1) or j=n (= 1) or {i,5} =
{n—2,n—1} (= {2,3)).

Although M. Rosenfeld in [11] was not interested on the complexity of
finding the ADHPs in Lemma 1, it is easy to show that, given the order of
the vertices in a transitive tournament, no searching is needed to find these
paths, i.e. it takes O(1) sequential time, while the rank of the vertices
in the ADHPs can be computed in parallel in O(logn) time using O(n)
processors [6).

It is known that the problem of finding a maximum transitive subtour-
nament of a tournament is NP-complete [3]. On the other hand, a maximal
transitive subtournament can be found trivially by a greedy sequential al-
gorithm of complexity O(n?), Unfortunately, we do not know if this last
problem is in NC. In return we present in this section an NC algorithm for
finding a transitive subtournament T'T;, with size at least |logn] + 1. This
can be done by the following procedure.

225

procedure FIND-TT, (T,)
(1) Find the vertex o € T, with the maximum degree.
(2) TT: = {zo}.
(3) T, = I't(xy).
(4) Fori=1,2, ..., |logn| do
(4.1) Find the vertex z; € T,,, with the maximum degree.
(4.2) TTiy, = TT; U {z;}.
' (4.3) Tn,,, =T (z).
(5) return a T'T,, of T,.
end FIND-TT,.

Lemma 2. For every tournament T,, procedure FIND-TT, obtains a TT,,
p > |logn| + 1, in O(log®n) time using O(n?/log n) processors.

Proof: Let = be the vertex of maximum out-degree in a tournament T..
Clearly, d*(z) > 5. This fact guarantees that the procedure above finds
a TT, with size at least |logn) + 1. The main loop of the procedure is
repeated logn times and each time the vertex with the maximum degree
must be found. This can be done in O(logn) time using O(n?) proces-
sors. The rank of the vertices in TT, can be computed in O(logn) time
using O(n) processors LG] Therefore, the complexity of the FIND-TT,, pro-
cedure becomes O(log”n) time using O(n?) processors. By applying the
well known Brent’s principle [5] we can reduce the number of processors to
O(n?/logn). m]

Next, we give an NC algorithm for finding a nice transitive subtourna-
ment of T,,. In order to obtain such an algorithm the next lemma of D.
Soroker [13] is used.

Lemma 3. [13]. Every tournament T, contains a vertex u which domi-
nates, and is dominated by at least l_gi | vertices.

The following procedure uses this Lemma to find out a nice TT, C T,.

procedure FIND-NICE-TT, (T,)
1) TT, =0.
(2) While |T,| > 1 do
(2.1) Find a vertex u € T, whose in-degree and out-degree are
at least | %]
(2.2) TT, =TT, U {u}.
(23) T =Tt(u). '
(3) return a nice TT}, of T,.
end FIND-NICE-TT,.

226

Lemma 4. For every tournament T,, procedure FIND-NICE-T'T, ob-
tains a TT, C T,, with p 2, [lﬁgﬂj + 1 vertices in O(log?n) time using
O(n?/logn) processors.

Proof: It is clear that procedure FIND-NICE-TT, returns a transitive
subtournament of T,. We know that I't(u) > ["J and T't(u) < |38],
since, by Lemma 3, both I'* (u) and I'"(u) have at least | 4_| vertices. Each

call of the procedure adds a vertex to TT,, and we obtain that finally
p > |'%%] + 1. Furthermore for each vertex z € T,, — TT,, we know that
z € I'" (%) for some i € TT), and thus the obtained T'T}, is a nice one.

The procedure is invoked O(logn) times and at each time Step (2.1)
must be executed. This step can be implemented in O(logn) time using
O(n?) processors. Thus, similarly w1th Lemma 2, the parallel complexity
of FIND-NICE-TT, procedure is O(log?n) on O(nz/ log n) processors. O

4 Antidirected Hamiltonian Path

In this section we prove an NC algorithm for finding an ADHP in a tour-
nament T,,. In order to find such a path the divide and conquer approach
is exploited. A simple way to apply this approach is the following:

(i) Split the tournament T, into two subtournaments T;,, and T,, of
roughly equal order.

(ii) In parallel, find ADHPs X, in T, and X3 in T,,,.
(iii) Connect appropriately X; and X, to form an ADHP in T'.

