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ABSTRACT. We prove a very natural generalization of the Bors-
uk-Ulam antipodal Theorem and deduce from it, in a very
straightforward way, the celebrated result of Alon [1] on split-
ting necklaces. Alon result says that ¢(k— 1) is an upper bound
on the number of cutpoints of an opened t-coloured necklace so
that the segments we get can be used to partition the set of ver-
tices of the necklace into k subsets which have the property that
every colour is represented by the same number of vertices in
any element of the partition. The proof of our generalization of
the Borsuk-Ulam theorem uses a result from algebraic topology
as a starting point and otherwise is purely combinatorial.

1 Introduction

Let ¢ be a natural number. An opened t-coloured necklace is a sequence
of elements (beads) from the integer segment [1,¢]. Let N be an opened
t-coloured necklace. A splitting of N is a partition Ny U N2 U ---U Ng of
the set of beads of N such that for every colour i, 1 < i < ¢, the beads
of colour i are spread evenly between the sets Nj, i.e. all of the sets N;
contain the same number of beads of colour i. A splitting of N which is a
partition into k sets is called a k-splitting. The size of the splitting of Nis
the minimal number of cutpoints of N needed to partition it into segments
preserved by the splitting.

Note that if the beads of each colour are consecutive in N, then any k-
splitting cuts each segment of one colour beads at k — 1 points at least, and

JCMCC 21 (1996), pp. 235-254



hence has size at least ¢(k—1). The following natural question arises: is this
trivial lower bound also an upper bound? In other words, if N is an opened
t-coloured necklace admitting a k-splitting, does N have a k-splitting of
size t(k — 1)? Somewhat surprisingly the answer to this question is ‘yes’.

Let us now briefly describe the history of this problem. Bhatt and Leis-
erson (5] and Bhatt and Leighton [4] pointed out that this problem has
some applications to VLSI circuit design. Goldberg and West [7] proved
that for every ¢, an opened t-coloured necklace admitting a 2-splitting has a
2-splitting of size ¢t. They also raised the question about the general upper
bound for k-splittings. Alon and West [2] gave a very short proof of the
above upper bound for 2-splittings using the Borsuk-Ulam antipodal theo-
rem; they also conjectured that ¢(k — 1) is an upper bound for k-splittings.
Alon [1] proved the t(k — 1) upper bound for k-splittings using involved
methods of algebraic topology. In this paper we are going to give another
proof of Alon’s result. Our proof will be more elementary and will use a
classical result of algebraic topology (Lemma 3.6) only as a starting point;
after that the argument will be purely combinatorial.

Theorem 1.1. (N. Alon [1]). Every necklace with ka; beads of colour
i, 1 < i < t, has a k-splitting of size at most t(k — 1).

To prove Theorem 1.1 we shall formulate and prove a new, very natural
generalization of the Borsuk-Ulam antipodal theorem. From this general-
ization we shall immediately obtain a continuous version of Theorem 1.1
implying, as in Alon [1], Theorem 1.1 itself.

To formulate our generalization of the Borsuk-Ulam antipodal theorem,
we must introduce some more terminology. Let R be the metric space of
nonnegative reals with the natural metric. Given a natural number n, let
R4, be obtained by taking the product of R, with the integer segment
[0,n — 1] C N and identifying the points (0,0),(0,1),...,(0,n — 1) to a
single point denoted 0. The metric 4 on R, , is defined as follows:

#((2, i): (y! ')) = |I - yl
and

l‘((—’F» i)s (y’J)) =z+y

forz,y €e Ry, 0<¢,5 <n-1, and i #j. Thus R, , is the union of n
half-lines with a common endpoint and equipped with the natural metric.
Given a natural number m, let RT, be the product

ER.,.,,‘ XRynX...X 1R+,,.‘

~

m times
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with the metric 4 defined by

I‘((zlaz2) e :zM)’ (y11y21 ey y"‘)) = Z“(z‘! y")'
=1

Let O be the point (0,0,...,0) € RT,, and let S7~! be the unit sphere
in RT,, with the center at O, i.e. let

St 1= {zeRT,: u(z,0) =1}.

Let 7: [0,n — 1] —= [0,n — 1] be the function of taking the cyclic successor,
ie. let n(s) = (i+1) modn,i=0,1,...,n—1. Let w: SP~! — S7~! be
defined by

w ((zll il)v (323 i?)v teey (xmv ‘m)) = ((zl: ’7(‘1))’ (‘72; ﬂ(iz)), [XXE) (zm: "I(zm))) .

We are now ready to state our generalization of the Borsuk-Ulam’s the-
orem.

