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ABSTRACT. Let n > 2 be an arbitrary integer. We show that
for any two asymmetric digraphs D and F with m-radF >
max{4,n+ 1}, there exists an asymmetric digraph H such that
mM(H) = D, mP(H) = F, and md(D, F) = n. Furthermore,
if K is a nonempty asymmetric digraph isomorphic to an in-
duced subdigraph of both D and F, then there exists a strong
asymmetric digraph H such that mM(H) = D, mP(H) = F,
and mM(H) NmP(H) =2 K if m-rady, F > 4, where Hp is a
digraph obtained from D and F by identifying vertices similar
to those in K.

1 Introduction

Let D be a strong digraph. For vertices u and v of D, the directed dis-
tance from u to v d(u,v) is the length of a shortest directed w-v path
in D. The maximum distance between v and v is defined as md(u,v) =
max{d(z,v),d(v,u)}. The m-eccentricity of a vertex v in D, me(v), is
max{md(v,w) | w € V(D)}. The m-radius of D, m-radD, is defined as
min{me(v) | v € V(D)}. The m-diameter of D, m-diamD, is max{me(v) |
v € V(D)}. The m-center mC(D) of D is the subdigraph induced by
those vertices » with me(v) = m-radD. The m-periphery mP(D) of D is
the subdigraph induced by those vertices v with me(v) = m-diamD. The
m-status of a vertex v is ms(v) = 3 cv(p)md(v, w). The m-median of
D, denoted by mM (D), is the subdigraph of D induced by those vertices
having minimum m-status.

The maximum distance between two subdigraphs D; and Ds of D, de-
noted md(D;, D2), is defined by md(Dy, D2) = min{md(u,v) | u € V(Dy),
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v € V(D3)}. Observe that if Dy and D; are disjoint in D then md(D;, Da) >
2. Otherwise, md(D,, Dy) = 0.

In [1] m-center, m-periphery, and m-median of digraphs have been inves-
tigated. Chartrand and Tian [2] studied the relative location of m-center
and m-median of digraphs. In [3], similar resuits have been done for center
and median of digraphs defined under directed distance. In this paper, we
study the relative location of m-median and m-periphery of an asymmetric
digraph. For other graph theory terminology, we follow [4].

2 Noninteresting Medians and Peripheries

We consider the case where the m-median and the m-periphery are nonin-
tersecting. The following theorem will provide a necessary condition of the
nonintersecting median and periphery in an asymmetric digraph.

Theorem 1. Let H be a strong asymmetric digraph. Then,
m - radmP(H) > md(mM(H),mP(H)) + 1.

Proof: Since mP(H) contains at least two vertices, m-radmP(H) > 2.
Therefore, the theorem holds when md(mM(H),mP(H)) = 0. Assume
that md(mM(H),mP(H)) > 0, i.e. mP(H)NnmM(H) = 0. Let v be
a vertex of mP(H) such that men,p()(v) = m-radmP(H). Let w be a
vertex of mP(H) such that md(v,w) = m-diamH. Then

m - radmP(H) = me(v) > mdmp)(v, w) > mdy(v,w) = m - diamH.

Consider an arbitrary vertex z € V(mM(H)). Since mP(H)NmM(H) = 0,
it follows that z & V(mP(H)). Thus, md(z,v) < m-diamH — 1. Therefore,
m-radmP(H) > m-diamH > md(z,v) +1 > md(mM(H),mP(H)) + 1.

In order to embed an arbitrary asymmetric digraph D as the m-median
of some asymmetric digraph H, we first show that it is possible to embed
D into an asymmetric digraph having m-diameter 2.

Lemma 2. For every asymmetric digraph D, there exists a digraph H
containing D as an induced subdigraph such that me(v) = 2 for all v €
V(H).

Proof: Assume that V(D) = {v;,vs,...,v,}. Without loss of generality,
we assume that p > 3. Let

V(H)=V(D)U{z1,z2,...,Zp-1} U {¥1,%2,. .., Yp-1}
and
E(H) = E(D)VU {viys, yizi, ziv; | 1 i <p—1}U {yv5,v574,|1 <i < j < p}
U{vye, 2,01 |2t <p~1}U{zinp |1 Si<p -2}
U {z1yp—1, Zp—191} U {zizj, y5%: | 1 < i < j <p-—1}.
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Figure 1 illustrates the construction of H when p = 4.

