Subsequences of a Multiset

Jun Wu

Department of Pure Mathematics University of Waterloo Waterloo, Ontario N2L 3G1

ABSTRACT. We call a partition $\mu=(\mu_1,\ldots,\mu_k)$ of $m, m\leq n$, a constrained induced partition (cip) from a partition $\lambda=(\lambda_1,\ldots,\lambda_r)$ of n if $\mu_i\leq\lambda_i$ for $i=1,2,\ldots,k$. In this paper we study the set of cips (sections 1-2), determine cips of size p (section 4), and give a formula for the number of total subsequences with fixed size chosen from a given multiset such that the multiplicity of each digit in a subsequence is less than or equal to the multiplicity of this digit in the given multiset

1 Introduction

We consider the following

Problem 1.1 Given a size n multiset $\mathbb{A}_n = a_1^{n_1} \dots a_k^{n_k}, m \leq n$, find out the set of all possible size m subsequences, $\Omega(\mathbb{A}_n, m, n)$, chosen from \mathbb{A}_n such that the multiplicity of each digit in a size m subsequence is less than or equal to the multiplicity of this digit in the given multiset \mathbb{A}_n .

For example we can take size 7 subsequences 5305011,9101135,... etc. from a size 9 multiset $1^30^25^23^19^1$. An equivalent statement of problem 1.1 is given by (9).

Let n denote the set of integers $\{1,\ldots,n\}$, and n^m denote the set of maps $\alpha:m\to n$. We view α as a sequence $(\alpha(1),\ldots,\alpha(m))$. Let $\ell(\alpha)$ denote the size of a sequence α and |A| denote the cardinality of a set A. For $\forall \alpha \in n^m$ and $\forall \beta \in n^{m'}$, we say β majorizes $\alpha, \alpha \prec \beta$, if $m' \leq m, \sum_{i=1}^k \alpha[i] \leq \sum_{i=1}^k \beta[i], k = 1,\ldots,m'-1$, and $\sum_{i=1}^m \alpha[i] = \sum_{i=1}^{m'} \beta[i]$, here $(\alpha[1],\ldots,\alpha[m])$ is in the decreasing order of permutation of $\alpha(1),\ldots,\alpha(m)$. For $\alpha \in n^m$, let $m_t(\alpha)$ denote the multiplicity of t in α . Let $M_{\alpha} = (\alpha_1,\ldots,\alpha_s)$ denote the decreasing permutation of $(m_1(\alpha),\ldots,m_m(\alpha))$ after deleting the zero terms, then M_{α} is a partition

of m. Furthermore we define $\alpha \uparrow$ to be the sequence of increasing permutation of $Im \alpha$ and $\alpha \downarrow$ the sequence of decreasing permutation of $Im \alpha$. For convenience we give an extended definition of partition:

Definition 1.2 A sequence of integers $\lambda = (\lambda_1, \ldots, \lambda_s, \lambda_{s+1}, \ldots, \lambda_k, \ldots)$ is called a partition of n, $\lambda \vdash n$, if there exists some integer s such that $\lambda_1 \geq \lambda_2 \geq \ldots \geq \lambda_s = 1, \lambda_k = 0$ if k > s, and $\sum_{i=1}^s \lambda_i = n$. We call s the size of λ , denoted as $\ell(\lambda)$. We use λ^* to denote the conjugate partition of λ , which is defined as a sequence of integers $(a_1, \ldots, a_n, \ldots)$ such that $a_i = |\{j \mid \lambda_j \geq i\}|$.

We accept the common notation of writing a partition as a finite sequence by dropping the zeros without ambiguity in the context, and let

$$P_m = \{ \text{partitions of } m \}, \tag{1}$$

$$P = \bigcup_{m \in \mathbb{N}} P_m. \tag{2}$$

For $\lambda, \xi \in P$, let $p = min(\ell(\lambda), \ell(\xi)), q = max(\ell(\lambda), \ell(\xi))$ and

$$\lambda \wedge \xi = (\min(\lambda_1, \xi_1), \dots, \min(\lambda_p, \xi_p), 0, \dots, 0, \dots), \tag{3}$$

$$\lambda \vee \xi = (\max(\lambda_1, \xi_1), \dots, \max(\lambda_q, \xi_q), 0, \dots, 0, \dots). \tag{4}$$

Any $\lambda \in P$ induces a subset $\lambda \wedge P = \{\lambda \wedge \xi | \xi \in P\}$ of P. The full permutation group S_m acts on n^m in a natural way: $\forall \sigma \in S_m$, $\alpha \in n^m$, $\sigma \cdot \alpha(i) = \alpha(\sigma^{-1}(i))$ for $i = 1, \ldots, m$. The α orbit is denoted by O_{α} .