Theorem 1.2. If p is a prime and m is any natural number, then for any

continuous map
h: Spe-1) — R™

there exists an z € Sp® ™" such that
h(z) = h(w(z)) = - -+ = (W~ (z)).

Note that for p = 2, S;,"(”— Dig naturally homomorphic to §™, the ¢;-sphere
in R™+!, with the map w on SJ* corresponding to the antipodal map on S™.
Thus if p = 2, Theorem 1.2 is a reformulation of the Borsuk-Ulam antipodal
theorem. In Section 4 (Lemma 4.1), we shall give another description of
S;,"(”—‘) by defining a triangulation of it.

The rest of the paper is partitioned as follows. In Section 2, we prove

Theorem 1.1 using Theorem 1.2; in Section 3, we prove the main lemma
needed in the proof of Theorem 1.2, whose proof is given in Section 4.

2 Continuous Splittings

In this section we shall prove Theorem 2.1, which easily implies Theorem
1.1, and is in fact a continuous version of it. We shall show that Theo-
rem 2.1 follows immediately from Theorem 1.2. Now, let us introduce the
terminology needed to formulate Theorem 2.1. Let I = [0,1] be the real
unit interval. An interval m-colouring is a function from I to the inte-
ger segment [1,m] such that the set of points mapped to i, 1 < i < m,
is (Lebesgue) measurable. A k-splitting of size r of such a colouring is a
partition I = F; U ... U Fy satisfying the following conditions:
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(1) There is a sequence of numbers 0 =g < y1 < -+ S Yr S Yrp1 = 1
such that for each of the segments (1, ¥:4+1), 0 < i < r, and each of
the sets Fj, 1 < j < k, (%, %+1) is either contained in F} or is disjoint
from it.

(ii) The measure of the set of points mapped to i, 1 < i < m, which are

contained in Fj;, 1 £ j < k, is precisely 1/k of the total measure of
the points of the color .

Theorem 2.1. (Alon [1]). If p is a prime number, then every interval
m-colouring has a p-splitting of size m(p — 1).

The proof of this result given by Alon uses a generalization of the Borsuk-
Ulam antipodal theorem due to Bérdny, Shlosman and Sziics [3], and an-
other topological result of Bérény, Shlosman and Sziics ([3] Statement A’).
We shall show that our new generalization of the Borsuk-Ulam antipodal
theorem is strong enough to imply Theorem 2.1 immediately.

Proof of Theorem 2.1: Let f: I — [1,m] be an interval m-colouring.

We shall define a continuous map h: S;,"(‘"l) — R™ and apply Theorem
1.2. Let g=m(p—1)+ 1. Given

z = (T4, Ty, ... ,:’fq) € S;n(’_l)
where
I = (xi) k‘)s
i=1,2...,¢, 5, €R;,0< Kk <p—1,let

I=FPUuFPu...uF®,

be a splitting of size m(p — 1) of f defined as follows. Let 0 = yp < y; <
+++ £ ¥g-1 < yq = 1 be the sequence of reals satisfying

Yi —¥Yi-1 =%,

fori=1,...,q. Note that
q

Z.’L’.‘ =1.

i=1
Let
JP ={i:1<i< gk =3},

and
F® = | @i-1.%)
i€

8=0,1,...,p—1, where (yo, 1) is the closed interval [yo, 1] and (i1, %:)
is the half-open interval (yi—1,%] for i = 2,3,...,q9. In other words the
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partition I = F(”)UF(')U UF(’) is obtained by cutting I into consecutive
segments of lengths T1,Z2 .-y zq a.nd putting the i-th segment into the set

F(z) Let h(z) = (r1,72,.- rm) € R™ be such that r;, 1 <1 < m, is the

measure of the set of points contained in F(’) which are mapped to ¢ by f.
Clearly h is continuous.

By Theorem 1.2, there exists z € SMP—1 guch that
h(z) = h(w(z)) = - -- = h(w? "} (z)). (1)
We claim that the partition I = Fé’) u Fl(’) u- F(’) is a p-splitting of
f. To prove the claim we shall show that
o @) = ¢, D),

0 <j<p-—1, where r(j) 1 < i < m, is the measure of the set of points
contained in F, _3(0) which are mapped to i by f. This will finish the proof
of the theorem since it follows from (1) that, for 1 < i < m, we have

r‘(o) =r§ ) — ...=r?’—l)_
Note that for  =0,1,...,p — 1 we have

w-’(:c) = (;1)§2a [ER ’zq)
where
z; = (zi, 7 (ko)) »

i=1,2,...,q. Thus
JPED = {i:1<i<qni(k) =35}
={i:1<i<qki=n7(s)} = J(-f(o)
Therefore

Féu’(z)) U (Yk-1,9%) = —)1(0)’

(=)
keJ a3 (0)

and
(@) = (P, rD) e R
This completes our proof. g

Note that in Theorem 2.1 we assume that p is prime. Unlike in the case
of Theorem 1.2 this assumption is not essential. Alon [1] has proved that
Theorem 2.1 implies the following corollary which is a generalization of it
and that Corollary 2.2 implies Theorem 1.1.