Following this approach Step (iii) does not seem clear, since it is not
obvious how to connect X; and X,. Fortunately, the following lemma
helps to overcome this difficulty.

Lemma 5. The following operations on ADPs in a tournament T,, can be
done in constant time.

(i) Add a vertex to an ADP with odd number of vertices.
(ii) Add two vertices to an ADP with even number of vertices.

(iii) Connect two vertex-disjoint ADPs X and Y, each of odd number of
vertices, in a new one with vertex set V(X)U X (Y).

2217

Proof:

(i) Let X = z; — 23 « ... = 29, « Z2,4+1 be an ADP with odd number
of vertices in T,, and a vertex u € T,, — X. Without loss of generality
assume that z; is the double point of X, that is, 3,43 — z;. We
examine the orientation of the arc between z; and u. If z; — u, then
the desired path is z9.4) — Zo; + ... = T3 + T1 — u, else the path
is T2 «— ... = Tor — Tor41 — 2] — u.

(ii) Let X = 2y — z3 ... «— z3r—1 — Zz, be an ADP with even
number of vertices in T, and two vertices uj,us € T, — X. If u; (or
ug) +— x; (resp. uj (or uz) — z2,), then replace X by uj(ug) «
Ty — Ly — .. +— Tgp_] — To, (TESP. T} — Ty — ... — Togr_; —
Zor +— u1(uz)). Moreover, if u; (or uz) — z2 (resp. uy (or ug)
+— Zgr—1), then replace X by =1 + uj(ug) = 2 « ... — ZTor_1 — Za,
(resp. z1 — z3 «— ... — Za,—1 — uy(uz) ~ z2.). If only one of
the vertices uy,ug is added so far to X, then the path formed is of
odd number of vertices, and the other vertex can be added by case
(i). Otherwise (if no vertex is added to X so far), assume without
loss of generality, that u; — ug. If 1 — z._;, then replace X by
Tor — U +— U] — Tor_] +— T3 — T + ... — Tar_2, else replace X
by zor = ug — w3y — Ty — Tor_; — ... = .

(iii) Let X =27 > 23 « ... = Tgp — Zopyg and ¥ = y; — yg
e = Y25 — Y2s41. Without loss of generality assume that z; and y;
are the double points of X and Y respectively, that is 3,41 — z;
and y2;+1 — ¥1. We examine the orientation of the arc between
z; and y. If £y — yi1, then the desired path is zor1 — o
= Ty — Ty — Y1 — Y2s41 — Y25 — ... = Yo, else the path is
T2 €= oo DT & Tor4] ST Y1 Y2 — oo = Y25 — Y25+1-

It is clear, that all these operations take constant time, since the orien-
tation of a constant number of arcs (2, 10 and 3 in cases (i), (ii) and (iii)
respectively) must be examined.

However, is not obvious yet how Lemma 5 can be exploited, into the
framework of the divide arid conquer approach, to divide T}, and to com-
bine the obtained in each part ADHPs. In the case of even cardinality
tournaments we can handle this problem as it is shown in the following
procedure:

procedure FIND-EVEN-ADHP(T;,, n even)
(1) If |Tn] < 2 then return an ADHP of T;,.
(2) Split T into two subtournaments T,,, and T,,
of roughly equal even cardinalities such that n; + ng = n.
(3) In parallel, find ADHPs X;=FIND-EVEN-ADHP(T,,, n, even)

228

and Xo=FIND-EVEN-ADHP(T,,, n2 even).
(4) X; = X; - {w1}, X2 = Xz — {u2}. {u; and u, are extremities of
the ADHPs X; and X respectively }
(5) Use Lemma 5(iii) to connect paths X; and X» in a new path X.
(6) Add, by Lemma 5(ii), vertices u;,u2 to X and return an ADHP
of T,.
end FIND-EVEN-ADHP.

Lemma 6. For every tournament T,,, n even, procedure FIND-EVEN-
ADHP obtains an ADHP in O(logn) time using O(n/logn) processors.

