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ABSTRACT. A balanced part ternary design (BPTD) is a bal-
anced ternary design (BTD) with a specified number of blocks,
say b, each having repeated elements. We prove some neces-
sary conditions on bz and show the existence of some partic-
ular BPTDs. We also give constructions of infinite families of
BPTDs with b; = 0, including families of ternary t-designs with
t>3.

1 Introduction

A balanced ternary design, BTD(V, B; p1, p2, R; K, A), is an arrangement
of V elements into B multisets, or blocks, each of cardinality K (K < A),
satisfying

1. Each element appears R = p; +2p2 times altogether, with multiplicity
one in exactly p; blocks and with multiplicity two in exactly ps blocks.

2. Every pair of distinct elements appears A times; i.e., if myp is the
multiplicity of the vth element in the bth block, then for every pair
of distinct elements v and w, we have Zf=1 MypMyp = A.

A balanced part ternary design [7], BPTD(V; by, b2, B; p1,p2, R; K, A), is a
BTD that also satisfies

3. There exist exactly b, = B — by blocks each containing at least one
element of multiplicity two.

Hence, every BTD is a BPTD for some choice of b; and bs.
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For example,

1111111112 2 2 2 3 3
22 2 1111112 2 2 2 3 3
3 3 4 3 3 2 2 3 4 3 3 4 4 4 4
4 3 4 4 4 2 2 3 4 3 3 4 4 4 4
and
1111111112 2 2 2 3 3
2 231111112 2 2 2 3 3
4 2 3 2 2 3 2 3 4 3 3 4 4 4 4
4 3 4 3 4 4 2 3 4 3 3 4 4 4 4

are BPTDs with parameters (4; 1,14,15; 3,6,15; 4,11) and (4; 0,15,15; 3,6,15;
4,11), respectively. On the other hand, there cannot exist a BPTD(4;
2,13,15; 3,6,15; 4,11) (see Proposition 2.8).

Earlier [7] we studied various constructions and existence conditions for
the parameters of a BPTD, and in an upcoming article [8] we present a table
of BPTD parameters, listing the known and possible values of b, (and hence
b;) for all non-trivial possible values of (V, B; p1, p2, R; K, A) with R < 15
from [2]. The main thrust of this work is to decide the existence of BPTDs
with small parameters from the table, so the results in Section 2 are not
necessarily interlinked or very general. There remain several open questions
regarding such BPTDs, as listed in the table [8].

Section 3 contains some constructions of BPTDs. Note that any such
construction serves double-duty, since one may view its result as either a
BPTD or a BTD. The first of these, based on one-factorizations of complete
graphs, is similar to a construction of Khodkar [6]. This construction is
interesting as it provides two designs as part of a single family which were
originally constructed with different techniques by Saha [10] and Murty
and Das [9]. Billington [1, p. 54] referred to Nigam’s doubly balanced n-
ary designs, which by definition satisfy

B
Z mapmipymiy = constant, say As,

b=1
4,7,k distinct

as n-ary 3-designs. Another construction in Section 3 is interesting as
it constructs a BPTD(8;0,56,56; 21,7,49; 5,18) as the first member of an
infinite family; note that this BPTD is not a multiple of a smaller design
and is a ternary 3-design with A3 = 7.

2 Existence conditions

By simple counting arguments, one can prove the following results:



Proposition 2.1. Let s be a nonnegative integer. If a BPTD(V ;b,,bs, B;
p1, 1, R; K,4 + 3) exists, and if B<2p—s,thenby=V.

Proposition 2.2. For a BPTD(V; by, b2, B; p1, p2, R; K, 4) to exist, it is
necessary that

1%
B>21+(pr+p2-1) [b—zz-l-

Proposition 2.3. For a BPTD(V; by, b, B; py, p2, R; K, 5) to exist, it is
necessary that
1)

t(t —
BZI+(P1+p2—1)t——(——2—,
where t = [V py/b2].

These results are proven by first assuming that one block contains 2 (in
Proposition 2.1) or ¢ (in Propositions 2.2 and 2.3) repeated elements.