Example 1.3 Take $\alpha = (2, 2, 2, 2) \in 3^4$, $\beta = (3, 2, 2, 1) \in 3^4$, then $\alpha \prec \beta$, $M_{\beta} = (2, 1, 1) \prec (4) = M_{\alpha}, M_{\beta} \land M_{\alpha} = (2), M_{\beta} \lor M_{\alpha} = (4, 1, 1); O_{\beta} = \{(3, 2, 2, 1), (3, 2, 1, 2), (3, 1, 2, 2), (2, 3, 2, 1), (2, 3, 1, 2), (2, 2, 3, 1), (2, 2, 1, 3), (2, 1, 3, 2), (2, 1, 2, 3), (1, 2, 2, 3)\}.$

Definition 1.4 Let $\lambda = (\lambda_1, \ldots, \lambda_r) \vdash n$, $m \leq n$, a partition $\mu = (\mu_1, \ldots, \mu_k) \vdash m$ is called a constrained induced partition (cip) of m from λ if $\mu \land \lambda = \mu$ (i.e., $\mu \leq \lambda$).

Denote

$$\Omega_{\lambda}^{m} = \{\mu | \mu = (\mu_{1}, \dots, \mu_{k}) \vdash m, \mu \leq \lambda\}$$
 (5)

$$\Omega_{\lambda}^{m}(p) = \{\mu | \mu \in \Omega_{\lambda}^{m}, \ell(\mu) = p\}, \text{ and}$$
 (6)

$$\Omega_{\lambda} = \bigcup_{m=0}^{n} \bigcup_{p=0}^{m} \Omega_{\lambda}^{m}(p)$$
 with assumption that $\left|\Omega_{\lambda}^{0}(0)\right| = 1$. (7)

If m > n we let $\Omega_{\lambda}^{m} = \phi$ and $\Omega_{\lambda}^{m}(p) = \phi$. It is clear that

$$\mu \in \Omega_{\lambda}^{m}$$
 if and only if $\lambda \wedge \mu = \mu$ and $\sum_{i=1}^{\ell(\mu)} \mu_{i} = m$. (8)

A restatement of problem 1.1 is (see corollary 3.3)

Problem 1.5 Let $\alpha \in n^n$, $m \le n$, determine

$$\Omega(\alpha, m, n) = \{\beta | \beta \in n^m, Im\beta \subseteq Im\alpha, m_t(\beta) \le m_t(\alpha), t = 1, \dots, n\}.(9)$$

Moreover we put

$$\Omega_1(\alpha, m, n) = \{\beta | \beta \in n^m, Im\beta \subseteq Im\alpha, M_\beta = M_\beta \land M_\alpha \}.$$
 (10)

2 Partition Lattice

Propositions 2.1-2.3 and corollary 2.4 are clear.

Proposition 2.1 $\{\Omega_{\lambda}^{m}, \prec\}$ is a partially ordered set.

Proposition 2.2 $\{P, \vee, \wedge\}$ is a distributive lattice (cf. [4] p.27, where the lattice structure is different).

Proposition 2.3 We have

- 1. $\Omega_{\lambda} = \lambda \wedge P$,
- 2. $\Omega_{\lambda}^{m} = (\lambda \wedge P) \cap P_{m}$.

Corollary 2.4 We have

- 1. $\Omega_{\lambda} \cap \Omega_{\xi} = \Omega_{\lambda \wedge \xi}$,
- 2. $\Omega_{\lambda}^{m} \cap \Omega_{\xi}^{m'} = \phi \text{ if } m \neq m',$
- 3. $\Omega_{\lambda}^{m} \cap \Omega_{\xi}^{m} = \Omega_{\lambda \wedge \xi}^{m}$
- 4. $\Omega_{\lambda}^{m}(p) \cap \Omega_{\varepsilon}^{m}(p') = \phi \text{ if } p \neq p',$
- 5. $\Omega_{\lambda}^{m}(p) \cap \Omega_{\xi}^{m}(p) = \Omega_{\lambda \wedge \xi}^{m}(p)$.

Theorem 2.5 The map $*: P \to P$ given by $\lambda \to \lambda^*$ is a lattice isomorphism. i.e., for any $\lambda, \xi \in P$, we have

1.
$$(\lambda \wedge \xi)^* = \lambda^* \wedge \xi^*$$
,

2.
$$(\lambda \vee \xi)^* = \lambda^* \vee \xi^*$$
. (cf. [4] p.27 where * is an anti-isomorphism)

Proof. To show that * is a one-to-one map, we need to show that for any i

$$(\lambda \wedge \xi)_i^* = \min(\lambda_i^*, \xi_i^*),$$

$$(\lambda \vee \xi)_i^* = \max(\lambda_i^*, \xi_i^*).$$

Let

$$I_1 = \{k | \lambda_k \ge i\},$$

$$I_2 = \{k | \xi_k \ge i\},$$

then

$$(\lambda \wedge \xi)_{i}^{*} = \left| I_{1} \bigcap I_{2} \right|,$$

$$(\lambda \vee \xi)_{i}^{*} = \left| I_{1} \bigcup I_{2} \right|,$$

$$\lambda_{i}^{*} = \left| I_{1} \right|, ([1]p.7),$$

$$\xi_{i}^{*} = \left| I_{2} \right|, ([1]p.7).$$

We show that at least one of $I_1 \setminus I_2$, $I_2 \setminus I_1$ is empty. Suppose the contrary we pick up

$$i_1 \in I_1 \setminus I_2$$
,
 $i_2 \in I_2 \setminus I_1$.

