Asymmetric Digraphs with Prescribed m-Median and m-Periphery Lyle Bertz and Songlin Tian Department of Mathematics and Computer Science Central Missouri State University Warrensburg, MO 64093 ABSTRACT. Let $n \geq 2$ be an arbitrary integer. We show that for any two asymmetric digraphs D and F with m-rad $F \geq \max\{4,n+1\}$, there exists an asymmetric digraph H such that $mM(H) \cong D$, $mP(H) \cong F$, and md(D,F) = n. Furthermore, if K is a nonempty asymmetric digraph isomorphic to an induced subdigraph of both D and F, then there exists a strong asymmetric digraph H such that $mM(H) \cong D$, $mP(H) \cong F$, and $mM(H) \cap mP(H) \cong K$ if m-rad $_{H_0}F \geq 4$, where H_0 is a digraph obtained from D and F by identifying vertices similar to those in K. #### 1 Introduction Let D be a strong digraph. For vertices u and v of D, the directed distance from u to v d(u,v) is the length of a shortest directed u-v path in D. The maximum distance between u and v is defined as $md(u,v) = \max\{d(u,v),d(v,u)\}$. The m-eccentricity of a vertex v in D, me(v), is $\max\{md(v,w) \mid w \in V(D)\}$. The m-radius of D, m-radD, is defined as $\min\{me(v) \mid v \in V(D)\}$. The m-diameter of D, m-diamD, is $\max\{me(v) \mid v \in V(D)\}$. The m-center mC(D) of D is the subdigraph induced by those vertices v with me(v) = m-radD. The m-periphery mP(D) of D is the subdigraph induced by those vertices v with me(v) = m-diamD. The m-status of a vertex v is $ms(v) = \sum_{w \in V(D)} md(v,w)$. The m-median of D, denoted by mM(D), is the subdigraph of D induced by those vertices having minimum m-status. The maximum distance between two subdigraphs D_1 and D_2 of D, denoted $md(D_1, D_2)$, is defined by $md(D_1, D_2) = \min\{md(u, v) \mid u \in V(D_1),$ $v \in V(D_2)$. Observe that if D_1 and D_2 are disjoint in D then $md(D_1, D_2) \ge 2$. Otherwise, $md(D_1, D_2) = 0$. In [1] m-center, m-periphery, and m-median of digraphs have been investigated. Chartrand and Tian [2] studied the relative location of m-center and m-median of digraphs. In [3], similar results have been done for center and median of digraphs defined under directed distance. In this paper, we study the relative location of m-median and m-periphery of an asymmetric digraph. For other graph theory terminology, we follow [4]. ## 2 Noninteresting Medians and Peripheries We consider the case where the *m*-median and the *m*-periphery are nonintersecting. The following theorem will provide a necessary condition of the nonintersecting median and periphery in an asymmetric digraph. Theorem 1. Let H be a strong asymmetric digraph. Then, $$m - radmP(H) \ge md(mM(H), mP(H)) + 1.