Proof: The depth of the recursion tree of the above procedure is O(logn)
(Step (3)) and it can be implemented using O(n) processors. Steps (5) and
(6) can be implemented in constant time, by Lemma 5, and the same is ob-
vious for Step (4). The rank of the vertices in the ADHPs can be computed
in O(logn) time using O(n) processors [6]. Thus, by using Brent’s princi-
ple [5], the parallel complexity of FIND-EVEN-ADHP procedure becomes
O(logn) on O(n/logn) processors. O

Unfortunately, in the case of odd cardinality tournaments a similar ap-
proach does not work. This is due to parity reasons and we proceed in a
different way. First, we find a transitive subtournament of T,, consisting
of 5 vertices, i.e. a TT;. Such a transitive subtournament can be found in
each tournament T,, n > 16 in O(1) sequential time, by applying procedure
FIND-TT, on a subtournament of T;, induced by 16 of its vertices. Next,
we consider the subtournament T = T,, — T'Ts, in which we can find an
ADHP using FIND-EVEN-ADHP, since k is even. Now, using Lemma 1,
we can prove the following:

Lemma 7. Let T, n > 16, be a tournament of odd cardinality. Given
a TTs of T, and an ADHP in Ty = T, — TTs, an ADHP in T, can be
constructed in O(1) time.

Proof: Let {1,2,3,4,5} bea TT5 in T}, and 21 — zg « ... «— To,—1 — T2,
be an ADHP in T,, — T'Ts. We test if one of the extremities of this path, z;
or x4, can be inserted into T'T; in such a way that preserves the transitivity,
i.e. to form a TTs. Each of these vertices can not be inserted in T'Ty if and
only if there are two vertices i and j in T'T5, ¢ < j, such that 7 — z;(z2,)
and z;(z2;) — 4. It is clear that this test can be done in constant time,
since T'T5 is a constant size transitive subtournament. Next, we consider
two cases:

Case (i): No extremity can be inserted in T'Ts.

If for some vertex ¢ of TTy, 1 < ¢ <4, ¢ — zg,, then, by Lemma 1, there
is an antidirected path in T'T5 starting from ¢ and the desired path is z; —

229

Tg ¢ ... &= T25-1 = Tos + [i = -+ (ADHP in TT; starting from 3)], for
some i such that 1 < i < 4. Similarly, if for some vertex i of TTs, 2 < i < 5,
i + z;, then, by Lemma 1, there is an antidirected path in T'Ts ending at i
and the desired path is z9, + z2;,1 — ... 5 T3~z = [i — --- (ADHP in
TTs ending in 1)), for some i such that 2 < ¢ < 5. If none of these is the case,
then z; — 1, for otherwise z; can be inserted into 7T'T5, a contradiction.
Then the desired path is 9,y — ... 9 Zg — 21 = 1 —Zgy = [{ — --.
(ADHP in TTs — {1} ending in)}, 3 < i < 5.

Case (ii): An extremity can be inserted in T'T5.

Assume that o, can be inserted into T'T5, the proof being similar in the
case of x;. Now, we consider a TTg and the antidirected path z; — z, —
w. & Zog—y in T, — T'Tg, which now contains an odd number of vertices.
Let us assume, without loss of generality, that z, is the double point of
this path. It is enough to consider an arc between z; and some vertex i of
TTe, 2 < ¢ £ 5. If z; — i then the path is [(ADHP in TT¢ ending in i)

v+ = 4] — Ty — Ty — ... — Tg,_1 else the path is T3 — ... — zp,_; —
zy + [= --- (ADHP in TT; starting from 3)).

Since we consider a constant size transitive subtournament of T}, i.e. a
TTs, in both cases the direction of a constant number of arcs is examined
and the corresponding ADHPs can be found in constant time. a

We can, now, summarize the procedure for finding an ADHP in tourna-
ments of odd cardinality as following:

procedure FIND-ODD-ADHP(T,, n odd)
(1) Find a TT, in T,,.
(2) Find an ADHP in T, — TTs using FIND-EVEN-ADHP(T},, n even).
(3) Return an ADHP of T;, using Lemma 7.

end FIND-ODD-ADHP.

Steps (1) and (3) can be implemented in constant time, and thus the com-
plexity of the procedure FIND-ODD-ADHP is determined by the complex-
ity of the procedure FIND-EVEN-ADHP. Therefore, next theorem follows
from Lemma 6.

Theorem 1. For every tournament T,, n > 16, an ADHP can be found
in O(logn) time using O(n/logn) processors.

Note that the complexity of our parallel algorithm for finding ADHPs is
optimal with respect to the best known sequential one of complexity O(n).