then

$$\lambda_{i_1} \geq i, \lambda_{i_2} < i,$$

$$\xi_{i_1} < i, \xi_{i_2} \geq i.$$

Therefore

$$(\lambda_{i_1} - \lambda_{i_2})(\xi_{i_1} - \xi_{i_2}) < 0.$$

Since λ, ξ are partitions, $\lambda_1 \geq \ldots, \lambda_s$ and $\xi_1 \geq \ldots, \xi_s$, so

$$(\lambda_{i_1} - \lambda_{i_2})(\xi_{i_1} - \xi_{i_2}) \ge 0$$

gives a contradiction. Thus

$$igg|I_1igcup I_2igg| = max\{|I_1|, |I_2|\},$$
 $igg|I_1igcap I_2igg| = min\{|I_1|, |I_2|\}.$

Corollary 2.6 $\mu \in \Omega_{\lambda}^{m}$ if and only if $\mu^{*} \in \Omega_{\lambda^{*}}^{m}$.

Proof. By symmetry we just need to show the "only if" part. It follows from

 $\mu^* = (\lambda \wedge \mu)^* = \lambda^* \wedge \mu^*$, and that μ^* is a partition of m.

Corollary 2.7 For any $\lambda \in P, \lambda \wedge \lambda^*$ and $\lambda \vee \lambda^*$ are self-conjugate partitions.

Corollary 2.8 $\Omega_{\lambda}^{m} \cap \Omega_{\lambda^{*}}^{m} \neq \phi$ if and only if $m \leq \sum_{i} \mu_{i} = \sum_{i} \lambda_{i} - 1/2 \sum_{i} |\lambda_{i} - \lambda_{i}^{*}|$, where $\mu = \lambda \wedge \lambda^{*}$ is a self-conjugate partition.

A subset J of P is called an ideal (see Birkhoff [2]) of P if and only if

- 1. $\lambda \in J, \xi \in P$ and $\lambda \wedge \xi = \xi$, then $\xi \in J$,
- 2. $\lambda, \xi \in J$, then $\lambda \vee \xi \in J$.

 Ω_{λ} is a principal ideal of P for each $\lambda \in P$. For any two ideals A, B of P, we let

$$A \wedge B = A \cap B = \{\lambda | \lambda \in A, \lambda \in B\},\tag{11}$$

 $A \vee B = \text{minimal ideal of } P_m \text{ which contains both } A \text{ and } B, \quad (12)$

and

$$\Omega_P = \{\Omega_\lambda | \lambda \in P\}. \tag{13}$$

Theorem 2.9 ([2]) The map $\lambda \to \Omega_{\lambda}$ gives a lattice isomorphism between P and Ω_{P} .

For any λ and ξ , if

$$P_m \subseteq \Omega_{\lambda}, P_m \subseteq \Omega_{\xi},$$

then $P_m \subseteq \Omega_\lambda \cap \Omega_\xi = \Omega_{\lambda \wedge \xi}$ and $\lambda \wedge \xi$ is smaller than both λ and ξ . We want to find out the minimal λ such that $P_m \subseteq \Omega_\lambda$. We give a clear

Lemma 2.10 The following statements are equivalent:

- 1. $\lambda \wedge \xi = \xi$,
- 2. $\Omega_{\xi} \subseteq \Omega_{\lambda}$,
- 3. for any $m, \Omega_{\varepsilon}^m \subseteq \Omega_{\lambda}^m$.

Theorem 2.11 For any m, the induced lattice

$$IP_m = {\lambda | \lambda \in P, P_m \subseteq \Omega_{\lambda}}$$

has a minimal self conjugate element which is given by

$$\lambda = (m, [\frac{m}{2}], [\frac{m}{3}], \dots, [\frac{m}{m-1}], 1).$$

Proof. It's clear that IP_m has an induced lattice structure from P. We first show that $\lambda^* = \lambda$. For $k = 1, \ldots, m$ we look at the k - th component of λ^*

$$\lambda_k^* = \left| \{ p | [\frac{m}{p}] \ge k \} \right|$$

and

$$\left[\frac{m}{p}\right] \ge k$$
 if and only if $\left[\frac{m}{k}\right] \ge p$,

 $\lambda_k^* = \left[\frac{m}{k}\right]$ follows. Now we show the minimal element is given by λ as above, we finish this in two steps.

1. If $\lambda = (m, [\frac{m}{2}], [\frac{m}{3}], \dots, [\frac{m}{m-1}], 1)$ then $P_m \subseteq \Omega_{\lambda}$. We need to show for any $\mu = (\mu_1, \mu_2, \dots, \mu_s) \in P_m$,

$$\mu_i \leq \left[\frac{m}{\cdot}\right] \ i = 1, 2, \ldots, s.$$

Suppose the contrary there is a j such that $\mu_j > \left[\frac{m}{j}\right]$, since $\left[\frac{m}{j}\right] \le \frac{m}{j} < \left[\frac{m}{j}\right] + 1$, so $\mu_j \ge \left[\frac{m}{j}\right] + 1 > \frac{m}{j}$, therefore $\sum_{k=1}^{j} \mu_k > m$, this is a contradiction.