Corollary 2.2. (Alon [1]). For any natural numbers k and m, every
interval m-colouring has a k-splitting of size m(k —1).
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3 The Main Lemma

Our &im in this section is to prove Lemma 3.7 from which we shall deduce
Theorem 1.2 in the next section. First, let us introduce some more terminol-
ogy. If o, x4, ...,z are points in R™ such that {z; — o, z2 — zo, ..., Zx —
Zo} is a linearly independent set of k vectors in R™ then we say that these
points are affinely independent. Let 0 < k < m, and zg,z,,...,zx be
affinely independent points in R™. The k-simplex A = (zo, z1,...,zk) is
the following subset of R™:

k k
{z:Zp.-:c;: Z“‘=1’ m>0}. 2
i=0 i=0

Since the points o, z1, . .., zx are affinely independent, the reals y;, 0 < i <
k, are uniquely determined by z and ¢, zy,...,zx. We shall call the sum
in (2) the barycentric representation of z with respect to (o, z1,...,Zx).
The points zy, ...,z are the vertices of A; the skeleton of A is the set of
all its vertices, and k is the dimension of A. A simplex A, is a face of a
simplex A; if the skeleton of A; is a subset of the skeleton of A,.

A simplicial complez K is a finite set of disjoint simplices such that every
face of every simplex of K is also a simplex of K. The body |K| of the
simplicial complex K is the union of all its simplices; the complex K is
then also called a simplicial decomposition of |K]|.

If {z1,z2,...,zx} is the set of vertices of the simplicial complex K and
z € |K|, then there are unique reals u;, y, ..., ux such that

k
z= E BiZi, (3)
=1

where p; > 0 for every i = 1,2,...,k,

k
dom=1,
i=1

and the set {z;: yu; > 0} is a simplex of K. We shall call the sum (3) the
barycentric representation of z with respect to K, or just the barycentric
representation of z if the complex is clear from the context.

The simplicial complex K’ is a subcomplez of the simplicial complex K
if the set of simplices of K’ is a subset of the set of simplices of K, in
particular the set of vertices of K’ is a subset of the set of vertices of K.

Let w be a continuous function from a subset X of R™ to itself, and
k be a natural number. We shall say that w is a Z-action if the set

W w,w?,...,w* 1}, where w? is the identity map on X, is a k-element
P
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cyclic group under composition. We shall also say that such an action is free
if for every = € X all the elements z, w(z),w?*(z), ...,w* () are different.

Let ||-]| : R™ — R be the £;-norm on R™, namely for z = (z1,%2,...,Zm) €
R™, let

m

llzll = bal-

i=1
Let

B™ = {z € R™: [|z]| <1}
be the m-dimensional unit ball and let
S*={ze R™+1. Izl =1}

be the m-dimensional unit sphere.

Let p be a fixed prime number. For each natural number n, we are
going to define a simplicial complex X, , such that | X, ,| is homeomor-
phic to the topological space obtained by identifying the boundaries of
p disjoint copies of the ball B®~1", Also, each of the complexes X, ,
will be equipped with a free Zp-action w. We shall prove that for any
continuous map h: |X,p| — R”®, there exists an z € |Xnp| such that
h(z) = h(w(z)) = - -- = h(wP~'(z)).

Before we define the family of complexes X,, ;, let us define the family of
complexes Yy, , in RP~1", For a given positive integer n and i = 1,...,n,

let
z3;=(,0,...,0,-1,-1,...,~1,0,0,...,0) € RP-1",
N —,  o—
(p-1)(-1) -1 (p-1)(n—i)
and

= :=(0,9,...,0,0,0,...,0,1,0,0,...,0,0,0,...,0) € R~
(p—1)(i-1) i-1 p—i-1  (p-1)(n—i)

forj=1,2,...,p—1. Set
T,.,,-={a::;'i:j=0,1,...,p—1},

i=1,...,n, and let |Ji_, Tn: be the set of vertices of ¥;, 5. Let T be the
skeleton of a simplex of Yy, , if and only if for every i = 1,...,n we have

ITNTai| <p-1. 4)

The elements of Yy, ; are indeed simplices since for any set T satisfying (4),
the elements of T are affinely independent.
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Our aim now is to show that Y, , is a simplicial decomposition of a subset
of R®—1)" which is homomorphic to the sphere S(°~1)7~1_ Let us first prove
the following lemma.