5 Antidirected Hamiltonian Cycle

A restricted antidirected Hamiltonian path of a tournament 7}, is an ADHP
with a specified extremity, either the first or the last vertex, not both. Given

230

a specified extremity, say x, we denote such an ADHP as z-ADHP. Notice
that we are not interested in whether the specified extremity is a starting
or an ending point.

In [11] M. Rosenfeld has proved that for every vertex = of a tournament
Tn, n > 9, there is an z-ADHP. From a careful reading of the proof of
Theorem 3 in [11] it is not hard to see that its arguments can be easily
implemented in parallel. In particular, if » is even, then it is enough to find
an ADHP in T, — {z}. Since this ADHP has an odd number of vertices
it is trivial to construct a z-ADHP. If n is odd then we test first if z is
an internal vertex in some T'Ty C Ty. Such a test can be done in O(logn)
time using O(n?/logn) processors. If this is the case we find an ADHP in
T. — TT; and then we can easily construct a z-ADHP. Otherwise, T}, has
a special structure which implies directly a z-ADHP. Hence, taking into
account Theorem 1, we have the following corollary.

Corollary 1. For every tournament T, n > 9, and z-ADHP can be found
in O(logn) time using O(n?/logn) processors.

Let us now consider the problem of finding an ADHC in tournaments.
Obviously, such a cycle exists only in even cardinality tournaments. It is
known that every tournament T, n even, n > 16, has an ADHC. This
result was initially proved in [14] for n > 50. For n > 16, if T, contains
a TTg, then a proof can be found in [12], otherwise the proof is given in
[9]. We point out, here, that all these proofs use a maximal transitive
subtournament of T,. Unfortunately, as far as we know the problem of
finding efficiently in parallel a maximal transitive subtournament of a tour-
nament is open. Consequently, a parallel algorithm for the ADHC problem
can not be based on these proofs. In what follows we give a new proof
for the existence of ADHCs, using a nice transitive subtournament instead
of a maximal one. This new proof is exploited into an efficient parallel
algorithm for tournaments with no less than 256 vertices, i.e. a constant
number of vertices. For tournaments with less vertices we can use the
maximal transitive subtournament approach in constant time.

Lemma 8. Let T, be a tournament, n > 256, n even. Given a nice
transitive subtournament TT, of T, and an ADHP in Ty = T,, — TT,
an ADHC in T, can be constructed in O(logn) time using O(n?/logn)

Pprocessors.

Proof: Let TT, = {1,2,...,p} be a nice transitive subtournament of T,,.
We distinguish between two cases depending on the parity of p.

(i) Ifpisodd, let z; «— z3 — ... + Zor — Tor4+1 bean ADHP of T,, - TT),
and let z; be its double point. We assume without loss of generality
that there are at least two vertices, say i,j in TT, dominating z;
(if this is not the case we inverse each arc of T, and study the new

231

tournament). If for some vertex v € {1,2,..,p — 1}, u — zpr4;
then the desired cycle is i — z; « z3 — ... = Zoryy « [u —
.-+ « i (ADHP in TT, with starting vertices u and i)]. Otherwise,
we consider the vertex za.. If for some vertex v € {1,2,...,p — 1},
T2y — v then the desired cycle is 1 — z1 «— 29 — ... «— z9, —
¥ — Zory) — [u — -+ «— i (ADHP in TT, — v ending at u and
starting from i)]. If this is not the case, then z3, — p, since TT,
is nice. Then, we consider the path zy « z9 — ... — x5, — p and
the transitive subtournament T'T, = {z2+1,1,2,...,p—1}. The cycle
now is ¢ — &1 «— g — ... +— Tg, — P — [t—»---4—i(ADHPinTT,',
with starting vertices ¢ and)], where ¢t € TT, and t # p — 1.

The above arguments are valid for p > 5. By Lemma 4, p > [-“—’gﬁj +1,
that is » > 256. The implementation can be done in O(1) time using
O(log n) processors, since the cardinality of T'T, is O(logn).

(ii) If p is even, we examine the vertices in T, — T'T,,. If there is a vertex,
y, which can be inserted in T'T,, then we consider the transitive sub-
tournament T'T},,; = TT, U {y}, which remain nice and therefore we
are in the case (i). If no such a vertex exist, then TT} is maximal and
the proof is given by M. Rosenfeld in [12]. For his proof a restricted
x-ADHP must be constructed and this dominates the implementation
complexity, that is, by Corollary 1, O(log n) time using O(n?/logn)
processors.

