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ABSTRACT. We call a partition p = (p1,... ,px) of m, m < n,
a constrained induced partition (cip) from a partition A =
(Myee- s Ar) of mif g < A for i = 1,2,... k. In this paper
we study the set of cips (sections 1-2), determine cips of size
p (section 4), and give a formula for the number of total subse-
quences with fixed size chosen from a given multiset such that
the multiplicity of each digit in a subsequence is less than or
equal to the multiplicity of this digit in the given multiset

1 Imtroduction

We consider the following

Problem 1.1 Given a size n multiset A, = a'...az*,m < n, find out
the set of all possible size m subsequences, U(An,m,n), chosen from A,
such that the multiplicity of each digit in a size m subsequence is less than
or egqual to the multiplicity of this digit in the given multiset Ay,.

For example we can take size 7 subsequences 5305011,9101135,... etc.
from a size 9 multiset 130252319!. An equivalent statement of problem 1.1
is given by (9).

Let n denote the set of integers {1,...,n}, and n™ denote the set
of maps @ : m — n. We view a as a sequence (a(1),...,a(m)). Let
£(c) denote the size of a sequence a and |A| denote the cardinality of
a set A. For Va € n™ and VB € n™, we say B majorizes o, a < f3,
if m' < m,ZLl afi] < X8, Bk =1,...,m" -1, and T2, afi] =
}::'_i:l Bli], here (afl},...,a[m]) is in the decreasing order of permuta-
tion of a(l),...,a(m). For a € n™, let my(a) denote the multiplicity
of t in . Let My = (a1,...,a,) denote the decreasing permutation of
(mi(a),...,mm(c)) after deleting the zero terms, then M, is a partition
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of m. Furthermore we define o T to be the sequence of increasing permuta-
tion of Im a and a | the sequence of decreasing permutation of Im a. For
convenience we give an extended definition of partition:

Definition 1.2 A sequence of integers A = (A1,... , As; Agt1r--- 3 Aieye--)
is called a partition of n, A & n, if there exists some integer s such that
M2 2X=L=0k>sad);_ N=n Wealls
the size of A, denoted as £(A). We use A* to denote the conjugate partition
of A\, which is defined as a sequence of integers (a1,...,an,...) such that
a; = |{jlA; 2 i}

We accept the common notation of writing a partition as a finite sequence
by dropping the zeros without ambiguity in the context, and let

P,, = {partitions of m}, (1)
P=|] Pn. (2)
meN
For )\, € € P, let p = min(€(), €(£)), g = maz(é()X), £(€)) and
AAE= (min(A, &), ... ,min()p,§),0,...,0,...), (3)
AVE= (maz(Ay, &), ... ,maz(Ag, §),0,...,0,...). (4)

Any ) € P induces a subset MAP = {AA€|€ € P} of P. The full permutation
group S, acts on n™ in a natural way: Vo € Sp, a € n™,0.a(t) =
a(o~1(?)) for i =1,...,m. The a orbit is denoted by O,.

Example 1.3 Take a = (2,2,2,2) € 3%, =(3,2,2,1) € 3%, then a < B,
Mp = (2,1,1) < (4) = Ma,Mp ANM, = (2),Mﬁ VM, = (4,1,1),’ Oﬁ =
{3,2,2,1),(3,2,1,2),(3,1,2,2),(2,3,2,1),(2,3,1,2),(2,2,3,1),(2,2,1,3),
2,1,3,2),(2,1,2,3),(1,3,2,2),(1,2,3,2),(1,2,2,3)}.

Definition 1.4 Let A = (\y,...,A) Fn, m < n, a partition p = (p1, ..., &)
 m is called a constrained induced partition (cip) of m from A if uAd=p
(i.e, p<A).

Denote

QY = {ple = (p1,- .- ,px) Fm,p < A} )

Q%(p) = {ple € OF, &(u) = p}, and (6)
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n m
o= |J (9P ) with assumption that |03(0)] = 1. (7)
m=0p=0
If m > n we let QF = ¢ and Q7(p) = ¢. It is clear that
£(p)
peQPifandonly if AAp=p and Y u=m. (8)
i=1
A restatement of problem 1.1 is (see corollary 3.3)
Problem 1.5 Let @ € n®, m < n, determine
Qa, m, n) = {B|B € n™, ImP C Ima,m(B) < mi(a),t=1,...,n}.(9)

Moreover we put

Q1(c m,n) = {B|B € "™, ImB C Ima, Mg = Mg AMo}.  (10)

2 Partition Lattice
Propositions 2.1-2.3 and corollary 2.4 are clear.

Proposition 2.1 {QT, <} is a partially ordered set.