2. The minimal element is $\lambda = (m, [\frac{m}{2}], [\frac{m}{3}], \dots, [\frac{m}{m-1}], 1)$. We want to show that if $P_m \subseteq \Omega_{\mathcal{E}}$, then $\lambda \leq \xi$. For any i, let

$$k = min\{j | m < (j+1)[\frac{m}{i}], j \in \mathbb{N}\}$$

and

$$\eta = (\underbrace{[\frac{m}{i}], [\frac{m}{i}], \dots, [\frac{m}{i}]}_{k-copies}, m-k[\frac{m}{i}]) \in P_m.$$

Then

$$k \geq i \text{ and } \lambda_i = \left[\frac{m}{i}\right] \leq \xi_i,$$

therefore

$$\xi > \lambda$$
.

Proposition 2.12 If $\lambda_{(k)} = (m-k+1, [\frac{m-k+2}{2}], \ldots, [\frac{m}{k}])$, then $\Omega_{\lambda_{(k)}}^m$ contains all the partitions of m of size k, but no partitions of size k, i.e.,

$$\Omega_{\lambda(k)}^m \setminus \Omega_{\lambda(k-1)}^m = \Omega_{\lambda}^m(k), k = 2, \ldots, m.$$

 λ as in theorem 2.11.

Proof. For any $\mu = (\mu_1, \mu_2, \dots, \mu_k) \in P_m$ of size k, and $i \leq k$,

$$\sum_{j=1}^{i} \mu_j \leq m - (k-i),$$

thus

$$\mu_i \leq [\frac{m-k+i}{i}].$$

Corollary 2.13 $\Omega_{\lambda}^{m}(k) = \{partitions \ of \ m \ of \ size \ k\}$ can be formed by the following steps:

- 1. Let $\xi = (m-k, \lfloor \frac{m-k+2}{2} \rfloor 1, \ldots, \lfloor \frac{m}{k} \rfloor 1),$
- 2. Construct $\Omega_{\varepsilon}^{m-k}$,
- 3. Add $(1,1,\ldots,1)$ to the elements of Ω_{ξ}^{m-k} .

Moreover if $k \geq \lfloor \frac{m}{2} \rfloor$, then ξ is given by theorem 2.11 with m replaced by m-k.

Example 2.14 For $m=7, k=4, \lambda_{(4)}=(4,2,2,1) \in P_9$, it is easy to figure out all the possible size 4 partitions of 7 as $\{(4,1,1,1),(3,2,1,1),(2,2,2,1)\}$. We can also get these by firstly cutting off all the base "+" from $\lambda_{(4)}$ to form a new partition of 9-k=5:(3,1,1), then construct $\Omega^3_{(3,1,1)}$ yielding $\{(4,1,1,1),(3,2,1,1),(2,2,2,1)\}$.

Young-Ferrars graph shows the procedures below.

$$\lambda_{(4)} = (4, 2, 2, 1) \begin{array}{c} + \\ + \\ + \\ + \\ \oplus \\ \oplus \\ \oplus \\ \oplus \\ \oplus \end{array} \begin{array}{c} \Rightarrow \\ removing \\ \oplus \\ \xi = (3, 1, 1) \end{array} \begin{array}{c} + \\ + \\ + \\ + \\ + \end{array} + + \\ + \end{array}$$

We construct $\Omega^3_{(3,1,1)} = \{(3), (2,1), (1,1,1)\}, \text{ attach } \oplus \oplus \oplus \oplus \text{ to } \Omega^3_{(3,1,1)} \text{ like }$

etc., the results are $\{(4,1,1,1), (3,2,1,1), (2,2,2,1)\}.$

Proposition 2.15 $\{\Omega_{\lambda}^{m}, \prec\}$ has both a unique maximal and a unique minimal element. ¹

Proof. Let $\lambda = (\lambda_1, \ldots, \lambda_r)$ be a partition of $n, m \le n, \zeta = n - m \ge 0$. If we take off ζ units starting from the last number λ_r of λ , let

$$\lambda^{max} = \left\{ \begin{array}{ll} (\lambda_1, \dots, \lambda_s, \lambda'_{s+1}) & \text{if } \lambda'_{s+1} > 0, \\ (\lambda_1, \dots, \lambda_s) & \text{if } \lambda'_{s+1} = 0. \end{array} \right.$$

here $\lambda_{s+1}' + \zeta = \lambda_{s+1} + \ldots + \lambda_r$. Then λ^{max} is a partition of m, and for each $cip \ \mu = (\mu_1, \ldots, \mu_k)$ of m, since $\lambda_1 \geq \mu_1, \ldots, \lambda_k \geq \mu_k$ and $\sum_{i=1}^k \mu_i = \sum_{i=1}^s \lambda_i + \lambda_{s+1}'$, therefore μ is majorized by λ^{max} . Let the conjugate partition of λ be λ^* , we construct $(\lambda^*)^{max}$ using the same way as we used in the construction of λ^{max} , then $(\lambda^*)^{max}$ majorizes μ^* since $\mu^* \in \Omega^m_{\lambda^*}$ by corollary 2.6. Let the conjugate of $(\lambda^*)^{max}$ be λ_{min} , then $\lambda_{min} \prec \mu$ (see [3] p.9). The uniqueness follows from the definition of majorization.