$$ **Proof:** Since mP(H) contains at least two vertices, m-rad $mP(H) \geq 2$. Therefore, the theorem holds when md(mM(H), mP(H)) = 0. Assume that md(mM(H), mP(H)) > 0, i.e. $mP(H) \cap mM(H) = \emptyset$. Let v be a vertex of mP(H) such that $me_{mP(H)}(v) = m$ -radmP(H). Let w be a vertex of mP(H) such that md(v, w) = m-diamH. Then $$m$$ - rad $mP(H) = me(v) \ge md_{mP(H)}(v, w) \ge md_H(v, w) = m$ - diam H . Consider an arbitrary vertex $x \in V(mM(H))$. Since $mP(H) \cap mM(H) = \emptyset$, it follows that $x \notin V(mP(H))$. Thus, $md(x,v) \leq m$ -diamH-1. Therefore, m-rad $mP(H) \geq m$ -diam $H \geq md(x,v) + 1 \geq md(mM(H), mP(H)) + 1$. In order to embed an arbitrary asymmetric digraph D as the m-median of some asymmetric digraph H, we first show that it is possible to embed D into an asymmetric digraph having m-diameter 2. **Lemma 2.** For every asymmetric digraph D, there exists a digraph H containing D as an induced subdigraph such that me(v) = 2 for all $v \in V(H)$. **Proof:** Assume that $V(D) = \{v_1, v_2, \dots, v_p\}$. Without loss of generality, we assume that $p \geq 3$. Let $$V(H) = V(D) \cup \{x_1, x_2, \dots, x_{p-1}\} \cup \{y_1, y_2, \dots, y_{p-1}\}$$ and $$\begin{split} E(H) &= E(D) \cup \{v_i y_i, y_i x_i, x_i v_i \mid 1 \leq i \leq p-1\} \cup \{y_i v_j, v_j x_i, \mid 1 \leq i < j \leq p\} \\ & \cup \{v_1 y_t, x_t, v_1 \mid 2 \leq t \leq p-1\} \cup \{x_{i+1} y_i \mid 1 \leq i \leq p-2\} \\ & \cup \{x_1 y_{p-1}, x_{p-1} y_1\} \cup \{x_i x_j, y_i y_i \mid 1 \leq i < j \leq p-1\}. \end{split}$$ Figure 1 illustrates the construction of H when p=4. Figure 1 Clearly H is an asymmetric digraph containing D as an induced subdigraph. Therefore, $md(u,v) \geq 2$ for $u,v \in V(H)$. To prove the lemma, it suffices to show that $md(u,v) \leq 2$ for $u,v \in V(H)$. Let $1 \leq i < j \leq p$ be integers. By construction, there exists a 4-cycle v_i, v_i, v_j, x_i, v_i . Thus, $md(v_i,v_j) \leq 2$. Note that H contains 3-cycles x_i,x_j,v_j,x_i and y_i,v_j,y_j,y_i . Therefore, $md(x_i,x_j) = md(y_i,y_j) = md(x_i,v_j) = md(y_i,v_j) = 2$. Next, for $1 \leq i \leq p-1$, there exists a 3-cycle v_1,y_i,x_i,v_1 . Thus, $md(v_1,x_i) = md(v_i,y_i) = 2$. There also exists 3-cycles x_1,y_{p-1},v_p,x_1 and x_i,y_{i-1},v_p,x_i for $2 \leq i \leq p-1$. Therefore, $md(v_p,x_i) = md(v_p,x_i) = 2$, $1 \leq i \leq p-1$. Observe that H contains 4-cycles $x_{p-1},v_1,y_j,x_1,x_{p-1}$ and $y_{p-1},y_1,v_i,x_1,y_{p-1},2 \leq i \leq p-1$. Thus, $md(x_{p-1},v_i) = md(y_{p-1},v_i) = 2$ for $2 \leq i \leq p-2$. Finally, the existence of cycle x_i,v_1,y_j,v_p,x_i implies that $md(x_i,y_j) = 2$ for $1 \leq i,j \leq p-1$. **Theorem 3.** Let D and F be asymmetric digraphs. Let $n \ge 2$ be an integer. If $m\text{-rad}F \ge \max\{4, n+1\}$, then there exists an asymmetric digraph H such that mM(H) = D, mP(H) = F, and md(mM(H), mP(H)) = n. #### **Proof:** Case 1. Assume that $n \geq 3$. First, we define H_0 by applying Lemma 1 on D. Thus, md(v, u) = 2, for $v, u \in V(H_0)$. Next, we define H_1 by $$V(H_1) = V(H_0) \cup V(F) \cup \{w_1, \ldots, w_{n-1}\}$$ and $$E(H_1) = E(H_0) \cup E(P) \cup \{w_{i-1}w_i \mid 2 \le i \le n-1\}$$ $$\cup \{w_{n-1}u, vw_1, uv, \mid u \in V(H_0), v \in V(F)\}.