Figure 1

Clearly H is an asymmetric digraph containing D as an induced subdi-
graph. Therefore, md(u,v) > 2 for u,v € V(H). To prove the lemma, it
suffices to show that md(u,v) < 2 foru,v € V(H). Let 1 <i<j<p
be integers. By construction, there exists a 4-cycle v;, i, vj, Zi,v;. Thus,
md(v;,v;) < 2. Note that H contains 3-cycles z;, z;,v;, i and i, v;, Y, %-
Therefore, md(z;, z;) = md(y;,y;) = md(z;,v;) = md(y,v;) = 2. Next,
for 1 < i < p— 1, there exists a 3-cycle vy, ¥;,z,v1. Thus, md(vy,z:) =
md(v;, y;) = 2. There also exists 3-cycles z1, yp—1,vp, 1 and Z;, Yi—1,%p, Zi
for 2 < i < p—1. Therefore, md(vp, z:) = md(vp, z;) = 2,1 < i < p—1. Ob-
serve that H contains 4-cycles z,—_1,v1,¥j, 1, Tp—1 and ¥p—1, ¥1, Vi, T1,Yp-1,
2 < i < p—1. Thus, md(zp_1,v:) = md(yp-1,%) =2for2<i <p-—2.
Finally, the existence of cycle z;, v1,¥j,Vp, Z; implies that md(z:,y;) = 2
for1<i,j<p-—1.

Theorem 3. Let D and F be asymmetric digraphs. Let n > 2 be an inte-
ger. If m-radF > max{4,n + 1}, then there exists an asymmetric digraph
H such that mM(H) = D, mP(H) = F, and md(mM(H), mP(H)) =n.

Proof:
Case 1. Assume that n > 3.

First, we define Hy by applying Lemma 1 on D. Thus, md(v,u) = 2, for
v,u € V(Hy). Next, we define H, by

V(H))=V(Ho)UV(F)U{ws,...,wn1}
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and

E(H:)= E(Ho) UE(P)U{w;_w; |2<i<n-1}
U {wn—1u,vwy,w, | u € V(Hp),v € V(F)}.

We define H, by
V(Hz) = V(H1) U {0, Y0, 1,91}
and

E(H2) = E(H1) U {Zzovo, Z1y1, Toy1, £10, Wn—2T0, Z0Wn—1, Wn—2%1, T1, Wn—1}
U {uzo, you, uz1, y1u | v € V(D)} U {yov,y1v | v € V(F)}

(See Figure 2).

Figure 2

Clearly, mdy,(u,v) = n for u € V(Hp), v € V(F). Thus, mdy,(D, F) =
n. To prove mP(H3) = F, we now calculate the eccentricities of vertices
in Hp. We first show that me(zo) = me(yy) = n. By the construction,
there exists an n + 1-cycle zg, yo, v, w; .. . Wp_2, %o for every v € V(F). It
follows that md(zo,2) < n and md(y,2) < n, where z € V(F) U {w; |
1 € i € n—2}. Furthermore, md(z),wn—2) < n and md(yy,v) < n.
Consider a vertex v € V(D). Since Ha contains 3-cycles u, zg, y0,u and
Wn_1, U, Zo, Wn—1, it follows that md(zg,u) = md(yo, u) = md(z1,wn—1) =
2 < n. By the construction in the proof of Lemma 2, for every vertex
u € V(Hp) — V(D), there exist vertices v,w € V(D) such that uv, wu €
E(Hp). Therefore, Hy contains cycles u, v, zg, wn—1,u and u, v, zg, yo, W, u.
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Thus, md(yo,u) = 3 and md(zo,x) = 2 for u € V(Ho) — V(D). By the
construction, md(zg, ;) = 2, and md(zo, ;) = 3. Therefore, me(zg) =
me(yo) = n. Since x; and y; are similar to zo and yo respectively in Ha,
we have me(z1) = me(y;) =n.