Proposition 2.4. Let K = 4. If there exists a block with two repeated
elements, then
Vpa—B+2p —A+4<bo.

Proof: Let 8 > 0 stand for the number of blocks with 2 repeat elements.
We have a lower bound on B — 3, since there must be (at least) 2p; — A +4
blocks containing (at least) one single element. Combining this with § =
V pa — by gives the desired inequality. O

We recall Lemma 2.8 from [2]:

Proposition 2.5. There exists a symmetric BTD with parameters (41 +
3,41+ 3;1,21 41,41+ 3;41+ 3,41+ 2) if and only if there exists a symmetric
BTD with parameters (41 + 3,41 + 3;21 + 1,1,21 4 3;2l 4 3,1 4 2). Given
one design, one can construct the other by interchanging 1’s and 2’s in the
incidence matrix.

The above proposition and the one that follows have a useful corollary.
Proposition 2.6. If py =1,V = B, and K > 3 is odd, then b» = B.
Furthermore, each block contains both single and double elements.

Corollary 2.7. If either design of Proposition 2.5 exists, then by = B for
both designs.

Proposition 2.8. If py = 1 and A is odd, then V = K is even and
bo=B-1.

Proposition 2.9. If A and K are both odd, and if V+ B —1 = p,V,
then K=V and b = B - 1.

Proof: In this proof, “set” should be interpreted as possibly a multiset.



Consider all partitions of the set of V p; single elements into B nonempty
sets. We can construct one such partition from the design (assuming it
exists) by striking out its repeated elements.

In any such partition, whether or not it comes from a design, when two
sets of size m+ 1 and n+ 1 (n and m > 0) are replaced by sets of size
m+n+1 and 1, the total number of pairs of not-necessarily-distinct elements
occurring in the partition increases. Thus a partition consisting of B — 1
singleton sets and one set of size V' has the largest number of such pairs,
namely (‘;) Such a partition exists by hypothesis.

On the other hand, A is odd, forcing every pair of elements to occur
singly at least once in the design. Consequently, (Z) is the smallest possible
number of pairs of distinct elements in the partition corresponding to the
given design.

(That is, for (‘;) pairs to occur singly in the design, there must be one
complete block and B — 1 blocks with exactly one single element.) ]

Proposition 2.9 has as a corollary an earlier result of the authors [7,
Thm. 6.1]. Entries 50 and 186 of the parameter list [8] show that there
exist designs to which Proposition 2.9 applies but its corollary does not.

If one modifies four blocks of a BPTD with parameters (V; by, b2, B; p1, p2,
R; 6, A) as follows

W W NN
B B N DN
O UL WO N
Ut AW =
oW NN
W NN ==
UL W WD =
O U b W N

one obtains a BPTD with the parameters (V; b; -2, b2+2, B; p1, p2, R; 6, A).
Beginning with the BPTD(6; 0,10,10; 0,5,10; 6,8)

WWN N ==
b BN N
OO CR =
OO e e
el R
WLWOS A
N DN VOt
[FUNIIURES RS L -
WwWwaHadMMND N
NNOTOY O NN

and adjoining complete blocks, we obtain the next result by repeated ap-
plications of this modification.

Proposition 2.10. For b; any nonnegative integer, for bz any even in-
teger between 10 and 20 (inclusive), and for B = by + b2, there exists a
BPTD(6;by, b, B; B — 10,5, B; 6, B — 2).



While preparing the parameter-list in [8], the authors proved the nonex-
istence of certain BPTDs using straightforward arguments pertaining to
specific parameters. For completeness, we collect those results in the next
proposition and briefly indicate some of their proofs.