Lemma 3.1. Y;,,, is a simplicial complex.

Proof: To prove that Y, , is a simplicial complex it is enough to show
that the simplices of Y, ,, are pairwise disjoint. Let A; and A; be a pair of
distinct simplices of Y, and suppose that thereis ana € AjNA;. Let Ty
and T be the skeletons of A; and A respectively. As a € A; we have

n p—1

a= Z Z I‘i.j“'j..i (5)

i=1 j=0
where y;; 20,1<i<n,0<j<p-1,

n p—1

2.2 ms=1,

=1 j=0
and

Ty={ah;:1<i<n 0<j<p-1, my>0}.
Analogously, as a € A, we have

n p—1

a= Z Z #2,,"‘{.," (6)

i=1 j=0
Wherepg‘j?_o,ISiSn,OSjSP—I,

n p-1

2D M=,

=1 j=0
and
Ty={z};:1<i<n, 0<i<p-1, 4, >0}.

Thus, (5) and (6) are the barycentric representations of a with respect to
A; and Aj respectively. Since A; # Ag, we have T} # T3, and thus there

Assume a = (a1,a2,...,8(p-1)n) € RP"D", and let
b=(b1,...,bp—1) = (Gp—1)(io—1)+1s Fp—1)(o—1)+21 - - - » Ep—1)s,)

be the image of a under the projection onto the ig-th component of RP-1n =
RP~! x ... x RP~!, We have
-1

p—1
b= Z”’“Jz{i,"o = pzo\'ir:hio'
j=0 Jj=0
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We shall obtain a contradiction by showing that u;,,; = p, ;,0<j <p-1.
By the definition of Y, p not all of p;, 4, 0 < j < p—1, can be positive
since A; is a simplex of Y, , and hence

Hig0 = —min{oi blt b21 ceey bp—l},

and

l“"ﬂnj = bj + “"0’0’
for j =1,...,p — 1. Analogously, since A; is a simplex of Y, p, not all of
yﬁo’j, 0 < j < p-—1, can be positive and we have

“;o,o = —min{()’ b1,b2,... ’ b?—l}y

and
“zo.j = bj+”’£o.0’
forj=1,...,p—1. Thus p;o5 =, » 3 =0,...,p— 1, asrequired. O

Let X, , be the subcomplex of Yn41,p such that T is the skeleton of a
simplex of Xy, p if and only if

TN Tpt1n+1] < 1.

Now, we are going to prove that |Y; p| is homeomorphic to S®P—1)n-1 which
implies that | X, ;| is homeomorphic to the topological space obtained by
identifying the boundaries of p disjoint copies of the ball B(P—1)»,

In the proof we shall need the following two lemmas. Let K be a simplicial
complex and let = be a vertex of K. We say that K is an z-cone if for every
simplex A of K with skeleton T, say, TU{z} is also the skeleton of a simplex
of K. Furthermore, for an z-cone K let K’ be the simplicial complex such
that A is a simplex of K’ if A is a simplex of K and z is not a vertex of
A. Then, we shall say that K is an z-cone over K’. Lemmas 3.2 and 3.3
clearly hold.

Lemma 3.2. If K is an z-cone over K’, and |K’| is homeomorphic to the
sphere S* or to the ball B*, then |K| is homeomorphic to B*+1, m]

Lemma 3.3. Let K; and K, be simplicial complexes such that |K,| and
|K2| are both homeomorphic to the ball B¥t!, K; U K, is a simplicial
complex and |Ky N K3| is homeomorphic to the sphere S*. Then |K; U K|
is homeomorphic to the sphere S**1, (]

We can now prove the following lemma.
Lemma 3.4. |Y, 5| is homeomorphic to SP~1n-1,

Proof: We shall use induction on n. For n =1, |Y;, 5| is the boundary of
a (p — 1)-dimensional simplex so Yy, is homeomorphic to SP~2.
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Given n > 1, assume that |Y;, ;| is homeomorphic to S®—1"-1, Let Y,Sf;,),

a=01,...,p—-1, a.nd?:;),, a=0,1,...,p—2, be subcomplexes of Y11,
defined as follows. Let