Let u be an arbitrary vertex of Ho and v be any vertex of F. Then,
me(u) = md(u,v) = n, and me(w) = md(wy,v) = n. It follows that
me(w;) = md(wi, wi—1) = m, for 2 < i < n—1. Let z be an arbitrary
vertex in F. Since m-radF > n + 1, there exists a vertex y € V(F) such
that mdp(z,y) = me(z) > n+ 1. Let u be an arbitrary vertex of D.
Then, z,w;,ws,...,Wn-1,7,Y is a shortest z — y path of length n+ 1 in
H,. Therefore, mdy,(z,y) = n+1. So, me(z) > n+1. On the other hand,
mdy,(z,2z) < n+1, for all z € V(Hz). Thus, me(z) = n+ 1. Therefore,
mP(Hy)=F.

Observe that the vertices of Hp have the same m-status, say k, in Ha.
Let t = k — min{ms(v) | v € V(Hz)}. We define H as follows:

V(H)=V(H2)U{zi,y: [2<i<t+2}
and

E(H) = E(Ha)U {ziw; | 2< i <t +2}U{ziy; |0 < 4,5 <t +2,i # 5}
U {uz;,yiu |ue V(D),2<i<t+2}
U{yv |veV(F),2<i<t+2}
U {Ziwn—1, Wn—2Z; | 2 <1 <t 4+ 2}

Observe that, mdy (u,v) = mduy, (v, ), for u,v € V(Hz). Therefore,

msp(u) =msg,(w)+ Y md(y,z;) + md(u, ).
2<i<t+2

If u € V(D), then md(u, z;) = md(u, %) = 2, 2 < i <t + 2. Therefore,
msy(u) = msy,(u) + 4(t + 1), for u € V(D). If u € V(H3) — V(D), then
md(u, z;)+md(u,y;) > 5,2 < i < t+2. Thus msy(u) > msp, (v)+5(¢+1).
Since ¢ = k — min{ms(v) | v € V(H2)}, it follows that msp,(u) +t =
min{ms(v) | v € V(Hz2)} +t = k. Thus,

msg(u) > msy,(u) + 5t +1) > k+4(t + 1) = msp(v),

for u € V(Hy) — V(D) and v € V(D). Since zo € V(Hz) —V (D), it follows
that msy(zo) > k + 5(t + 1). Since x; and xo are similar vertices in H, it
follows that msy(z;) = msg(xo) > k+4(t +1), 2 < i <t + 2. Similarly,
ms(y;) = msu(yo) > k+4(t +1), 2 < i < t + 2. Therefore, mM(H) = D.
Case 2. Assume that n = 2. '
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First, we define Hy as the same digraph in Case 1. Next, we define H;
by
V(Hl) = V(Ho) U V(F) U {'wl,wz}

and

E(H,) = E(Ho) U E(F) U {waun}
U {vwy, wiu, uwq, wav | u € V(Hp),v € V(F)}.

We then define Hy by

V(H2) = V(Hl) U {30, Y0, 21, yl}

and
E(Hz) = E(H1) U {uzo, uz1, you, y1u | u € V(D))}
U {wy o, w11, Yows, Y1wa}
U {Zo0, 191, Toy1, 190}
(See Figure 3).

2
Y1
X0 -
Yo 2
F
Xl A
.
Y1 Y2
Figure 3

By a similar argument as in Case 1, we have the following:

1. md(zg,y0) = md(xzo,u) = md(zo,y1) = 2 for u € V(D),

2. md(zo,z1) = md(yo, ¥1) = md(zo,v) = md(yo,v) =3
for v € V(Hp) — V(D).
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Observe that H contains an 4-cycle wi,zo,y0,w2w; and an 5-cycle
v,wy, To, Yo, Wa, v for each v € V(F). Thus, md(xg, w;) = md(y, w2) =3,
md(zo, wa) = md(yo, w1) = 2, and md(zo, v) = md(yo,v) = 3 forv € V(F).
Therefore, in Hy, me(zq) = me(z;) = me(yo) = me(y;) = 3. Observe that
H, contains an 3-cycle u,ws,w;,u, for each u € V(Hp), and an 4-cycle
v,wy,u, ws,v, for each v € V(F). Thus, in Hz, me(w;) = me(ws) = 3,
me(u) = 2 for all u € V(D), and me(z) = 3 for all z € V(Hp) — V(D).
Let z be an arbitrary vertex of F. Since m-radF > max{n + 1,4} and
n = 2, it follows that m-radF > 4. Thus, there exists a vertex y in F
such that mdp(z,y) > 4. Let v be an arbitrary vertex in Ho. We see that
z,w1, v, ws,y is a shortest z — y path in Hy. Therefore, mdp(z,y) = 4
implying that me(z) = 4 in Ha. Thus, mP(H) = F.