$$ We define H_2 by $$V(H_2) = V(H_1) \cup \{x_0, y_0, x_1, y_1\}$$ and $$E(H_2) = E(H_1) \cup \{x_0y_0, x_1y_1, x_0y_1, x_1y_0, w_{n-2}x_0, x_0w_{n-1}, w_{n-2}x_1, x_1, w_{n-1}\}$$ $$\cup \{ux_0, y_0u, ux_1, y_1u \mid u \in V(D)\} \cup \{y_0v, y_1v \mid v \in V(F)\}$$ (See Figure 2). Figure 2 Clearly, $md_{H_2}(u,v)=n$ for $u\in V(H_0), v\in V(F)$. Thus, $md_{H_2}(D,F)=n$. To prove $mP(H_2)=F$, we now calculate the eccentricities of vertices in H_2 . We first show that $me(x_0)=me(y_0)=n$. By the construction, there exists an n+1-cycle $x_0,y_0,v,w_1\ldots w_{n-2},x_0$ for every $v\in V(F)$. It follows that $md(x_0,z)\leq n$ and $md(y_0,z)\leq n$, where $z\in V(F)\cup\{w_i\mid 1\leq i\leq n-2\}$. Furthermore, $md(x_1,w_{n-2})\leq n$ and $md(y_0,v)\leq n$. Consider a vertex $u\in V(D)$. Since H_2 contains 3-cycles u,x_0,y_0,u and w_{n-1},u,x_0,w_{n-1} , it follows that $md(x_0,u)=md(y_0,u)=md(x_1,w_{n-1})=2< n$. By the construction in the proof of Lemma 2, for every vertex $u\in V(H_0)-V(D)$, there exist vertices $v,w\in V(D)$ such that $uv,wu\in E(H_0)$. Therefore, H_2 contains cycles u,v,x_0,w_{n-1},u and u,v,x_0,y_0,w,u . Thus, $md(y_0, u) = 3$ and $md(x_0, u) = 2$ for $u \in V(H_0) - V(D)$. By the construction, $md(x_0, y_1) = 2$, and $md(x_0, x_1) = 3$. Therefore, $me(x_0) = me(y_0) = n$. Since x_1 and y_1 are similar to x_0 and y_0 respectively in H_2 , we have $me(x_1) = me(y_1) = n$. Let u be an arbitrary vertex of H_0 and v be any vertex of F. Then, me(u)=md(u,v)=n, and $me(w_1)=md(w_1,v)=n$. It follows that $me(w_i)=md(w_i,w_{i-1})=n$, for $2 \le i \le n-1$. Let x be an arbitrary vertex in F. Since $m\text{-rad}F \ge n+1$, there exists a vertex $y \in V(F)$ such that $md_F(x,y)=me(x)\ge n+1$. Let u be an arbitrary vertex of D. Then, $x,w_1,w_2,\ldots,w_{n-1},v,y$ is a shortest x-y path of length n+1 in H_2 . Therefore, $md_{H_2}(x,y)=n+1$. So, $me(x)\ge n+1$. On the other hand, $md_{H_2}(x,z)\le n+1$, for all $z\in V(H_2)$. Thus, me(x)=n+1. Therefore, $mP(H_2)=F$. Observe that the vertices of H_0 have the same m-status, say k, in H_2 . Let $t = k - \min\{ms(v) \mid v \in V(H_2)\}$. We define H as follows: $$V(H) = V(H_2) \cup \{x_i, y_i \mid 2 \le i \le t + 2\}$$ and $$\begin{split} E(H) &= E(H_2) \cup \{x_i y_i \mid 2 \le i \le t+2\} \cup \{x_i y_j \mid 0 \le i, j \le t+2, i \ne j\} \\ & \cup \{u x_i, y_i u \mid u \in V(D), 2 \le i \le t+2\} \\ & \cup \{y_i v \mid v \in V(F), 2 \le i \le t+2\} \\ & \cup \{x_i w_{n-1}, w_{n-2} x_i \mid 2 \le i \le t+2\} \end{split}$$ Observe that, $md_H(u, v) = md_{H_2}(u, v)$, for $u, v \in V(H_2)$. Therefore, $$ms_H(u) = ms_{H_2}(u) + \sum_{2 \leq i \leq t+2} md(u, x_i) + md(u, y_i).$$ If $u \in V(D)$, then $md(u, x_i) = md(u, y_i) = 2$, $2 \le i \le t+2$. Therefore, $ms_H(u) = ms_{H_2}(u) + 4(t+1)$, for $u \in V(D)$. If $u \in V(H_2) - V(D)$, then $md(u, x_i) + md(u, y_i) \ge 5$, $2 \le i \le t+2$. Thus $ms_H(u) \ge ms_{H_2}(u) + 5(t+1)$. Since $t = k - \min\{ms(v) \mid v \in V(H_2)\}$, it follows that $ms_{H_2}(u) + t \ge \min\{ms(v) \mid v \in V(H_2)\} + t = k$. Thus, $$ms_H(u) \ge ms_{H_2}(u) + 5(t+1) > k + 4(t+1) = ms_H(v),$$ for $u \in V(H_2) - V(D)$ and $v \in V(D)$. Since $x_0 \in V(H_2) - V(D)$, it follows that $ms_H(x_0) \ge k + 5(t+1)$. Since x_i and x_0 are similar vertices in H, it follows that $ms_H(x_i) = ms_H(x_0) > k + 4(t+1)$, $2 \le i \le t+2$. Similarly, $ms(y_i) = ms_H(y_0) > k + 4(t+1)$, $2 \le i \le t+2$. Therefore, mM(H) = D. Case 2. Assume that n = 2. First, we define H_0 as the same digraph in Case 1. Next, we define H_1 by $$V(H_1) = V(H_0) \cup V(F) \cup \{w_1, w_2\}$$ and $$E(H_1) = E(H_0) \cup E(F) \cup \{w_2w_1\}$$ $$\cup \{vw_1, w_1u, uw_2, w_2v \mid u \in V(H_0), v \in V(F)\}.