Corollary 2.16 Between the two sets Ω_{λ}^{m} and Ω_{λ}^{m} , we have

- 1. $(\lambda^{max})^* = (\lambda^*)_{min}$
- 2. $(\lambda^*)^{max} = (\lambda_{min})^*$.

Corollary 2.17 We have

- 1. If $\mu \in \Omega_{\lambda}^{m}$, then $\lambda_{min} \prec \mu \prec \lambda^{max}$. The inverse is not true by taking $\lambda = (6, 2, 1), m = 6, \mu = (3, 3)$ for example.
- 2. If $\mu \in \Omega_{\lambda}^{m} \cap \Omega_{\lambda^{*}}^{m}$, then $\lambda_{min} \prec \mu, \mu^{*} \prec \lambda^{max}$. The inverse is not true by taking $\lambda = (6, 3, 2, 2, 1), m = 12, \mu = (4, 3, 3, 2)$ for example.

Example 2.18 Let $\lambda = (3, 2, 2, 1, 1)$ be a partition of $9, m = 7, \zeta = 2$, using Young-Ferrars graph, we can readily verify the following procedures.

¹This maximality (minimality) is not going to be used in subsequent sections.

Moreover we have

$$(3,2,2) \\ | \\ (3,2,1,1) \\ / \\ (3,1,1,1,1) \\ (2,2,2,1) \\ (2,2,2,1)$$

 $3 |\Omega(\alpha, m, n)|$

Lemma 3.1 For $\alpha \in n^m$, the number of all the possible size m sequences chosen from $\alpha(1) \dots \alpha(m)$ is $\frac{m!}{\alpha_1! \dots \alpha_n!}$, here $M_{\alpha} = (\alpha_1, \dots, \alpha_s)$.

Proof. Consider the α orbit O_{α} , the number of all the possible size m sequences chosen from $\alpha(1) \dots \alpha(m)$ is $|O_{\alpha}|$, and

$$|O_{\alpha}| = [S_m : (S_m)_{\alpha}]$$

here $(S_m)_{\alpha} = \{\sigma | \sigma \in S_m, \sigma.\alpha = \alpha\} \cong S_{\alpha_1} \times \ldots \times S_{\alpha_s}$, therefore

$$|O_{\alpha}| = \frac{m!}{\alpha_1! \dots \alpha_s!}.$$

Lemma 3.2 Given an $\alpha \in n^m$, $m \le n$, for any $\sigma \in S_n$

$$\Omega(\alpha, m, n) = \Omega(\sigma.\alpha, m, n).$$

Proof. It follows from $Im\alpha = Im\sigma.\alpha$ and $m_t(\alpha) = m_t(\sigma.\alpha)$ for $t = 1, \ldots, n$.

Corollary 3.3 Let
$$\mathbb{A}_n = a_1^{n_1} \dots a_k^{n_k}, m \leq n$$
. If
$$\alpha = (\underbrace{a_1, \dots, a_1}_{n_1}, \dots, \underbrace{a_k, \dots, a_k}_{n_k})$$

then $\Omega(\mathbb{A}_n, m, n) = \Omega(\sigma.\alpha, m, n)$ for all $\sigma \in S_n$.

Now we give an enumeration formula for problem 1.1.

Theorem 3.4 Let $\alpha \in n^m$, $m \le n$ and $M_{\alpha} = (\alpha_1, \ldots, \alpha_k)$. Then

$$|\Omega(\alpha,m,n)| = \sum_{\mu \in \Omega_{M_{\alpha}}^m} \prod_{j=1}^{\ell(\mu)} \left\{ \sum_{p=1}^{\ell(M_{\alpha})} sgn^+(\alpha_p - \mu_j) - j + 1 \right\} \frac{m!}{\mu_1! \dots \mu_{\ell(\mu)}!},$$

where $sgn^{+}(x) = 1$ if $x \ge 0$, 0 if x < 0.