Observe that mdy,(zo,u) + mdu,(¥o,u) = 4, for v € V(D), and that
md(zo, v)+md(yo,v) > 5in for v € V(Hz) - V(D). With this fact, we then
define H by a similar process utilized in Case 1. Let ¢ = k — min{ms(v) |
v € V(H3)} where k = ms(u) for u € V(Hp). We then define H by

V(H)= V(HQ)U{.'L’,',y,' |2<i<t+2}
and
E(H) = E(Hz) U {uz;,ysu |u€ V(D),2<i<t+2}

U{wiz;, yiwe |2< i<t + 2}
U{ziy; |2<1,j <t+2}.

3 Intersecting Medians and Peripheries

We now consider the other extreme, namely where the m-median and m-
periphery of an asymmetric digraph overlap on any common part of them.

Lemma 4. Let D be a strong asymmetric digraph with m-diamD < 4. Let
K be an induced subdigraph of D. Then there exists a strong asymmetric
digraph H containing D as a proper induced subdigraph such that

(i) msu(u) = msy(v), for all u,v € V(K).
(ii) mey(u) = max{mep(u), 3}, for all u € V(D), and
(iii) me(u) < 3, for all w € V(H) — V(D).
Proof: Let m;(D) = max{msp(z) | z € V(K)}, m2(D) = max{msp(z) |

z € V(K)}, and n = m (D) — mo(D). We consider two cases.
Case 1. Assume that n > 1.
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Let S(D) = {z € V(K) | msp(z) = ma(D)}. Define H, by
V(H,) = V(D) U {u1,v1, w1, 71,91}
and

E(H,) = E(D) U {u1z1, viw;, v121, vy, w1Z1, T1Y1, Y11, Y1W1 }
U {zu1, w12z | z € S(D)}
U {zu, 221,w12 | z € V(D) — S(D)}

(See Figure 4).

Figure 4

Clearly, H, is strong, and D is a proper induced subdigraph of H;. Since
m-diamD < 4, it follows that mdp(u,v) < 4 for u,v € V(D). Thus,
mdy, (z,t) = mdp(z,t) for z,t € V(D). Therefore, for z € S(D),

ms, (2) = mdy, (2,v1) + mdp, (2,v1) + mdy, (z,w1) + mdy, (2, 71)

+ mdy, (2,31) + Z mdy, (2,1)
tev(D)
=3+24343+3+ ) mdy(zt)

tev(D)
= 14 4+ msp(z)
= my(D) + 14.

Similarly, for z € V(K) — S(D), msy, (z) = msp(z) + 13 < my(D) +13.
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We define m; (H;) = max{msy, (z) | z € V(K)} and ma(H,) = min{msp,
(z) | z € V(K)}. Then, m;(H;) = m1(D)+13 and ma(H,) = ma(D)+14.
Therefore, *

my(Hy) — ma(H1) = (m1(D) + 13) — (m2(D) + 14)
=my(D) - mz(D) -1
=n-1.

Let S(H,) = {z € V(K) | msu,(z) = ma(H;)}. We define a strong
asymmetric digraph H, by

V(Hz) = V(H1) U {u2,v2, w3, T2, Y2}
and

E(Hj) = E(H\1) U {uzx2, vows, vaT2, V2y2, W22, Toy2, Y2u2, Yowa}
U {zuz, wez | z € S(H1)}
U {zug, 2z2,wez | z € V(H,) — S(H,)}.