{Bprgii=tiim, j=0,...,p—1}U{zi+l'n+1:j=0,...,a}

be the set of vertices of both Y,ff;) and 75,“,), Let T be the skeleton of a
simplex of ¥;{%) if and only if

|Tn{z;’;+l,n+1:j=0,...,a}| <a,

and A be a simplex of 7 if and only if A is a simplex of Y, ;; ,. Note
n,p ) + P
-3

that Yn(ﬁ,_l) = Yn41,p. We shall show that |7$,'p| is homeomorphic to

the ball BP-Unta o =0,...,p -2, and IY,S;)I is homeomorphic to the
sphere S?P—Unte=1 o = 0,...,p — 1, thus in particular that |Vp11,5| is
homeomorphic to SP~1)("+1)-1_ We shall use induction on a.

Let us consider the case a = 0. Clearly, 7?3,

Ya . Hence, by Lemma 3.2, |7$:2,| is homeomorphic to BP~1" since |Y;, 4|
is homeomorphic to SP~1"-1, |¥;{%| is homeomorphic to S®—Vn—1 since
Yrsg? = Yn,p-

Given o, 0 < a < p—3, assume that |7$:,),| is homeomorphic to BP—1)n+a,
Clearly, Yf::  is an zﬁi}’nﬂ-oone over Y,:,),. Hence, by Lemma 3.2,
IVSS: l)| is homeomorphic to BP~1ntatl gince |}_’$:,),| is homeomorphic to
B(P-1nta  Thus, we get that |7$:3,| is homeomorphic to BP—1)7+e for all
a=0...,p—2.

; 0
is an zp 4, . -cONE over

Now, given a, 0 < a < p — 2, assume that [Y,Sf‘,',)l is homeomorphic to
S(P-Un+a-1_ Let K be asubcomplex of Y%+ with the same set of vertices
and such that T is the skeleton of a simplex of K if and only if

|Tn{x-,f‘+l.n+1:j=0,...,a}| <a.

We claim that |K| is homeomorphic to the ball B®-1n+a  Indeed, K is
an z311 ., 1-cone over Y,{®). Thus, by Lemma 3.2, | K| is homeomorphic to
BP-1n+a gince IY,.(,‘,’,',)| is homeomorphic to S¢P—1nta-1,
Now, observe that
@)
Y&t =Y, UK,

and
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7(") NK= Y,S;).

Thus, by Lemma 3.3, |Y(°+l)| is homeomorphic to S®~Dn+e since IVS,G)
and |K| are both homeomorphic to BP~1)n+2 and |7'( )nK | is homeomor-
phic to S®-Un+a=1_ Therefore, |Yi%| is homeomorphic to SP—nta=1 for
alla=0,...,p—1 and the lemma is proved. a
By using Lemmas 3.2 and 3.3, it is straightforward to verify that | X, p] is

homeomorphic to the topological space obtained by identifying the bound-
aries of p disjoint copies of the ball BFP-1)n,

Let us now define a free Z,-action wy on the complex Y, . Assume that
¥ € |Yn p| has the following barycentric representation:

[~

n p—

y=3_2 K=,

i=1 j=0
Then set

n p—1
wn(y) = z ZI‘?H) mod p-’d;,i-

i=1 j=0
Note that if a:f is a vertex of Yy p, then

w“( )_ l) modp

The map wy, is clearly a Z,-action; moreover we have the following lemma.
Lemma 3.5. The map wy, is a free action.

Proof: Since p is a prime, it is enough to show that w,(y) # y for all
y € |Ynpl- Suppose there is 8 y € |Yy p| such that wa(y) = y. Let T be
the skeleton of the simplex A containing y, and let T, ; have a nonempty
intersection with T. By the definition of Y, p, TN Ty, ; has at most p — 1
elements. Since p is prime, w(T)N Ty = w(T'NTy ) # TNTy . Hence the
simplices of Y, , containing y and w(y) are different. This contradiction
completes the proof of the lemma. a

Note that wpy; restricted to the complex X, p is a Z,-free action on
Xn,p. In the sequel, we shall drop the subscript from w, when the domain
is clear from the context.

Let M; and M; be two metric spaces and let a;,as: M; — M, be
continuous maps. If

H: M1 X [0,1]—*M2

is a continuous map such that

H(z,0) = a1(z)
and
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H(z,1) = as(z),

for all z € M, then we say that H is a homotopy from a; to az. If there
is a homotopy from a; to a constant map, then we say that «; is null
homotopic. If 0 is a free action on the sphere S* and « is a map from S* to
Sk, then we say that « is equivariant with respect to 6 if a0 8 = §oa. The
following lemma ([8] Theorem 8.3, p. 42, and [3] Lemma 2) will be needed
in the proof of the main result of this section, Lemma 3.7.