Proposition 2.11. There do not exist BPTDs with the following param-
eters:

(7;0,9,9;3,3,9;7,8) (2.11.a)
(6:3,9,12;4,2,8;4,4) (2.11.b)
(5:b1,b2,10;4,2,8;4,5) (b2 < 9) (2.11.c)
(18; b1, b0,18;5,2,9;9,4) (b2 < 18) (2.11.d)
(12;3,9,12;3,3,9;9,6) (2.11.€)
(18;10, 8, 18;9, 3, 15; 15, 12) (2.11.6)

Proof of (2.11.a): Assume the design exists. There must be either 0, 2,
4, or 6 blocks with two repeat elements. One can rule out each of these
possibilities. a

Proof of (2.11.b): It is impossible that the three blocks each containing
two repeat elements are disjoint. Keeping that in mind, the first three rows
of the V' x B incidence matrix must be completed as shown:

2211110 00 O0O0OTUO
2 00 0 0 0111120
0200 0 011110 2

The third block containing two repeated elements must correspond to one
of the last two columns, which forces

O O =
O O ==
O O =
(=R =]

2
2
0
0

oONON
O = = O
O = = O
O O
QO = = O
NONO
NN OO

and this cannot be completed. O

Proof of (2.11.c): If by < 9, then, without loss of generality, three rows
of the incidence matrix are as follows:

211 1 1 000 2 O
2 0 0 O 1 11 1 0 2
0 0 0 o/1 1/0 2
The third row can’t be completed. O



Proof of (2.11.d): If b < 18, then there must be at least one block with
three repeat elements, but this is inconsistent with the other parameters. O

Proof of (2.11.e): If there were nine blocks with a repeated element, since
K is odd, there would be exactly one single element in each of the nine. It
follows that at least one pair would occur an even number of times. a

Proof of (2.11.f): If b, were 8, then the total number of pairs that occur
in the design would be odd. (W]

Note added in proof: 2.11.d, 2.11.e, 2.11.f are special cases of the fact
that the only possible value of b in a symmetric BTD is B.

3 Constructions of BPTDs with b; =o
Our first result is a general construction (with non-trivial hypotheses).

Theorem 38.1. If all () K-subsets of a V-set {1,...,V} can be par-

titioned into V classes C,,...,Cy each of equal size and such that each

is a 1-design on {1,...,V}\ {i}(, then a BPTD exists with parameters

Vibi = 0,bs = (i) = Bip1-= (§_1).p2 = %()); blocksize K + 2, and

A= i3 (x2) + (2

Proof: Adjoin {%,:} to each set in C;, a
We now prove the existence of the required partition for certain cases.

When K = 2 and V is odd, the partition can be obtained from the
one-factorization on V + 1 elements, a concept which we briefly review.

Let K, denote the complete graph with vertices {1,...,n} and (3) dis-
tinct edges. A collection of n disjoint edges — that is, having no vertex in
common — from the graph Ko, is said to be a one-factor of K5,, and a
collection of 2rn — 1 disjoint one-factors of K5, — that is, having no edge
in common - is called a one-factorization of K»,. As a consequence, every
edge of Ky, appears exactly once in any one-factorization, just as every
vertex of Ko, appears exactly once in any one-factor.

It can be proven that there exist one-factorizations of any Kj,. For
example, Kz has the following one-factorization, in which its 28 edges are
partitioned into 7 one-factors, each containing 4 disjoint edges.

F: (18) (712) (63) (54)
Fp: (28 (1,3) (74) (6,5)
Fi: (38) (24) (1,5) (7.6)
Fy: (4»8) (3’5) (2v6) (1’7)
F5: (518) (4)6) (377) (2a1)
Fg: (68) (57) (41) (3,2)
F7: (7,8) (6v1) (5v2) (4’3)



See Stanton and Golden [11] for the construction of one-factorizations and
applications to design theory.

From the above one-factorization of Kg we form the following BPTD:

By: {7,2,1,1} {6,3,1,1} {5,4,1,1}
By: {1,3,2,2} {7,4,2,2} {6,5,2,2}
Bs: {2,4,3,3} {1,5,3,3} {7,6,3,3}
Bs:  {8,5,4,4} {2,6,4,4} {1,7,4,4}
Bs: {4,6,5,5} {3,7,5,5} {2,1,5,5}
Bs: {5,7,6,6} {4,1,6,6} {3,2,6,6}
B;: {6,1,7,7} {5,2,7,7% {4,3,7,7}

In general, we get the following family:

Corollary 3.2. For every positive integer n, there exists 8 BPTD with
parameters (2n + 1;0, (2n + 1)n, (2n + 1)n; 2n, n,4n;4,5).