$$ We then define H_2 by $$V(H_2) = V(H_1) \cup \{x_0, y_0, x_1, y_1\}$$ and $$E(H_2) = E(H_1) \cup \{ux_0, ux_1, y_0u, y_1u \mid u \in V(D)\}$$ $$\cup \{w_1x_0, w_1x_1, y_0w_2, y_1w_2\}$$ $$\cup \{x_0y_0, x_1y_1, x_0y_1, x_1y_0\}$$ (See Figure 3). Figure 3 By a similar argument as in Case 1, we have the following: 1. $$md(x_0, y_0) = md(x_0, u) = md(x_0, y_1) = 2$$ for $u \in V(D)$, 2. $$md(x_0, x_1) = md(y_0, y_1) = md(x_0, v) = md(y_0, v) = 3$$ for $v \in V(H_0) - V(D)$. Observe that H_2 contains an 4-cycle w_1, x_0, y_0, w_2w_1 and an 5-cycle v, w_1, x_0, y_0, w_2, v for each $v \in V(F)$. Thus, $md(x_0, w_1) = md(y_0, w_2) = 3$, $md(x_0, w_2) = md(y_0, w_1) = 2$, and $md(x_0, v) = md(y_0, v) = 3$ for $v \in V(F)$. Therefore, in H_2 , $me(x_0) = me(x_1) = me(y_0) = me(y_1) = 3$. Observe that H_2 contains an 3-cycle u, w_2, w_1, u , for each $u \in V(H_0)$, and an 4-cycle v, w_1, u, w_2, v , for each $v \in V(F)$. Thus, in H_2 , $me(w_1) = me(w_2) = 3$, me(u) = 2 for all $u \in V(D)$, and me(x) = 3 for all $x \in V(H_0) - V(D)$. Let x be an arbitrary vertex of F. Since m-rad $F \ge \max\{n+1,4\}$ and n=2, it follows that m-rad $F \ge 4$. Thus, there exists a vertex y in F such that $md_F(x,y) \ge 4$. Let v be an arbitrary vertex in H_0 . We see that x, w_1, v, w_2, y is a shortest x-y path in H_2 . Therefore, $md_F(x,y) = 4$ implying that me(x) = 4 in H_2 . Thus, $mP(H_2) = F$. Observe that $md_{H_2}(x_0, u) + md_{H_2}(y_0, u) = 4$, for $u \in V(D)$, and that $md(x_0, v) + md(y_0, v) \ge 5$ in for $v \in V(H_2) - V(D)$. With this fact, we then define H by a similar process utilized in Case 1. Let $t = k - \min\{ms(v) \mid v \in V(H_2)\}$ where k = ms(u) for $u \in V(H_0)$. We then define H by $$V(H) = V(H_2) \cup \{x_i, y_i \mid 2 \le i \le t + 2\}$$ and $$E(H) = E(H_2) \cup \{ux_i, y_iu \mid u \in V(D), 2 \le i \le t+2\}$$ $$\cup \{w_1x_i, y_iw_2 \mid 2 \le i \le t+2\}$$ $$\cup \{x_iy_i \mid 2 \le i, j \le t+2\}.$$ # 3 Intersecting Medians and Peripheries We now consider the other extreme, namely where the m-median and m-periphery of an asymmetric digraph overlap on any common part of them. **Lemma 4.** Let D be a strong asymmetric digraph with m-diam $D \leq 4$. Let K be an induced subdigraph of D. Then there exists a strong asymmetric digraph H containing D as a proper induced subdigraph such that - (i) $ms_H(u) = ms_H(v)$, for all $u, v \in V(K)$. - (ii) $me_H(u) = \max\{me_D(u), 3\}$, for all $u \in V(D)$, and - (iii) $me(u) \leq 3$, for all $u \in V(H) V(D)$. **Proof:** Let $m_1(D) = \max\{ms_D(x) \mid x \in V(K)\}$, $m_2(D) = \max\{ms_D(x) \mid x \in V(K)\}$, and $n = m_1(D) - m_2(D)$. We consider two cases. Case 1. Assume that $n \ge 1$. Let $$S(D) = \{x \in V(K) \mid