Combining the two cases we obtain that this Lemma can be implemented
in O(logn) time using O(n?/logn) processors. (]

Hence, next Theorem follows from Lemma 8, Lemma 4 (construction of
a nice TTp) and Theorem 1 (construction of an ADHP).

Theorem 2. For any tournament T,,, n > 256, an ADHC can be found in
O(log?n) time using O(n2/logn) processors.

6 Concluding Remarks

We have shown that the problems of finding an ADHP and an ADHC
in tournaments are both in NC. By this work two interesting unsolved
questions are addressed:

1) Does the problem of finding a maximal transitive subtournament of
a tournament belong to NC? (Recall that the problem of finding a
maximum one is NP-complete). If this is true, then employing our
results for ADHPs and the proofs given by M. Rosenfeld in [12] we-
can find ADHCs in tournaments with no less than 16 vertices. An

232

interesting generalization of this problem is that of finding a maxi-
mal acyclic subdigraph of a given digraph or equivalently a minimal
feedback vertex set in a digraph.

2) What is the complexity of finding, if one exists, a doubly restricted
ADHP in a tournament, i.e. an ADHP where both extremities are
specified? In other words, what is the complexity (both sequential and
parallel) of testing the antidirected Hamiltonian connectedness of a
tournament? A similar question for the (directed) doubly restricted
Hamiltonian path has been stated by D. Soroker in [13]. Recently, J.
Bang-Jensen, Y. Manoussakis and C.Thomassen [2], answered Soro-
ker’s question in the affirmative by presenting a polynomial sequential
algorithm, while it is not known if the problem is in NC.

Acknowledgment. The authors wish to express their thanks to an anony-
mous referee for suggesting various improvements on an earlier version of
this paper.

References

[1] E. Bampis, M. El Haddad, Y. Manoussakis and M. Santha, A parallel
reduction of Hamiltonian cycle to Hamiltonian path in tournaments,
PARLE 93, Lect. Notes in Comp. Sc. 694 (1993), 553-560.

[2] J. Bang-Jensen, Y. Manoussakis and C. Thomassen, A polynomial
algorithm for Hamiltonian-connectedness in semicomplete graphs,
Journal of Algorithms 18 (1992), 114-127.

[3] J. Bang-Jensen and C. Thomassen, A polynomial algorithm for the
2-path problem for semicomplete digraphs, SIAM J. Discr. Math.
(1992), 366-376.

[4] A. Bar-Noy and J. Naor, Sorting, minimal feedback sets and Hamil-
tonian paths in tournaments, SIAM J. Discr. Math. 3 (1990), 7-20.

[5] R. Brent, The parallel evaluation of general arithmetic expressions,
J. ACM 21 (1974), 201-206.

[6] R. Cole and U. Vishkin, Approximate and exact parallel scheduling
with applications to list tree and graph problems, In Proc. 27¢* FOCS
(1986), 478-491.

[7} B. Griinbaum, Antidirected Hamiltonian paths in tournaments, J.
Combin. Theory (B) 11 (1971), 249-257.

(8] P. Hell and M. Rosenfeld, The complexity of finding generalized paths
in tournaments, Journal of Algorithms 4 (1983), 303-309.

233

[9] V. Petrovic, Antidirected Hamiltonian circuits in tournaments, In
Proc. 4t* Yugoslav Seminar of Graph Theory, Novi Sad, 1983.

[(10] K. B. Reid and E. T. Parker, Disproof of a conjecture of Erdés and
Moser, J. Combin. Theory (B) 9 (1970), 93-99.

[11] M. Rosenfeld, Antidirected Hamiltonian paths in tournaments, J.
Combin. Theory (B) 12 (1972), 93-99.

[12] M. Rosenfeld, Antidirected Hamiltonian circuits in tournaments, J.
Combin. Theory (B) 16 (1974), 234-242.

[13] D. Soroker, Fast parallel algorithms for finding Hamiltonian paths and
cycles in a tournament, Journal of Algorithms 9 (1988), 276-286.

[14] C. Thomassen, Antidirected Hamiltonian circuits and paths in tour-
naments, Math. Ann. 201 (1973), 231-238.

234