Proof. Let $\mu = (m_1, \ldots, m_s) \in \Omega_{\lambda}^m$ be a cip of m from $\lambda = (\alpha_1, \ldots, \alpha_k)$ and $l_j^{\mu} = |\{p | \alpha_p \ge m_j, p = 1, \ldots, k\}|$, then $l_1^{\mu} \le l_2^{\mu} \ldots \le l_s^{\mu}$ and $l_j^{\mu} = \sum_{p=1}^k sgn^+(\alpha_p - m_j)$ for $j = 1, \ldots, s$. For a typical pattern $Y_1^{m_1} \ldots Y_s^{m_s}$ where Y_1, \ldots, Y_s are chosen from $Im\alpha = \{X_1, \ldots, X_k\}$, in order to keep it, the number of total choices for Y_1, \ldots, Y_s is $\prod_{j=1}^s \{l_j^{\mu} - j + 1\}$. By lemma 3.1, for $\mu = (m_1, \ldots, m_s) \in \Omega_{\lambda}^m$, the number of total size m sequences which keep the pattern like $Y_1^{m_1} \ldots Y_s^{m_s}$ for Y_1, \ldots, Y_s chosen from X_1, \ldots, X_k is

$$\prod_{j=1}^{s} \left\{ \sum_{p=1}^{k} sgn^{+}(\alpha_{p} - m_{j}) - j + 1 \right\} \frac{m!}{m_{1}! \dots m_{s}!}$$

Since different cip produces different set of size m sequences, therefore the number of total size m sequences chosen from $Im\alpha$ such that the multiplicity of each digit in a size m sequence is less than or equal to the multiplicity of this digit in the given sequence $\alpha(1) \dots \alpha(n)$ is

$$\sum_{\mu=(m_1,\ldots,m_s)\in\Omega_{\lambda}^m}\prod_{j=1}^{s}\left\{\sum_{p=1}^{k}sgn^{+}(\alpha_p-m_j)-j+1\right\}\frac{m!}{m_1!\ldots m_s!}$$

Corollary 3.5 Let $\alpha \in n^n, m \leq n$ and $M_{\alpha} = (\alpha_1, \ldots, \alpha_k)$, then

$$|\Omega_1(\alpha,m,n)| = \sum_{\mu \in \Omega_{M_{\alpha}}^m} \prod_{j=1}^{\ell(\mu)} \left\{ \sum_{p=1}^{\ell(M_{\alpha})} sgn^+(\alpha_p - \mu_j) - j + 1 \right\} \frac{m!}{\mu_1! \dots \mu_{\ell(\mu)}!} |O_{\mu}|,$$

where $sgn^+(x) = 1$ if $x \ge 0$, 0 if x < 0, O_{μ} is the μ -orbit under $S_{\ell(\mu)}$.

4 Cips of Size p

Now we proceed to evaluate $|\Omega_{\lambda}^{m}(p)|$, where $\lambda = (n_1, \ldots, n_r) \vdash n, m \leq n, p$ is an integer. Let

$$S_{\lambda}(m) = \begin{cases} t & \text{if } \sum_{i=1}^{t} n_{i} = m, \\ t+1 & \text{if } \sum_{i=1}^{t} n_{i} < m < \sum_{i=1}^{t+1} n_{i}, 1 \le t \le r, \\ o & \text{if } m = 0. \end{cases}$$
(14)

and

$$S^{\lambda}(m) = \min(m, r). \tag{15}$$

Lemma 4.1 We have

1.
$$S_{\lambda}(m) \leq S^{\lambda}(m)$$
,

2.
$$\Omega_{\lambda}^{m}(p) = \phi \text{ if } p > S^{\lambda}(m) \text{ or } p < S_{\lambda}(m),$$

3.
$$|\Omega_{\lambda}| = \sum_{m=0}^{n} \sum_{p=0}^{m} |\Omega_{\lambda}^{m}(p)| = \sum_{m=0}^{n} \sum_{p=S_{\lambda}(m)}^{S^{\lambda}(m)} |\Omega_{\lambda}^{m}(p)|$$

Lemma 4.1 3) states that the following two-variable generating function

$$\begin{array}{ll} \sum_{m=0}^{\infty} \sum_{p=0}^{\infty} |\Omega_{\lambda}^{m}(p)| \, z^{p} q^{m} &= \sum_{m=0}^{n} \sum_{p=S_{\lambda}(m)}^{S^{\lambda}(m)} |\Omega_{\lambda}^{m}(p)| \, z^{p} q^{m} \\ &= \sum_{m=0}^{n} \left\{ \sum_{\mu=(m_{1}, \ldots, m_{s}) \in \Omega_{\lambda}^{m}} z^{s} q^{m} \right\} \\ &= \sum_{\mu=(m_{1}, \ldots, m_{s}) \in \Omega_{\lambda}^{m}} z^{s} q^{\sum_{i=1}^{s} m_{i}} \, \left([1] \, p.16 \right) \end{array}$$