By a similar argument, we see that my (H2)—ma(Hz) = my(D)—mz(D)—
2 = n — 2. We repeat this process n — 2 times. Let H = H,. Then
mi(H) = ma(H), i.e. msg(u) = msy(v) for all u,v € V(K). Clearly by
the construction of Hy, H is strong, D is an induced subdigraph of H, and
max{mdy(u,v) | u € V(K),v € V(H) - V(D)} = 3.
Case 2. Assume that n =0.

If D consists of one vertex, then we define H by adding three new vertices
to form a directed 4-cycle. It can be easily seen that H has the desired
properties. If D contains at least two vertices, we partition V(D) into two
nonempty subsets S;(D) and Sp(D) = V(D) — S1(D). We then define H
by

V(H) = V(D) U {U],,'U], w1, T1, Y1, U2, V2, W2, T2, y2}
and

E(H,) = E(D) U {u1z1, viw1, 11, V191, W1Z1, T1¥1, Y181, Y1w1 }

U {zu1, w12 | z € $1(D)}
U {zu1, zz1, w12 | z € S2(D)}
U {ugzg, vows, v2T2, VaY2, Wo¥2, WoT2, T2Y2, Y2U2, Yowa}
U {zuz, woz | z € S2(D)}
U {zug, zx2, w2z | z € S1(D)}.
By an argument similar to that in Case 1, we have
msy(x) = msp(z) + 13 + 14 for z € S1(D)
and
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msH(v) = msD('u) +13414forve SQ(D)

Thus, msy(z) = msy(v), H is strong, D is an induced subdigraph of
H, and max{mdy(u,v) |u € V(K),v e V(H) -V (D)} = 3.

Let D and F be asymmetric digraphs. Let K be a nonempty asymmetric
digraph isomorphic to an induced subdigraph of both D and F. Suppose
that V(D) = {u1,u2,...,up} and V(F) = {v;,va,...,vp2}. Without loss
of generality, we assume that ({uj,us,...,ux}) = ({v1,v2,...,%}) = K
and that u; — v;, (¢ = 1,2,...,k) is an isomorphism. We denote by
(DU F)g the digraph obtained from D and F by identifying vertices u;
and v;, 1 <1 < k. For the sake of convenience, we consider D, F, and K
as induced subdigraphs of (D U F)k in the remainder of the paper. We
denote m-radp K = min{max{mdp(v,w) | w € V(K)} | v € V(K)}.

Theorem 5. Let H be a strong asymmetric digraph containing Ho = (DU
F)k as an induced subdigraph such that mM(H) = D and mP(H) =
If m-radHoF <3,then H=Hy=F.

Proof: Since mP(H) = F, we have m-diamH = min{mey(v) | v €
V(F)} = m-radpF. Note that F is an induced subdigraph of Hp, and that
Ho is an induced subdigraph of H, it follows that mdy (v, w) < mdy, (v, w).
Therefore,

m - diamH = min{max{mdy (v,w) | w € V(F)} | v € V(F)}
< min{max{mdpy, (v,w) |w € V(F)} | v € V(F)} < 3.

If m-diamH = 2, then mM(H) = mP(H) = H. Thus, H = Hy = F.
If m-diamH = 3, then we will prove that V(H) — V(F) = . Otherwise,
ms(v) = 2(p(H) — 1) for v € V(H) - V(F). Note that 2(p(H) — 1) is the
minimum possible value for the m-status of a vertex in H. Let w be a vertex
in DNF. Then, ms(w) = 2(p(H) — 1) implying that Me(w) = 2 which is a
contradiction to m-diamH = mey(w) = 3. Therefore, V(H) — V(F) =
ie. H=Hy=F.

We now define a family of asymmetric digraphs that will be used in our
next construction. Let C} be a dlrected 4-cycle. We define C} (n > 2)
inductively from four copies of C“ , say Dy, Dy, Do, and Ds. Each vertex
in D; is joined to every vertex of D;y, for 0 < i < 3 (the subscribes are
module 4). It is easily observed that C7 is a strong asymmetric digraph
of order 4™. Clearly, all the vertices of C} are similar. Observe also that
m-1adC} = m-diamC7 = 3, n > 1. We denote the m-status of a vertex in
C?t by S,.. Then,

S, =3-p(C;™ ) +3-p(CF™ 1) +2-5(CF™Y) + Sns
=3.4" 1434714 2.4% 118,
=8.4"! + Sn-1.
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Since S; = 8, it follows that Sn = 8-4""14+8-4""2+...48.1 = §(4" —-1)/3.
Theorem 6. Let D and F be asymmetric digraphs. Let K be a nonempty
asymmetric digraph isomorphic to an induced subdigraph of both D and
F. Let Hy = (DUF)g. If m-rady,F > 4, then there exists a strong asym-
metric digraph H such that mM(H) = D, mP(H) = F, and mM(H) N
mP(H) = K.