Earlier, Khodkar [6] has constructed more general families using one-
factorizations of complete graphs with loops.

If K > 3, the partition needed in Theorem 3.1 would be guaranteed by
the existence the Steiner System S(K,K + 1,V), a collection of K + 1-
subsets of a set of size V such that each K-subset occurs exactly once. For
example, when K = 3, it is well known that S(3,4,V) exists when V = 2
or 4 (mod 6). To obtain the desired partition {C},...,Cv}, consider all
blocks which contain an element i. The sets obtained from these blocks
by deleting the element ¢ will form the required partition class C;. In case
K = 3, the parameters of the resulting BPTD are

(V;O(Z), (1:;’), (Vz—l), (V—I)G(V—Z), 5(V — 1%(V—2);5’3(V_2)) .

All of these designs are 3-designs with Az = 7. For example, the first design
of this family is a BPTD(8; 0,56,56; 21,7,49; 5,18) with Az = 7 which, as
mentioned in the introduction, is not a multiple of a smaller design.

It is well known that the blocks in each partition class obtained from
5(3,4, V) are actually a BIBD(V -1, 3,1), called the Derived Triple System,
which suggests the following construction:

Proposition 8.3. From a BIBD(v,b,r, k, X), one can construct a BPTD
with V =v +1;b; = 0,bp = (v+ 1)b = B; p1 = rv, p2 = b, (and therefore
R=rv+4+2b); K=k+2,and A=(v—1)A+4r.

Proof: For each j € {0,1,...,v}, let B; bethe BIBDon {0,1,...,5-2,5+
1,...,v} isomorphic to the given BIBD. To each block of B; add {7, 7}; the
desired BPTD is the collection of all resulting blocks. O
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Appendix A

These examples, appearing for what we believe to be the first time, settle
certain existence questions relevant to our earlier work [8].
BPTD(4; 1,14,15; 3,6,15; 4,11):

111111111222 2 3 3
2 2211111122 2 2 3 3
3 3 3 2 2 3 3 4 4 3 3 4 4 4 4
4 3 3 2 2 3 4 4 4 3 4 4 4 4 4
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BPTD(4; 0,15,15; 3,6,15; 4,11);

1111111112222 23
2 3 2111111332223
3 4 2 2 2 33 44 4 3 3 3 4 4
3 4 4 2 2 3 3 4 4 4 4 4 3 4 4
BPTD(S; 16,5,21; 12,1,14; 4,8):
111111111111122222222
1222233333344333333414
234564444555 5444455755
2345655606¢68666556¢6666 6

See [5] for a BPTD(9; 0,12,12; 4,4,12; 9,11) relevant to #80 of [8].

Appendix B

Disregarding redundancies, here are the designs from the BPTD table [8]
to which results in either this or our earlier paper [7] applies.

The result: applies to the designs [8]:
Lemma 3.7 [7]: 50,169.
Theorem 5.2 [7]: 6,13,20,32,45,67,93,119,158.
Theorem 5.3 [7]: 1,3,5,12,18,30,43,58,89,112,155.
Theorem 6.1 [7]: 14,38,83,101,138,146,176,187.
Examples [7): 1,13,18,20,24,30,32,45,67.
Proposition 2.1: 2,9,17,27,42,55,87,111,151.
Proposition 2.2: 15,26,40,47,62,63,81,85,91,125,149.
Proposition 2.3: 39.
Proposition 2.4: 10,11,57,65,66,105.
Proposition 2.6: 7,8,23,53,103,104,189,190.
Corollary 2.7: 4,16,41,86,150.
Proposition 2.8: 52,102,140,179,188.
Proposition 2.9: 50,186.
Proposition 2.10: 52,82,100,134,172.
Proposition 2.11: 10,11,19,21,34,46,70,94,122,161,164.
Corollary 3.2: 65.
Examples: 105,179.
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