ms_D(x) = m_2(D)\}$$. Define H_1 by $$V(H_1) = V(D) \cup \{u_1, v_1, w_1, x_1, y_1\}$$ and $$E(H_1) = E(D) \cup \{u_1x_1, v_1w_1, v_1x_1, v_1y_1, w_1x_1, x_1y_1, y_1u_1, y_1w_1\}$$ $$\cup \{zu_1, w_1z \mid z \in S(D)\}$$ $$\cup \{zu_1, zx_1, w_1z \mid z \in V(D) - S(D)\}$$ (See Figure 4). Figure 4 Clearly, H_1 is strong, and D is a proper induced subdigraph of H_1 . Since m-diam $D \leq 4$, it follows that $md_D(u,v) \leq 4$ for $u,v \in V(D)$. Thus, $md_{H_1}(z,t) = md_D(z,t)$ for $z,t \in V(D)$. Therefore, for $z \in S(D)$, $$\begin{split} ms_{H_1}(z) &= md_{H_1}(z,u_1) + md_{H_1}(z,v_1) + md_{H_1}(z,w_1) + md_{H_1}(z,x_1) \\ &+ md_{H_1}(z,y_1) + \sum_{t \in V(D)} md_{H_1}(z,t) \\ &= 3 + 2 + 3 + 3 + 3 + \sum_{t \in V(D)} md_{H_1}(z,t) \\ &= 14 + ms_D(z) \\ &= m_2(D) + 14. \end{split}$$ Similarly, for $x \in V(K) - S(D)$, $ms_{H_1}(z) = ms_D(z) + 13 \le m_1(D) + 13$. We define $m_1(H_1) = \max\{ms_{H_1}(x) \mid x \in V(K)\}$ and $m_2(H_1) = \min\{ms_{H_1}(x) \mid x \in V(K)\}$. Then, $m_1(H_1) = m_1(D) + 13$ and $m_2(H_1) = m_2(D) + 14$. Therefore, $$m_1(H_1) - m_2(H_1) = (m_1(D) + 13) - (m_2(D) + 14)$$ = $m_1(D) - m_2(D) - 1$ = $n - 1$. Let $S(H_1) = \{x \in V(K) \mid ms_{H_1}(x) = m_2(H_1)\}$. We define a strong asymmetric digraph H_2 by $$V(H_2) = V(H_1) \cup \{u_2, v_2, w_2, x_2, y_2\}$$ and $$E(H_2) = E(H_1) \cup \{u_2x_2, v_2w_2, v_2x_2, v_2y_2, w_2x_2, x_2y_2, y_2u_2, y_2w_2\}$$ $$\cup \{zu_2, w_2z \mid z \in S(H_1)\}$$ $$\cup \{zu_2, zx_2, w_2z \mid z \in V(H_1) - S(H_1)\}.$$ By a similar argument, we see that $m_1(H_2)-m_2(H_2)=m_1(D)-m_2(D)-2=n-2$. We repeat this process n-2 times. Let $H=H_n$. Then $m_1(H)=m_2(H)$, i.e. $ms_H(u)=ms_H(v)$ for all $u,v\in V(K)$. Clearly by the construction of H_n , H is strong, D is an induced subdigraph of H, and $\max\{md_H(u,v)\mid u\in V(K),v\in V(H)-V(D)\}=3$. Case 2. Assume that n=0. If D consists of one vertex, then we define H by adding three new vertices to form a directed 4-cycle. It can be easily seen that H has the desired properties. If D contains at least two vertices, we partition V(D) into two nonempty subsets $S_1(D)$ and $S_2(D) = V(D) - S_1(D)$. We then define H by $$V(H) = V(D) \cup \{u_1, v_1, w_1, x_1, y_1, u_2, v_2, w_2, x_2, y_2\}$$ and $$\begin{split} E(H_1) &= E(D) \cup \{u_1x_1, v_1w_1, v_1x_1, v_1y_1, w_1x_1, x_1y_1, y_1u_1, y_1w_1\} \\ &\quad \cup \{zu_1, w_1z \mid z \in S_1(D)\} \\ &\quad \cup \{zu_1, zx_1; w_1z \mid z \in S_2(D)\} \\ &\quad \cup \{u_2x_2, v_2w_2, v_2x_2, v_2y_2, w_2y_2, w_2x_2, x_2y_2, y_2u_2, y_2w_2\} \\ &\quad \cup \{zu_2, w_2z \mid z \in S_2(D)\} \\ &\quad \cup \{zu_2, zx_2, w_2z \mid z \in S_1(D)\}. \end{split}$$ By an argument similar to that in Case 1, we have $$ms_H(x) = ms_D(x) + 13 + 14$$ for $x \in S_1(D)$ and $$ms_H(v) = ms_D(v) + 13 + 14$$ for $v \in S_2(D)$. Thus, $ms_H(x) = ms_H(v)$, H is strong, D is an induced subdigraph of H, and $\max\{md_H(u,v) \mid u \in V(K), v \in V(H) - V(D)\} = 3$. Let D and F be asymmetric digraphs. Let K be a nonempty asymmetric digraph isomorphic to an induced subdigraph of both D and F. Suppose that $V(D) = \{u_1, u_2, \ldots, u_{p1}\}$ and $V(F) = \{v_1, v_2, \ldots, v_{p2}\}$. Without loss of generality, we assume that $\langle \{u_1, u_2, \ldots, u_k\} \rangle \cong \langle \{v_1, v_2, \ldots, v_k\} \rangle \cong K$, and that $u_i \to v_i$, $(i = 1, 2, \ldots, k)$ is an isomorphism. We denote by $(D \cup F)_K$ the digraph obtained from D and F by identifying vertices u_i and v_i , $1 \le i \le k$. For the sake of convenience, we consider D, F, and K as induced subdigraphs of $(D \cup F)_K$ in the remainder of the paper. We denote m-rad D $K = \min\{\max\{md_D(v, w) \mid w \in V(K)\} \mid v \in V(K)\}$. **Theorem 5.** Let H be a strong asymmetric digraph containing $H_0 = (D \cup F)_K$ as an induced subdigraph such that mM(H) = D and mP(H) = F. If m-rad $H_0F \leq 3$, then $H = H_0 = F$. **Proof:** Since mP(H) = F, we have m-diam $H = \min\{me_H(v) \mid v \in V(F)\} = m$ -rad $_DF$. Note that F is an induced subdigraph of H_0 , and that H_0 is an induced subdigraph of H, it follows that $md_H(v, w) \leq md_{H_0}(v, w)$. Therefore, $$\begin{split} m - \operatorname{diam} & H = \min \{ \max \{ m d_H(v, w) \mid w \in V(F) \} \mid v \in V(F) \} \\ & \leq \min \{ \max \{ m d_{H_0}(v, w) \mid w \in V(F) \} \mid v \in V(F) \} \leq 3. \end{split}$$ If m-diamH=2, then mM(H)=mP(H)=H. Thus, $H=H_0=F$. If m-diamH=3, then we will prove that $V(H)-V(F)=\emptyset$. Otherwise, ms(v)=2(p(H)-1) for $v\in V(H)-V(F)$. Note that 2(p(H)-1) is the minimum possible value for the m-status of a vertex in H. Let w be a vertex in $D\cap F$. Then, ms(w)=2(p(H)-1) implying that Me(w)=2 which is a contradiction to m-diam $H=me_H(w)=3$. Therefore, $V(H)-V(F)=\emptyset$, i.e. $H=H_0=F$. We now define a family of asymmetric digraphs that will be used in our next construction. Let C_4^1 be a directed 4-cycle. We define C_4^n $(n \geq 2)$ inductively from four copies of C_4^{n-1} , say D_0 , D_1 , D_2 , and D_3 . Each vertex in D_i is joined to every vertex of D_{i+1} for $0 \leq i \leq 3$ (the subscribes are module 4). It is easily observed that C_4^n is a strong asymmetric digraph of order 4^n . Clearly, all the vertices of C_4^n are similar. Observe also that m-rad $C_4^n = m$ -diam $C_4^n = 3$, n > 1. We denote the m-status of a vertex in C_4^n by S_n . Then, $$S_n = 3 \cdot p(C_4^{n-1}) + 3 \cdot p(C_4^{n-1}) + 2 \cdot p(C_4^{n-1}) + S_{n-1}$$ = $3 \cdot 4^{n-1} + 3 \cdot 4^{n-1} + 2 \cdot 4^{n-1} + S_{n-1}$ = $8 \cdot 4^{n-1} + S_{n-1}$. Since $S_1 = 8$, it follows that $S_n = 8 \cdot 4^{n-1} + 8 \cdot 4^{n-2} + \dots + 8 \cdot 1 = 8(4^n - 1)/3$. **Theorem 6.** Let D and F be asymmetric digraphs. Let K be a nonempty asymmetric digraph isomorphic to an induced subdigraph of both D and F. Let $H_0 = (D \cup F)_K$. If m-rad $_{H_0}F \geq 4$, then there exists a strong asymmetric digraph H such that $mM(H) \cong D$, $mP(H) \cong F$, and $mM(H) \cap mP(H) \cong K$. Proof: Suppose that $V(D) = \{u_1, u_2, \dots, u_{p1}\}$ and $V(F) = \{v_1, v_2, \dots, v_{p2}\}$. Without loss of generality, we assume that $\langle \{u_1, u_2, \dots, u_k\} \rangle \cong \langle \{v_1, v_2, \dots, v_k\} \rangle \cong K$, and that $u_i \to v_i$, $(i = 1, 2, \dots, k)$ is an isomorphism. We identify vertices u_i and v_i , $(1 \le i \le k)$, and label the new vertices u_i , $1 \le i \le k$. Thus, $V(K) = \{u_1, u_2, \dots, u_k\}$, $V(D) - V(K) = \{u_{k+1}, u_{k+2}, \dots, u_{p1}\}$, $V(F) - V(K) = \{v_{k+1}, v_{k+2}, \dots, v_{p2}\}$, and $V(H_0) = \{u_1, u_2, \dots, u_{p1}, v_{k+1}, v_{k+2}, \dots, v_{p2}\}$. We define an asymmetric digraph H_1 by $$V(H_1) = V(H_0) \cup \{w_1, w_2, w_3, w_4\}$$ and $$E(H_1) = E(H_0) \cup \{w_1w_2, w_1w_3, w_2w_3, w_3w_4, w_4w_1, w_4w_2\}$$ $$\cup \{w_2x, xw_3 \mid x \in V(H_0)\}$$ $$\cup \{u_iw_1, w_4u_i \mid k+1 \le i \le p_1\}$$ (See Figure 5). Figure 5 It is clear that $me(w_i) = 3$ $(1 \le i \le 4)$ and $meH_1(u_i) = 3$ $(k+1 \le i \le p_1)$. Since m-rad $_{H_0}F \ge 4$, it follows that $me_{H_1}(v) = 4$, $v \in V(F)$. Thus, m-diam $H_1 = 4$ and $mP(H_1) = F$. By Lemma 4, there exists an asymmetric digraph H_2 containing H_1 as an induced subdigraph such that - (i) $ms_{H_2}(x) = ms_{H_2}(y)$ for all $x, y \in V(H_1)$, - (ii) $me_{H_2}(x) = \max\{me_{H_1}(x), 3\}$ for all $x \in V(H_1)$, and - (iii) $me(x) \le 3$ for all $x \in V(H_2) V(H_1)$. Therefore, m-diam $H_2 = 4$ and $mP(H_2) = mP(H_1) = F$. We define H_3 by a similar construction as in Lemma 4. $$V(H3) = V(H_2) \cup \{u, v, w, x, y\}$$ and $$E(H3) = E(H_2) \cup \{uv, vw, vx, vy, wx, xy, yu, yw\} \\ \cup \{zu, wz \mid z \in V(H_1) - V(D)\} \\ \cup \{zu, zx, wz \mid z \in V(D)\}.$$ Note that all the vertices of H_1 have the same m-status in H_2 . By the construction of H_3 , the m-status of those vertices in D is increased by 13, meanwhile, the m-status of vertices in $V(H_1) - V(D)$ is increased by 14. Furthermore, for every $v \in V(F)$ there exists $y \in V(F)$ such that $md_{H_3}(x,y) = 4$. We now construct $_4$ by adding two vertices u and v to H_3 . All of the vertices in $V(H_3) - V(H_2)$ are then joined to u and from v. Accordingly, all vertices in $V(H_2) - V(H_1)$ are joined to v and from u (See Figure 6). Figure 6 It is easy to see that for every $x \in V(H_1)$ there exists vertices $z_1, z_2 \in V(H_2) - V(H_1)$, and $z_3, z_4 \in V(H_3) - V(H_2)$ such that $zz_1, z_2z, zz_3, z_4z \in E(H_3)$. Therefore, md(u, x) = 2 for $x \in V(H_1)$. If $y \in V(H_3) - V(H_1)$, then md(u, y) = 3. Clearly, md(u, v) = 2. Thus, me(u) = 3. Since u and v are similar in H_4 , it follows that me(v) = 3. Let x be a vertex in $V(H_2) - V(H_1)$. Then, md(x,y) = 2, for all $y \in V(H_3) - (H_2)$. Note that md(x,u) = md(x,v) = 3, and $md_{H_4}(x,y) \le md_{H_2}(x,y) \le me_{H_2}(x) \le 3$, for all $y \in V(H_2)$. Therefore, me(x) = 3, for $x \in V(H_3) - V(H_2)$, md(x,y) = 2, for $y \in V(H_2) - V(H_1)$, and md(x,u) = md(x,v) = 3. By construction, $md(x,y) \le 3$ for $y \in V(H_3) - V(H_2)$. Then $me(x) \le 3$ for $x \in V(H_3) - V(H_2)$. Consider two vertices x and y in H_1 . Then, $md_{H_4}(x,y) \leq md_{H_2}(x,y) \leq m$ -diam $H_2 = 4$. Moreover, if $x \in V(H_1) - V(F)$, then $md_{H_4}(x,y) < 4$. For a vertex $x \in