Proof: Suppose that V(D) = {u1,u2,...,up1} and V(F) = {v1,v2,...,9p2}.
Without loss of generality, we assume that ({u1,u2, ..., ux}) & {{v1,v2,...,
v }) 2 K, and that u; — v;, (i =1,2,...,k) is an isomorphism. We iden-
tify vertices u; and v, (1 < ¢ < k), and label the new vertices u;, 1 <i < k.
Thus, V(K) = {ul,'ug, .o ,uk}, V(D) - V(K) = {uk+1,uk+2, e ,'u.,,l},
V(F) = V(K) = {vk41,%+2, . - -, Up2}, and V(Ho) = {uy, u2,. .., up1,Vk+1,
Vk42,---,Vp2}. We define an asymmetric digraph H; by

V(H,) = V(Hp) U {w1, w2, w3, wy}
and

E(Hl) = E(HO) U {w1w2$ w1 W3, Walvz, W3y, w4w1iw4w2}
U {wez, zws | = € V(Ho)}
U {uiwi, waui | k+1<i<p1}

(See Figure 5).

H,
W4 W3

D-F K F-D
Yor % [P % [Yker Y,

Figure 5
It is clear that me(w;) = 3 (1 < i < 4) and meHy(u;) =3 (k+1 <i <py).

Since m-rady, F > 4, it follows that mey, (v) = 4, v € V(F). Thus, m-
diamH,; = 4 and mP(H,)=F.
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By Lemma 4, there exists an asymmetric digraph Hy containing H; as
an induced subdigraph such that

(1) msy,(z) = msy,(y) for all z,y € V(Hh),
(if) mepn,(z) = max{mey, (z),3} for all z € V(H,), and
(iii) me(z) < 3 for all z € V(H,) — V(H,).

Therefore, m-diamHs = 4 and mP(H) = mP(H;)=F.
We define H3 by a similar construction as in Lemma 4.

V(H3) = V(H2) u {'U,,‘U,'w, z, y}
and

E(H3) = B(H;) U {wv, vw, vz, vy, wz, 29, yu, y0}
U {zu,wz | z € V(H,) - V(D)}
U {zu, zz,wz | z € V(D)}.

Note that all the vertices of H; have the same m-status in Hy. By the
construction of Hs, the m-status of those vertices in D is increased by
13, meanwhile, the m-status of vertices in V(H;) — V(D) is increased by
14. Furthermore, for every v € V(F) there exists y € V(F) such that
mdy,(z,y) = 4.

We now construct 4 by adding two vertices u and v to Hsz. All of the
vertices in V/(H3) — V(H3) are then joined to » and from v. Accordingly,
all vertices in V(Hz) — V(H,) are joined to v and from u (See Figure 6).

Figure 6

It is easy to see that for every x € V(H;) there exists vertices 21,22 €
V(Hz2) — V(H,), and 23,24 € V(Hs) — V(Hz2) such that 221,202, 223,232 €
E(Hs). Therefore, md(u,z) = 2 for z € V(H,). If y € V(H3) — V(H,),
then md(u,y) = 3. Clearly, md(u,v) = 2. Thus, me(u) = 3. Since u
and v are similar in Hy, it follows that me(v) = 3. Let z be a vertex in
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V(H;) — V(H;). Then, md(z,y) = 2, for all y € V(Hs) — (H2). Note
that md(z, uv) = md(z,v) = 3, and mdy,(z,y) < mdy,(z,y) < mey,(z) <
3, for all y € V(H3). Therefore, me(z) = 3, for ¢ € V(Hz) — V(H2),
md(z,y) = 2, for y € V(Hz) — V(Hi1), and md(z,u) = md(z,v) = 3.
By construction, md(z,y) < 3 for y € (V(Hs) — V(Hz)) U V(Hy). Then
me(z) < 3 for z € V(H3) — V(Ha).