Proposition 2.2 {P,V,A} is a distributive lattice (cf. [4] p.27, where the
lattice structure is different).

Proposition 2.3 We have
1. Qy=AAP,
2. QP =(AAP)\Pm.

Corollary 2.4 We have
1. 22 NQ% = Dane
2. QYN = ¢ if m#m,
3. QPNOT = Q.
4 QrENQWE)=9¢if p#7,
5. QT (p) NNF () = Wre(p)-
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Theorem 2.5 The map * : P — P given by A — )\* is a lattice isomor-
phism. i.e., for any A\, £ € P, we have

1L (AN =2 AEL,
2. AVE =X VE. (cf. [4] p.27 where * is an anti-isomorphism)
Proof. To show that * is a one-to-one map, we need to show that for any ¢
(AL =min(X;,£),

(AVE); =maz(X, &)
Let
I = {k|Ae 2 1},
I = {k|& > i},
then
(anr =|n N5,

aver=|nUn|,
A: = IIII ’ ([llp"’)v

& =Ll (Up.7).

We show that at least one of I \ Iz, I\ I} is empty. Suppose the contrary
we pick up

i1€ )\,
i2 € Iz \ Il,
then
Ay 24N, <i,
&, <i,&, 21t
Therefore

(A"l - A"z)(&: - fia) < 0.
Since A, £ are partitions, A; > ..., \,and & > ... ,§,, so

(Aﬁ = A‘i:)(eﬁ = fia) >0
gives a contradiction. Thus

|1 U k2| = maz{insl, 12213,
|5 N | = min{in), 221}
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Corollary 2.8 u € QF if and only if p* € Q..

Proof. By symmetry we just need to show the “only if* part. It follows
from
p* = (AAp)* =A% Ap*, and that u* is a partition of m.

Corollary 2.7 For any A € P,AA A* and AV \* are self-conjugate parti-
tions.

Corollary 2.8 QF QR # ¢ ifand onlyifm < T, pis = £ M—1/23 [~
A!|, where p=AAX* is a self-conjugate partition.

A subset J of P is called an ideal (see Birkhoff [2]) of P if and only if -
1. AeJ(ePand AAE=E, then€ € J,
2. M€ J, then AVvEe J

Q, is a principal ideal of P for each A € P. For any two ideals A, B of P,
we let

AAB=A[)B={)xe A e B}, (11)

AV B = minimal ideal of P,, which contains both A and B, (12)
and
Qp = {SU|X € P}. (13)

Theorem 2.9 ([2]) The map A — Q» gives a lattice isomorphism between
P and Qp.

For any A and &, if
Pm QQA,P".QQ&

then Pn C Q% = Qaae and A A £ is smaller than both A and £. We
want to find out the minimal X such that P, C Q,. We give a clear

Lemma 2.10 The following statements are equivalent:
1. ANE=E,
2. Q¢ C Oy,
3. for any m, Q* C QY.
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Theorem 2.11 For any m, the induced lattice
IPm={AI)‘€Pst(_:QX}

has a minimal self conjugate element which is given by

A = (m, [%]v [%]s R [m—T'T]: 1).

Proof. It’s clear that IP,, has an induced lattice structure from P. We
first show that A* = A. For k=1,... ,m we look at the k — th component
of \*

‘—
k=

IR

and m m
[;-] 2 k if and only if [] 2 p,

A =[] follows. Now we show the minimal element is given by )\ as above,
we finish this in two steps.

LIfA=(m,[%],[%]--.,[725],1) then P, C Qx. We need to show
for a'ny l“= (“1,”27"' :“3) € Pmr

m, .
™ 5[7] i=12,...,s

Suppose the contrary there is a j such that pu; > [%], since ['—;‘-] <

T <[3]+1,50 p; 2 [F]+1 > 2, therefore Y, pk > m, thisisa
contradiction.