Now let $H = \{h_1, \dots, h_k, \dots\}$ be a set of non-negative integers, we consider the following formal calculations

$$\begin{split} \prod_{h \in H} (1-zq^h)^{-1} &= \{1+zq^{h_1}+z^2q^{2h_1}+\ldots+z^{i_1}q^{i_1h_1}+\ldots\} * \\ &\quad \{1+zq^{h_2}+z^2q^{2h_2}+\ldots+z^{i_2}q^{i_2h_2}+\ldots\} * \\ &\qquad \cdots \\ &\quad \{1+zq^{h_k}+z^2q^{2h_k}+\ldots+z^{i_k}q^{i_kh_k}+\ldots\} * \ldots \\ &= \sum_{i_1 \geq 0} \cdots \sum_{i_k \geq 0} \ldots z^{i_1+\ldots+i_k+\ldots}q^{i_1h_1+\ldots+i_kh_k+\ldots} \\ &= \sum_{m=0}^{\infty} \sum_{p=0}^{\infty} \rho(H,p,m)z^pq^m, \end{split}$$

here $\rho(H,p,m)$ is the number of total partitions of m with components in H and of size p. We choose a special finite set $H=\{1,2,\ldots,n_1\}$, where n_1 is from $\lambda=(n_1,n_2,\ldots,n_r)$, which is a partition of n. Let $d_i^H=|\{p|n_p\geq i\}|i=1,\ldots,n_1$, i.e., $\lambda^*=(d_1^H,\ldots,d_{n_1}^H)$ is a partition of n conjugate to λ . Using lemma 4.1, let's look at the summation

$$\sum_{0 \leq i_1 \leq d_1^H} \dots \sum_{0 \leq i_{n_1} \leq d_{n_1}^H} z^{i_1 + \dots + i_{n_1}} q^{i_1 1 + \dots + i_{n_1} n_1}$$

$$= \sum_{m=0}^{n} \left\{ \sum_{\substack{0 \le i_k \le d_k^H, k=1, \dots, n_1 \\ i_1 + \dots + i_m, n_1 = m}} z^{\sum_{k=1}^{n_1} i_k} \right\} q^m + \text{ other terms}$$

$$=\sum_{m=0}^{n}\left\{\sum_{\substack{0\leq i_{k}\leq d_{k}^{H},k=1,\ldots,n_{1}\\i_{1}1+\ldots+i_{n_{1}}n_{1}=m\\S_{\lambda}(m)\leq i_{1}+\ldots+i_{n_{1}}\leq S^{\lambda}(m)}}z^{\sum_{k=1}^{n_{1}}i_{k}}+\ other\ terms\right\}q^{m}+otherterms$$

$$= \sum_{m=0}^{n} \left\{ \sum_{\substack{S_{\lambda}(m) \le \zeta \le S^{\lambda}(m) \\ i_{1}1+\dots+i_{n_{1}}n_{1}=m \\ \zeta=i_{1}+\dots+i_{n_{1}}}} z^{\zeta} q^{m} \right\} + other terms.$$
 (16)

Now we take into account of the multiplicities of the components in a partition λ of n, assume that

$$\lambda = ((n_1')^{r_1} \dots (n_k')^{r_k})$$

where r_1, \ldots, r_k represent the multiplicities of n'_1, \ldots, n'_k respectively, and $n_1 = n'_1 > n'_2 > \ldots > n'_k \ge 1$. Now the conjugate partition is

$$\lambda^* = ((r_1 + \ldots + r_k)^{n'_k}(r_1 + \ldots + r_{k-1})^{n'_{k-1} - n'_k} \ldots (r_1)^{n_1 - n'_2}).$$

We introduce

Condition (*): A set of non-negative integers $I_1, I_2, \ldots, I_{n_1}$ satisfy condition (*) if and only if

$$\sum_{j=1+n'_{i+1}}^{n'_i} I_j \leq r_1 + \ldots + r_i, i = 1, \ldots k.$$

Assuming $n'_{k+1} = 0$.

Let's go on a finer summation of equation (16)

$$\sum_{\substack{S_{\lambda}(m) \leq \zeta \leq S^{\lambda}(m) \\ S_{\lambda}(m) = \zeta \leq S^{\lambda}(m)}} \sum_{\substack{0 \leq i_{k} \leq d_{k}^{H}, k=1, \dots, n_{1} \\ i_{1}1+\dots+i_{n_{1}}n_{1}=m \\ \zeta=i_{1}+\dots+i_{n_{1}}}} z^{\zeta}q^{m}$$

$$=\sum_{S_{\lambda}(m)\leq \zeta\leq S^{\lambda}(m)}\left\{\sum_{\substack{i_{1},\ldots,i_{n_{1}}\text{ satisfy condition (*)}\\ \zeta=i_{1}+\ldots+i_{n_{1}},m=i_{1}1+\ldots+i_{n_{1}}n_{1}}}z^{\zeta}q^{m}\right\}+other\ terms.$$

$$= |\Omega_{\lambda}^{m}(p)| z^{p}q^{m} + other terms.$$

which give us the following

Theorem 4.2 Let $\lambda \vdash n$ be a partition of n, $m \leq n$, then the number, $|\Omega_{\lambda}^{m}(p)|$, of size p cips $\Omega_{\lambda}^{m}(p)$ equals

$$\begin{vmatrix} \sum_{\substack{i_{1}+(\lambda\downarrow)_{k+1}+\cdots+i_{(\lambda\downarrow)_{k}}\leq(\lambda^{*}\uparrow)_{k},k=1,\dots,\ell(\lambda)\\p=i_{1}+\ldots+i_{n_{1}},m=i_{1}1+\ldots+i_{n_{1}}n_{1}}} 1\\ = \left| \left\{ (i_{1},\ldots,i_{n_{1}}) \mid i_{1+(\lambda\downarrow)_{k+1}}+\cdots+i_{(\lambda\downarrow)_{k}}\leq(\lambda^{*}\uparrow)_{k}, \\ k=1,\ldots,\ell(\lambda), p=\sum_{k=1}^{\lambda_{1}}i_{k}, m=\sum_{k=1}^{\lambda_{1}}ki_{k} \right\} \right|.$$