Consider two vertices z and y in Hy. Then, mdy,(z,y) < mdy,(z,y) <
m-diamH,; = 4. Moreover, if z € V(H,) — V(F), then mdy,(z,y) < 4.
For a vertex z € V(F), let y.be the vertex such that mdy,(z,y) = 4. By
construction, there is no shorter z —y path in Hy. Therefore, mdy,(z,y) =
4. Hence, megy,(z) = 4 for z € V(F). Combining the above arguments,
m-diamHy = 4 and mP(H,) = F.

Clearly, all the vertices in V(D) have the same m-status in Hs. Let m
be the m-status of a vertex in V(D). Let

t = max{[log,((m — 2p(Hs) - 2)/2)],
[logy(3m + 3p(H1) — 9p(H3) — 4)/2)]} + 1.

In H, replace » with a copy of C} and join each vertex of C} to (from) all
vertices adjacent from (to) u. In the resulting digraph, we replace v with
another copy of C} and join the vertices in similar fashion. Let this digraph
be H. Since every vertex in the two copies of C} has an m-eccentricity of
3, it follows that m-diamH = 4, and mP(H) = mP(H,;) = F. Let z be a
vertex in V(H3). Then,

msy(z) = msy,(z) —4+2- Z md(z,y).
yeC;

If z € V(H,), then md(z,y) = 2 for y € V(CZ). Therefore,
msy(z) = msy,(z)+2-2-4* —4 =msy, (z) +4-4° — 4 for z € V(H,).

If z € V(D), then msy, (z) = m implying that msy(z) = m+4-4* —4. If
z € V(Hy) — V(D), then msy,(z) =4 + msy,(z) = 4 + (msu; () + 1) =
msy,(y) + 1 =m+ 1, where y is an arbitrary vertex in V(D). Therefore,

msy(z)=m+1+4-4—4=m+4-4' -3, forz € V(H,) - V(D).
If z € V(Hs) — V(H,), then md(z,y) =3 for y € V(C}). Thus,
msy(z)=msy, (z)+2-3-4* —4 > 2(p(H,) —1)+6-4* —4=2p(H3)+6-4* —-2.

By the choice of ¢, 4 > (m — 2p(Hs) — 2)/2, i.e. 2p(H3)+6 -4t -2 >
m +4 -4 — 4. Therefore,

msy(z) > 2p(Hs)+6 -4* —2>m+4 -4 —4=msy(y), where y € V(D).
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To complete the proof, it suffice to show that ms(z) > ms(y) for z €
V(C%) and y € V(D). If z € V(C}), then

ms(z) = mscp(2) +2p(CH + Y md(z,y) + > md(z,y).
yeV(D) yEV(Hs3)-V(H)

- g (4t = 1) +2.-4* 4 2p(Hy) + 2(p(Hs) — p(H1))
14

4' + 3p(Hs) — p(H,) — 8/3.

By the choice of t, 4° > (3m+3p(H,) —9p(Hz) —4)/2, i.e. 4 .4*43p(Hs)—
p(H;) —8/3 > m+4-4* — 4. Therefore, ms(z) > ms(y) for z € V(C?) and
y € V(D). Hence, mM (H) == D.

References

[1] G. Chartrand and S. Tian, “Maximum distance in digraphs” in Graph
Theory, Combinatorics, Algorithms, and Applications (Y. Alavi, F.R.K.
Chung, R.L. Graham, and D.F. Hsu, Eds.), pp. 525-538, SIAM,
Philadelphia, 1991.

[2] G. Chartrand and S. Tian, Oriented graphs with prescribed m-center
and m-median, Czech. Math. J. 41 (1991), 716-723.

[3] G. Chartrand, G.L. Johns, S. Tian, and S.J. Winters, Directed Distance

in Digraphs: Centers and Medians, J. Graph Theory, 17, No. 4 (1993),
509-521.

[4] G. Chartrand and L. Lesniak, Graphs and Digraphs, 2nd Ed. Monterey,
CA (1986).

110