2. The minimal element is A = (m, [3],[§],...,[325],1). We want to
show that if P, C ¢, then A < . For any i, let

k = min{jlm < (G + 1)[1:‘-],3' e N}

e =31 [Flm -k e P
'l_‘i ’ i 1y il,m ? me
k—c:piea
Then m
k>i aM&=[T]S€i,
therefore

£
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Proposition 2.12 If A\ = (m—k+1,[2=EE2], ... [B]), then Oy <0

tains all the partitions of m of size k, but no partitions of size > k, i.e,
sz) \Qk(k_x) Qr(k),k=2,...,m

A as in theorem 2.11.

Proof. For any p = (u1,p2,... , k) € Pm of size k, and { < k,

Y us<m—(k-i),
j=1
thus

m—k+14
i < [——).

i
Corollary 2.13 QP (k) = {partitions of m of size k} can be formed by the
Jollowing steps:

1. Let = (m —k,[2=E£2] —1,... ,[R] - 1),

2. Construct QZ"",

8. Add (1,1,...,1) to the elements of Q.
k—copies

Moreover if k > [, then € is given by theorem 2.11 with m replaced by
m—k.

Example 2.14 Form =7,k =4,\(4) = (4,2,2,1) € P, it is easy to figure
out all the possible size 4 partitions of 7 a3 {(4,1,1,1),(3,2,1,1),(2,2,2,1)}.
We can also get these by firstly cutling off all the base "+7 from A4y to
form a new partition of 9 — k= 5:(3,1,1), then construct Q(a 1,1) Vielding
{(4,1,1,1),(3,2,1,1),(2,2,2,1)}.

Young-Ferrars graph shows the procedures below.

H - ¥
Mgy = (4,2,2,1) + o+ o+ removing & £=(3,1,1) +
® DD D + o+t

1?1:2 construct Q1 1y = {(3),(2,1),(1,1,1)}, attach & & ® O to )
+

+

+

® & & &

etc., the results are {(4,1,1,1),(3,2,1,1),(2,2,2,1)}.

+
+ =
+
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Proposition 2.15 {QF, <} has both a unique mazimal and a unique min-
imal element. !

Proof. Let A = (\1,...,A,) be a partitionof n, m <n,{ =n-m >0.If
we take off ¢ units starting from the last number A, of A, let

\maz ={ (A1-- Am)‘a+1) 'f Aa+1 >0,
(A1y-20 1) if Apy1=0.
here A}, + ¢ = Asy1 + ...+ Ar. Then A™?* is a partition of m, and
for each cip p = (p1,...,pk) of m, since Ay > py,...,Ax 2 pix and
2?:1 i = Yoi=1 M + A,yy, therefore u is majorized by A™2*. Let the
conjugate partition of A be A*, we construct (A\*)™%* using the same way
as we used in the construction of A™2*, then (A*)™%* majorizes u* since
u* € Q% by corollary 2.6. Let the conjugate of (A*)™* be Amin, then
Amin =< p (see [3] p.9). The uniqueness follows from the definition of ma-
jorization.
Corollary 2.168 Between the two sets QY and QF%, we have
1. (A™e=)* = (A*)min,

2. (A*)™9% = (Apnin)*.

Corollary 2.17 We have

1. If p € QP, then Apin < p <A™, The inverse is not true by taking
A= (6,2,1),m =6, =(3,3) for ezample.

2. If p€ QP NO%, then Apin < p, 4* < A™2=%, The inverse is not irue
by taking X = (6,3,2,2,1),m = 12, u = (4, 3, 3,2) for ezample.

Example 2.18 Let A = (3,2,2,1,1) be a partition of 9,m = 7,{ = 2, using
Young-Ferrars graph, we can readily verify the following procedures.

+ - +
A+ + + removing ® A™**=(3,2,2) + + +
+++00 + + +
4
+ +
+ - +
X+ e removing @ (A\*)™* =(5,2) +
+ + + +
++ © + +
{ conjugate
+ +
Amin + + + + +

1This maximality (minimality) is not going to be used in subsequent sections.
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Moreover we have
3,2,2)
|

3.2,1,1)
/ \
(3,1,1,1,1) (2,2,2,1)

\ /
(2,2,1,1,1)

3 [2(a,m,n)|
Lemma 3.1 For a € n™, the number of all the possible size m sequences
chosen from a(1)...a(m) is oL, here Ma = (ay, ..., ).

Proof. Consider the a orbit O, the number of all the possible size m
sequences chosen from a(1)...a(m) is |Oa|, and

|0al = [Sem : (Sm)al
here (Sm)a = {00 € Sm,0.a =a} = Sy, X ... x S,,, therefore

m!
Oa|l = ———.
I al a1! cee a,!