V(F)$, let y be the vertex such that $md_{H_2}(x,y) = 4$. By construction, there is no shorter x-y path in H_4 . Therefore, $md_{H_4}(x,y) = 4$. Hence, $me_{H_4}(x) = 4$ for $x \in V(F)$. Combining the above arguments, m-diam $H_4 = 4$ and $mP(H_4) = F$. Clearly, all the vertices in V(D) have the same m-status in H_4 . Let m be the m-status of a vertex in V(D). Let $$t = \max\{\lceil \log_4((m - 2p(H_3) - 2)/2) \rceil, \\ \lceil \log_4(3m + 3p(H_1) - 9p(H_3) - 4)/2) \rceil\} + 1.$$ In H_4 replace u with a copy of C_4^n and join each vertex of C_4^n to (from) all vertices adjacent from (to) u. In the resulting digraph, we replace v with another copy of C_4^n and join the vertices in similar fashion. Let this digraph be H. Since every vertex in the two copies of C_4^n has an m-eccentricity of 3, it follows that m-diamH=4, and $mP(H)=mP(H_4)\cong F$. Let x be a vertex in $V(H_3)$. Then, $$ms_H(x) = ms_{H_4}(x) - 4 + 2 \cdot \sum_{y \in C_1^t} md(x, y).$$ If $x \in V(H_1)$, then md(x,y) = 2 for $y \in V(C_4^n)$. Therefore, $$ms_H(x) = ms_{H_4}(x) + 2 \cdot 2 \cdot 4^t - 4 = ms_{H_4}(x) + 4 \cdot 4^t - 4$$ for $x \in V(H_1)$. If $x \in V(D)$, then $ms_{H_4}(x) = m$ implying that $ms_H(x) = m + 4 \cdot 4^t - 4$. If $x \in V(H_1) - V(D)$, then $ms_{H_4}(x) = 4 + ms_{H_3}(x) = 4 + (ms_{H_3}(y) + 1) = ms_{H_4}(y) + 1 = m + 1$, where y is an arbitrary vertex in V(D). Therefore, $$ms_H(x) = m + 1 + 4 \cdot 4^t - 4 = m + 4 \cdot 4^t - 3$$, for $x \in V(H_1) - V(D)$. If $x \in V(H_3) - V(H_1)$, then md(x, y) = 3 for $y \in V(C_4^n)$. Thus, $$ms_H(x) = ms_{H_4}(x) + 2 \cdot 3 \cdot 4^t - 4 \ge 2(p(H_4) - 1) + 6 \cdot 4^t - 4 = 2p(H_3) + 6 \cdot 4^t - 2.$$ By the choice of t, $4^t > (m - 2p(H_3) - 2)/2$, i.e. $2p(H_3) + 6 \cdot 4^t - 2 > m + 4 \cdot 4^t - 4$. Therefore, $$ms_H(x) \ge 2p(H_3) + 6 \cdot 4^t - 2 > m + 4 \cdot 4^t - 4 = ms_H(y)$$, where $y \in V(D)$. To complete the proof, it suffice to show that ms(x) > ms(y) for $x \in V(C_4^t)$ and $y \in V(D)$. If $x \in V(C_4^n)$, then $$\begin{split} ms(x) &= ms_{C_4^n}(x) + 2p(C_4^t) + \sum_{y \in V(D)} md(x,y) + \sum_{y \in V(H_3) - V(H_1)} md(x,y). \\ &= \frac{8}{3} \cdot (4^t - 1) + 2 \cdot 4^t + 2p(H_1) + 2(p(H_3) - p(H_1)) \\ &= \frac{14}{3} \cdot 4^t + 3p(H_3) - p(H_1) - 8/3. \end{split}$$ By the choice of t, $4^t > (3m+3p(H_1)-9p(H_3)-4)/2$, i.e. $\frac{14}{3} \cdot 4^t + 3p(H_3) - p(H_1) - 8/3 > m + 4 \cdot 4^t - 4$. Therefore, ms(x) > ms(y) for $x \in V(C_4^n)$ and $y \in V(D)$. Hence, $mM(H) \cong D$. ## References - [1] G. Chartrand and S. Tian, "Maximum distance in digraphs" in Graph Theory, Combinatorics, Algorithms, and Applications (Y. Alavi, F.R.K. Chung, R.L. Graham, and D.F. Hsu, Eds.), pp. 525-538, SIAM, Philadelphia, 1991. - [2] G. Chartrand and S. Tian, Oriented graphs with prescribed m-center and m-median, Czech. Math. J. 41 (1991), 716-723. - [3] G. Chartrand, G.L. Johns, S. Tian, and S.J. Winters, Directed Distance in Digraphs: Centers and Medians, J. Graph Theory, 17, No. 4 (1993), 509-521. - [4] G. Chartrand and L. Lesniak, Graphs and Digraphs, 2nd Ed. Monterey, CA (1986).