Lemma 38.6. Suppose that k > 1, p > 2, and we are given a free Z,-action
on the sphere S*. Then there is no equivariant map a: S* — S* which is
null homotopic. a

The following lemma is analogous to the generalization of the Borsuk-
Ulam antipodal theorem due to Bérény, Shlosman and Sziics. The differ-
ence is in the definition of the action w, and the proof given here is more
elementary as well.

Lemma 8.7. For any continuous map h: |Xn 5| — R", there exists an

z € |Xnp| such that h(z) = h(w(z)) = - -+ = h(wP(2)).
Proof: Suppose there is a continuous map h: | X, 5| — R™ such that for
no z € |Xn p| we have h(z) = h(w(z)) = --- = h(wP~!(z)). We shall get

a contradiction with Lemmas 3.4 and 3.6 by obtaining a map a: |V, p| —
|Yr,p| equivariant with respect to w and null homotopic.

Let us first define a map f: | Xnp| — |Ynpl. For z € | Xy, p|, assume

h(z) = (3,...,r),
h(w(z)) = (ri,.-.. ),

h(wP~Y(z)) = (37),...,727h).
Fori=1,...,n, set r; = min{r,. ..,rf"l} and let

n p-1
r=Y 36 - ).
i=1 j=0

By our assumption about &, r > 0 and hence we can set & =@l —r)/r.
Let f(z) be defined as follows:

n p—1

f@=Y s,

i=1j=0
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Since for all i and 7,1 <i<n,0<j <p-—1, we have 5] > 0 and

to show that f(z) € |Ys p| it is clearly enough to show that
T={z:1<i<n 0<j<p-1, o >0}

is the skeleton of a simplex of Y, . But we indeed have that |TNT ;| < p—1
for every ¢ = 1,2,...,n, since r; is one ofr?,...,r?_1 and hence at least
one of &2, ...,s7~ must be equal to 0.

Let a be the restriction of f to |Y, p|. We shall show that a is equivariant
with respect to w. Let z € |Y, ;| and assume that a(z) € |Yn | has the
following barycentric representation:

n p—1

alz)=) > &z,

i=1 j=0
By the definition of w, we have that

n p-1

wla(z)) =33 sJtH medrgd (7)

i=1 j=0
Assume that a(w(z)) € |Ya p| has the following barycentric representation:

n p—-1

a(w(z) =YY 3z, (8)

i=1 j=0
From the definition of f it follows that

?‘i = 3?‘-{-1) mod p’

fori=1,...,nand j =0,...,p — 1. Therefore (7) and (8) imply that
w(a(z)) = a(w(z)), and « is equivariant with respect to w.

To finish the proof of Lemma 3.7, it is enough to show that « is null
homotopic.

We shall define a homotopy from « to a constant map using the extension
fofa Let H:|Y,,| x [0,1] — |V, ,| be defined as follows. We can

regard Yy, , as a subcomplex of X, via the mapping of :z.-;’;"- onto z’ 1,
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(1<i<n, 0<j<p-1). Fory € |Yny| with the following barycentric
representation

n p—1
y=3 3 ulah,
i=1 j=0
let
n p—1
+ = #frfm,a
=1 j=0

be the copy of ¥ in | Xn p| under the above identification. Given ¢ € [0,1],
set

n p-1
H(y’ t) = f ZZ(I - t)y+ + tz?l+l,n+1
i=1 j=0
Thus -
H(y,0) = f(y*) = aly),
and

H(y,1)= f(z9;+1,n+l)

for all y € |Ynp|. So H is a homotopy from a to a constant map proving
that « is null homotopic. a

4 Proof of the Generalization of the Borsuk-Ulam Theorem

In this section we are going to prove Theorem 1.2. We shall define an
equivariant map

¢t [ Xem,pl = SpPD
and apply Lemma 3.6.

Given a positive integer m, let ¢ = (p —1)m + 1 and let Z,, , be the
subcomplex of the simplicial complex Y, such that T is the skeleton of a
simplex of Zn, p if and only if

ITNT <1

for every i = 1,...,q. It is clear that if we restrict the action w on Y, to
Zpm p, We get a free Zp-action on Zp, p. We shall denote it also by w.

We shall define the function ¢ as the composition of two equivariant maps

v: |Xm.p| - |Zm.p|s
and

9: 1 Zmypl — S;"(’_l).
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The map g is easy to define because there is a straightforward equivariant
map from |Zpm | to S;."(’—l) which happens to be a homomorphism. The
hard part is to define the function 7.