Lemma 3.2 Givenana€n™,m<n, foranyo € Sy,

Q(a, m,n) = Qo.a, m,n).

Proof. It follows from Ima = Imo.a and m(a) = me(o.a) for t =
1,...,n.

Corollary 3.3 Let A, =a?'...a*,m<n. If

a=(G1,...,81y.++ ,8k--- ,Ck)
e o’

ni Thie
then Q(An, m,n) = Q(o.a, m,n) for allo € S,.
Now we give an enumeration formula for problem 1.1.

Theorem 3.4 Let a € n™,m < n and M, = (ay,... ,ax). Then

) [4Ma) !
Qmn)= Y JI[{ X sant(ep—p;)—-i+1

peap joi | p=i /41! v pg(“)!'

where sgnt(z) =114z 20,0 ifz <0.
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Proof. Let = (my,...,m,) € QF be a cip of m from A = (a,..., k)
and ¥ = |{play 2 my,p=1,...,k}|, then B <h..<ltadlf =
E::: sgnt(ap — m;) for j = 1,...,s. For a typical pattern Yy .. Yy
where Y3, ..., Y, are chosen from Ima = {X},... , Xk}, in order to keep it,
the number of total choices for Y3, ..., Y, is [Tj_, {l§ —j+1}. By lemma 3.1,
for p = (my,... ,m,) € O}, the number of total size m sequences which
keep the pattern like Y™ ...Y™ for Y}, ... ,Y, chosen from X1, ..., Xk is

8 k
H{ngn*(ap—mj)-jﬂ}

=1 \p=1

m!

myl...m,!

Since different cip produces different set of size m sequences, therefore the
number of total size m sequences chosen from I'ma such that the multiplic-
ity of each digit in a size m sequence is less than or equal to the multiplicity
of this digit in the given sequence a(1)...a(n) is

8 k
, m!
Z H{ngﬂ+(ap"mj)—]+l}-n“—m—'

p=(m1,... m,)eny j=1 Lp=1 10 That
Corollary 8.5 Let a € n™,m < n and M, = (e, ... ,ax), then

£(p) [ 4Ma) ml
Ri(e,m,n)l= Y. JIS D sont(ep—ps) —i+13 ————lOul,
peqy_ j=1 | p=1 H1% - - frg(p):

where sgnt(z) =114z >0, 0 if z <0, O, is the p-orbil under Sy(,.

4 Cips of Size p

Now we proceed to evaluate |Q7(p)|, where A= (ny,... ,ny) Fn,m <n,p
is an integer. Let

t i Tpamem
S\(m)={ t+1 if Tigm<m<Tiin,1<t<n  (19)
o if m=0.
and
§*(m) = min(m, ). (15)

Lemma 4.1 We have

1. S\(m) £ ,S'A(m),

2. QP (p) = ¢ if p > S*(m) or p < Sa(m),
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m A m
8. 10l = o o 197 (0)] = Timco Loty O] -
Lemma 4.1 3) states that the following two-variable generating function

sX
TR o T2 00 @) 2Pq™ = Lo Tpeinten) 195 (P)| 2P g™
= 2:;:0 E,;:(m,,... me ey 2’q™
= Ep-_—:(ml 1eee 11T, JEQD zaqz:‘=1 ™ ([1] p16)

Now let H = {hy,... ,hx,...} bea set of non-negative integers, we consider
the following formal calculations

Maen(l —2¢")™' ={142¢" + P e TR T s SO L
{14 2™ + 22¢*3 ... + 2hgih2 4+ }x

{14 2gM + 22q%* ...+ 2iegiehe 4 Y%L
— Ei 50°* ’Ei >0 zﬁ+...+ik+...qi1h1+...+ikhk+...
& e 2

= 2m=0 2;:.-0 p(H: D, m)zpqm,

here p(H,p,m) is the number of total partitions of m with components
in H and of size p. We choose a special finite set H = {1,2,...,m},
where n; is from A = (ny,n2,...,ny), which is a partition of n. Let
df = [{plnp 2 i}li = 1,...,my, ie, X* = (df,...,d) is a partition
of n conjugate to A. Using lemma 4.1, let’s look at the summation