Proof. If we specify $\lambda = (n_1^{r_1} \dots n_k^{r_k})$, then by the above arguments, $|\Omega_{\lambda}^m(p)|$ equals

$$\sum_{\substack{i_1,...,i_{n_1} \text{ satisfy condition (*)} \\ p=i_1+...+i_{n_1}, m=i_11+...+i_{n_1}n_1}} 1$$

Now it is easy to check out that condition (*) is equivalent to

$$i_{1+(\lambda\downarrow)_{k+1}}+\cdots+i_{(\lambda\downarrow)_{k}}\leq (\lambda^{*}\uparrow)_{k}, k=1,\ldots,\ell(\lambda)$$

where we let $(\lambda \downarrow)_{k+1} = 0$ if $k = \ell(\lambda \downarrow)$.

Corollary 4.3 Given a partition $\lambda^* = (d_1^{\sigma_1} \dots d_k^{\sigma_k})$ of $n, d_1 > d_2 > \dots > d_k \geq 1$, the following integer programming

$$Z=x_1+\ldots+x_{s_1+\ldots+s_k}$$

subject to

$$\begin{cases} x_{j} \geq 0, & j = 1, \dots, s_{1} + \dots + s_{k}, \\ \sum_{\xi=1+s_{1}+\dots+s_{k-i}}^{s_{1}+\dots+s_{k-i}} x_{\xi} \geq (\leq) d_{k-i+1}, & i = 1, \dots, k, s_{o} = 0, \\ x_{1} + 2x_{2} + \dots + (s_{1}+\dots+s_{k})x_{s_{1}+\dots+s_{k}} \leq (\geq) m, \end{cases}$$

has a max (min) feasible solution if and only if $n \ge m$, moreover $z = S^{\lambda}(m)$ $(S_{\lambda}(m))$ is the max (min) feasible solution respectively, where $\lambda = (\lambda^*)^*$.

Proof. Consider the conjugate partition of $\lambda^* = (d_1^{s_1} \dots d_k^{s_k})$,

$$\lambda = ((s_1 + \ldots + s_k)^{d_k}(s_1 + \ldots + s_{k-1})^{d_{k-1} - d_k} \ldots (s_1)^{d_1 - d_2}).$$

Then apply theorem 4.2, the maximum size of cips of m from λ is $S^{\lambda}(m)$, and the minimum size of cips of m from λ is $S_{\lambda}(m)$.

Example 4.4 Given a partition $\lambda=(3,2,2,1,1)$ of 9, $m=7, n_1=3, H=\{1,2,3\}$, $d_1^H=5, d_2^H=3, d_3^H=1, S^{\lambda}(m)=5, S_{\lambda}(m)=3$. By choosing from all the possible 48 different outcomes of (i_1,i_2,i_3) subject to $0 \le i_1 \le 5, 0 \le i_2 \le 3$ and $0 \le i_3 \le 1$, we have

$$\{(i_1, i_2, i_3) | 0 \le i_1 \le 5, 0 \le i_2 \le 3, 0 \le i_3 \le 1, 3 \le i_1 + i_2 + i_3 \le 5, i_1 + 2i_2 + 3i_3 = 7\}$$

$$= \{(0, 2, 1), (1, 3, 0), (2, 1, 1), (3, 2, 0), (4, 0, 1)\},$$

and

Ω^m_λ	size p	$ \Omega_{\lambda}^{m}(p) $
(3, 2, 2)	3	1
(2, 2, 2, 1)	4	
(3, 2, 1, 1)	4	2
(2,2,1,1,1)	5	
(3,1,1,1,1)	5	2
	(2, 2, 2, 1) (3, 2, 1, 1) (2, 2, 1, 1, 1)	(3,2,2) 3 $(2,2,2,1)$ 4 $(3,2,1,1)$ 4 $(2,2,1,1,1)$ 5

Which are the same results as we got in example 2.18.

References

- [1] G. Andrews, The Theory of Partitions, Encyclopedia of Mathematics and Its Applications, Addison-Wesley Publishing Company 1976.
- [2] G. Birkhoff, Lattice Theory, The American Mathematical Society, 1963.
- [3] G.D. James, The Representation Theory of the Symmetric Groups, Lecture Notes in Mathematics, Vol. 682, Springer-Verlag 1978.
- [4] G.D. James and A. Kerber, The Representation Theory of the Symmetric Group, Addison-Wesley, Reading, MA 1981.