Lemma 4.1. There exists a homomorphism
9: |Zm p| = SPPY

which is equivariant with respect to the action w on |Znp| and w on
S;n(ﬁ—l)_

Proof: The map g we are to define has to satisfy g ow = w o g where w

acts on |Zy, p| on the left-hand side and on S;,"(’"' 1 on the right-hand side.
Let = € |Zm p| have the following barycentric representation with respect

to Zpn p: .
n p—

2=3"Suid,

i=1 j=0
It follows from the definition of Z, p that for every ¢, 1 < i < g, there is at
mostone j,0<j<p-—1, suchthatp{>0. Set

g(z) = ((l‘{' :jl)r (I‘%avj2)’~--s(l"zq,jq)) GIR?,.,,

where j;, 1 <i<gq, issuch that u] =0forall j#4,0<j<p-1
Since ‘

Z/‘{i =1,

i=1

we have g(z) € 8;"(’—1). It is straightforward to verify that g is a homo-
morphism and that g o w = w o g. Thus the lemma is proved. a

Before we define the function v, we need some more preliminary lemmas.
Given a prime p, let

P= 2[0",_1] \ {0, [oip - 1]}

be the set of all subsets of [0,p — 1] C N which are nonempty and different
from [0,p — 1].

Let : [0,p — 1) — [0,p — 1] be the function defined in Section 1; n(i) =
(1+1) mod p and let ©: P — P be defined by

O(A) = {n(a): a € A}.
We are going to define a function ¢: P — [0,p — 1] satisfying
©(6(A)) = n(p(A)).
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If A € P, then set
£A) =) 2,

icA
and let
Ba = {£(A),£(6(4)),£(6%(4)),. .., £(6771(4))}.
The following lemma holds.
Lemma 4.2. B, contains p different numbers.

Proof: Suppose that £(67(A)) = £(6/1%(A4)) and 1 < k < p — 1. Since p
is a prime, k is relatively prime to p, and hence £(A) = £(©(A)). But this
is possible only when A=0 or A= [0,p—1]. Since 1 < |A| <p—1, the
resulting contradiction finishes the proof of the lemma. O

We can now define . Let
p(A) = 03 (max(67(4)))
where j is such that )
£(67(A)) = max(B,).
By Lemma 4.2, ¢ is well defined; also we have the following lemma.
Lemma 4.8. The function ¢ is such that for all A € P we have

©(6(A)) = n(w(A)).
Proof: We have ' )
¥(A) = 77 (max(6’(4)))

where j satisfies .
£(6°(A)) = max(Ba).

We also have , ,
#(6(A)) = n~7 (max(&’ (6(4))))

where j' satisfies ,
£(67 (6(A))) = max(Be(a))-
Since Bg(4) = Ba, we have j' = (j —1) mod p and hence
#(6(A)) = 173 (max(€’(4))) = n(p(A)).

Thus the proof of the lemma is complete. a

We are now going to define the quasi barycentric subdivision X, , of
Xmp. Let Ai, 1 <i<m+1, be the set of simplices A of X,,, , such that
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the vertices of A are contained in Trm41,4. If A = (2o, ..., zx) is a simplex,

then let
L
‘A= k1 gz‘

be the barycentre of A. Let

{cA:Ae"DIA.v}

i=1
be the set of vertices of Xy, ,. Let T be the skeleton of a simplex of X, ,
if and only if for every i, 1 <i < m+ 1, we have
{ca €T: A€ A} ={cag,---rcAL}
where A; is a proper face of A;y;, i=0,1,...,k— 1. It is straightforward
to verify the following lemma.
Lemma 4.4. X7, , is a simplicial decomposition of |Xym,p|-. a

We shall define v: | Xm,p| = |Zm,p| on the vertices of X, , first. The
map < restricted to the vertices of X, p Will take its values m the set of
vertices of Z,, ,. Given a vertex ca ofX:,, let i, 1 <i<m+1,besuch
that A € A;. Let T be the skeleton of A and

4={i:0<j<p-1, o €T}
By the definition of X,y p, we have
1<|Al<p-1

if1 <i<m,and
[Al=1
ifi=m+1. Set
— ,P(A)
v(ea) = Zq G 1)-1)+Al-

We shall now show that -y maps skeletons of simplices of Xy, ,, to skeletons
of simplices of Zy p.

Lemma 4.5. If (ca,, - --,¢a, ) isasimplex of X}, ., then (v(ca,), - --,7(cAL))
is a simplex of Zpy p.