Z . Z zi1+...+i,.1 qi11+...+l',“ n

0<ir<dlff  0Kin, <d¥,

> I
= Z2Lake=1 q™ + other terms
m=0 | ogir<dff k=1,...,m
[ 3 1+...+t',.‘ ni=m

n
= Z Z 22m1'* 4+ other terms g™ +otherterms
m=0 0Sip Sdl k=1, iy

131 1+"'+"‘l ny=m
SA(M) <1+ imy < (m)
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= zn: Z Z 25q™ » + other terms. (16)

m=0 | Sa(m)<(<S(m) ogiy all k=, im
3% l+...+{n' ni=m
(=i1+...t+in;

Now we take into account of the multiplicities of the components in a
partition A of n, assume that

A= ()" ... (n)™)

where ry,... , ) represent the multiplicities of n,. .. , n} respectively, and
ny =mnj >nhH > ... > n; > 1. Now the conjugate partition is

X = ((r 4o TR) ™ (1 oo rg) T ()M ),

We introduce
Condition (*) : A set of non-negative integers Iy, I, ... , I, satisfy condi-
tion (*) if and only if

n} .

z: Ij <Sm+...+r,t=1,...k.

J=1+ni,

Assuming n} | =0.
Let’s go on a finer summation of equation (16)

DR i
Sx(m)<¢<5*(m) 0SixSdH k=1, my

% 1+...+i,.1 ni=m
c="l +o--+"ul

= E Z 26q™ 3 + other terms.

Sa(m)<(<SA (m) 1400180y satiafy condition (e)
(=it ting m=i11+...+in; m

= |QT(p)| 2Pq™ + other terms.

which give us the following
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Theorem 4.2 Let A\  n be a partition of n, m < n, then the number,
|9 (p)|, of size p cips '(p) equals
3 1

S ODE +ee b, SA® T ok=1,00. ,8(N)
p=i1+. "+"‘l m=i1lt...tin, ™1

{(ila LR i’h) I £1+()\1)k+1 +eeet i(Al)k < (A' T)k»

A1 A1
E=1,...,80),p=) inm= Ekik}
k=1 k=1

Proof. If we specify A = (n}'...n;"), then by the above arguments,
|23 ()| equals 5
1.

‘1,....1.“ satisfy condition ()
p=t1 +‘"+"‘l m=iy 1+...+S'..l n1

Now it is easy to check out that condition (*) is equivalent to
i@k o F i SAT ek =1,...,£3)
where we let (A |)k+1 =0 if k= €(A ]).

Corollary 4.3 Given a partition X\* = (d}* ...d*) of n, dy > d2 > ... >
dy. > 1, the following integer programming

Z=z1+...+ Zayt... 48

subject to
z; >0, j=1,...,81+...+8k,
Yerhotae-in  ze > (S)de—it1, i=1,...,k, 8,=0,
T1+2z2+. ..+ (814 . .+ 8k) Tt 4o < (2)M,

has @ maz (min) feasible solution if and only if n > m, moreover z =
S*(m) (Sa(m)) is the maz (min) feasible solution respectively, where A =
(A*)*.

Proof. Consider the conjugate partition of \* = (d}* ...d*),
A=((s1+...+ 3];)"‘(81 +...+ sk_l)d""-d" . (sl)dl_dz).
Then apply theorem 4.2, the maximum size of cips of m from A is S*(m),

and the minimum size of cips of m from A is Sx(m).
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Example 4.4 Given a partition A = (3,2,2,1,1) of 9, m=7,n; =3, H =
{1,2,3}, dff =5, dif =3, dif =1, S*(m) = 5,S\(m) = 3. By choosing
from all the possible 48 different outcomes of (41,42, 13) subject to 0 < i; <
5,0<i2 <3 and 0<i3 <1, we have

{(31,42,13)|0<#; <5,0<$3<3,0<i3 <1, 3<i; +ig+i3 < 5,41 +2ip+3i3 =7}

= {(0,2,1),(1,3,0),(2,1,1),(3,2,0), (4,0,1)},

and
(i1,82,43) QT size p |Q7(p)|
0,2,1) (3,2,2) 3 1
(1,3,0) (2,2,2,1) 4
(2,1,1) (3,2,1,1) 4 2
3,200 (2,2,1,1,1) 5
4,0,1) (3,1,1,1,1) 5 2

Which are the same results as we got in example 2.18.
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