Proof: Assume that {ca,,...,ca,) is a simplex of X}, , and
7(CA¢) = .’L':",.‘
fori= -» k. By the definition of Zpm,y, to prove that (zg3,, ..., 73k, ) is

a sunplex of Z,,. p We have to show that all ro,...,rs are dlstinct Suppose
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ry=rgand 0 < j < € < k. There is exactly oneiandone 5,1 <i <m+1,
1 < s < p—1, such that

Tj=Te¢= (p—l)(i—l)-l—s.
Hence, by the definition of v, we have
ca;r€a. € As

and

|T| = |Tel = s
where T; and T, are skeletons of A; and A, respectively. This contradicts
the definition of X7, , since, according to this definition, Aj is a proper face
of A;. Thus the lemma is proved. a

We now extend v linearly to | X}, ;|. If z € (ca,,---,ca,) € Xj, ;. has
the following barycentric representation

k
z= ZI“'CAU
=0

then let

k
v(=) =Y prleas)-

i=0

Lemma 4.6. The map « is equivariant with respect to w.

Proof: We have to show that for every z € | X 5| we have

Y(w(z)) = w(¥(=)).

It is enough to prove this equality for z being a vertex of X7, . Let z = ca
be the barycentre of A € A;, let T be the skeleton of A and set

A={j:05j$p—1, a.—z',,ﬂ,ieT}.

If w(ca) = car, then by the definition of w, we have A’ € A;. If T is the
skeleton of A’, then

{j: 0<i<p=1, Ty, €T’} =O(4).
Therefore we have

__p(8(A)
Y(w(z)) = z:((p(—l)%i—l)He(A)r
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Since [6(A)| = |A| and ¢(6(A4)) = n(p(A)), we have

A
Yw(z)) = 21 1yia = w((z)
as required. a
We are now ready to prove Theorem 1.2.

Proof of Theorem 1.2: Let h: S;"("'l) — R™ be a continuous function.
Let g: |Zmp| — S;,"(’_l) be a homomorphism satisfying g ow = w o g (see
Lemma 4.1). Let us consider the function

hogovy:|Xmyp| = R™.
By Lemma 3.7 there exists y € [ X p| satisfying
hogox(y)=hogoy(w(y)) =--=hogoy(w? ().
Let z = goy(y). Since g o y(w(y)) = w(z), we have
h(z) = h(w(z)) = -+ = h(w?~!(2)),

and the proof of Theorem 1.2 is complete. O

5 Concluding remark

Although our proof of Theorem 1.1 is much more combinatorial than the
original one given by Alon [1), it is still based upon a result from algebraic
topology. It would be desirable to find a purely combinatorial proof. Prob-
ably the way to give such a proof would be to find a purely combinatorial
proof of our generalization of the Borsuk-Ulam antipodal theorem (Theo-
rem 1.2). Recall that the Borsuk-Ulam theorem has a purely combinatorial
proof which perhaps could be generalized.

Acknowledgements. This work is a part of the author’s Ph.D. thesis
[9] written at the University of Cambridge under the direction of Dr. Béla
Bollob4s. I would like to thank him for drawing my attention to the problem
studied in this note and for his continued help and encouragement.

253



References

[1] N. Alon, Splitting necklaces, Advances in Mathematics 63 (1987), 247-
258.

[2] N. Alon, D.B. West, The Borsuk-Ulam theorem and bisection of neck-
laces, Proc. Amer. Math. Soc. 98 (1986), 623—628.

[3] 1. Bardny, S.B. Shlosman, A. Sziics, On a topological generalization of
a theorem of Tveberg, J. London Math. Soc. (2) 23 (1981), 158-164.

[4] S.N. Bhatt, F.T. Leightin, A framework for solving VLSI graph layout
problems, J. Comp. System Sci. 28 (1984), 300-343.

[5) S.N. Bhatt, C.E. Leiserson, How to assemble tree machines, in Proc.
14th Symp. on the Theory of Computing, San Francisco 1981, pp.
99-104.

[6] K. Borsuk, Drei Sétze iiber die n-dimensionale euklidische Sphére,
Fund. Math. 20 (1933), 177-190.

[7] C.H. Goldberg, D.B. West, Bisection of circle colorings, SIAM J. Al-
gebraic Discrete Methods 6 (1985), 93-106.

[8] M.A. Krasnoselsky, P.P. Zabrejko, Geometritsheskie Zadatshi Neline-
jnogo Analiza, Nauka, Moscow 1975.

[9] J. Wojciechowski, Long Induced Cycles in the Hypercube and Colour-
ings of Graphs, Ph.D. thesis, Cambridge University, England (April
1990).

254



