A Note on Powers and Proper Circular-Arc Graphs

ERICH PRISNER*

Clemson University Clemson, SC 29631, U.S.A.

All graphs considered are finite. The distance $d_G(x,y)$ between two vertices x and y in some given graph G=(V,E) is the length of a shortest x-y path, if there is at least one, and ∞ otherwise. For an integer $k \geq 1$, the kth power G^k of G has the same vertex set as G, and two vertices $x \neq y$ are adjacent in G^k whenever $d_G(x,y) \leq k$.

A circular-arc graph is the intersection graph of some family of arcs of some circle. Proper circular-arc graphs are intersection graphs of such families, where no arc contains another. Proper interval graphs are proper circular-arc graphs with some representation such that the union of the arcs does not cover the whole circle.

We call a class Γ of graphs closed (under powers) if every power of any member of Γ lies again in Γ . We call it strongly closed (under powers), if for every integer $k \geq 1$ and every graph $G, G^k \in \Gamma$ implies $G^{k+1} \in \Gamma$.

In [5], RAYCHAUDHURI showed that the class of circular-arc graphs is closed, and asked whether it may be strongly closed. In [1] and [2], FLOTOW investigated some aspects of this question and showed that the class of proper circular-arc graphs is closed. In this note we prove that this class of proper circular-arc graphs is strongly closed (under powers).

We use a characterization of proper circular-arc graphs by means of certain orientations. A digraph D=(V,A) is a local tournament if $xz\in A, yz\in A$ implies $xy\in A$ or $yx\in A$, and $zx,zy\in A$ also implies $xy\in A$ or $yx\in A$ [3]. A directed graph D=(V,A) is an orientation of an undirected graph G=(V,E) if both have the same vertex set, $xy\in E$ implies $xy\in A$ or $yx\in A$, and if A is antisymmetric.

In [6], SKRIEN showed that a connected graph is a proper circular-arc graph if and only if it can be oriented as a local tournament. Moreover he showed that a graph is a proper interval graph if and only if it has some acyclic orientation as a local tournament. The method to prove that

^{*}on leave from the Mathematisches Seminar, Universität Hamburg, Bundesstr. 55, 20146 Hamburg, Germany

proper circular-arc graphs are strongly closed gives also another proof of the strong closedness of the class of proper interval graphs [4]:

Theorem: Let $k \ge 1$ be an integer, and G = (V, E) a graph.

- a) If G^k is a proper circular-arc graph, then G^{k+1} is also a proper circular-arc graph.
- b) [4] If G^k is a proper interval graph, then G^{k+1} is also a proper interval graph.

Proof: Note that G is connected if and only if G^k is connected. We show the results for connected graphs. If G^k is not connected, it must be a proper interval graph. But disjoint unions of proper interval graphs are again proper interval graphs, thus the result follows from the treatment of the connected case.

So let G^k be connected. According to SKRIEN's theorem, we can find some local tournament orientation (V,A) of the edges of G^k . We extend this orientation to some orientation $(V,A\cup A')$ of G^{k+1} as follows: For every pair x,y of vertices of distance $d_G(x,y)=k+1$ in G, we fix some shortest path $P_{xy}: x=x_0,x_1,\ldots,x_k,x_{k+1}=y$. Note that except x_0 and x_{k+1} , all pairs of vertices of this path are adjacent in G^k . Thus, since (V,A) is a local tournament orientation of G^k :

(*) For every 0 < i < k+1, $x_0 x_i \in A$ if and only if $x_i x_{k+1} \in A$.

We distinguish four cases, depending on this path. In any case we assign some orientation to the edge $xy = x_0x_{k+1}$ of G^{k+1} :

- (α 1) Case $x_0x_1 \in A$ and $x_{k+1}x_k \in A$. If $x_1x_k \in A$, then we choose $yx \in A'$, otherwise (if $x_kx_1 \in A$, note that x_1 and x_k are adjacent in G^k) we choose $xy \in A'$. By (*), x_1x_{k+1} , $x_kx_0 \in A$.
- (α 2) Case $x_1x_0 \in A$ and $x_kx_{k+1} \in A$. Again $d_G(x_1, x_k) < k$, and we choose again $yx \in A'$ if $x_1x_k \in A$, and $xy \in A'$ otherwise. It follows that $x_0x_k, x_{k+1}x_1 \in A$.
- (β 1) If $x_0x_1, x_kx_{k+1} \in A$, then we choose $xy \in A'$. Then $x_1x_{k+1}, x_0x_k \in A$.
- (β 2) Finally, if $x_1x_0, x_{k+1}x_k \in A$, then we choose $yx \in A'$. Here we obtain $x_{k+1}x_1, x_kx_0 \in A$. Interchanging x and y, this case is equivalent to case (β 1), so we may subsume both cases under the common label (β).

Note that for k = 1, only cases (β) are possible.

The digraph $(V, A \cup A')$ is constructed as an orientation of G^{k+1} . To prove (a), it remains the somewhat tedious task to show that it is a local tournament.

(1) If $xz \in A'$ and $yz \in A$, let $x = x_0, x_1, \ldots, x_k, x_{k+1} = z$ be P_{xz} . We may assume $y \notin P_{xz}$, since otherwise $d_G(x,y) \le k+1$ would be obvious. In cases $(\alpha 1)$ or (β) holds $x_1z \in A$, whence $d_G(x_1,y) \le k$ by the local tournament property of (V,A). In case (α_2) , $d_G(x_k,y) \le k$, since $x_kz \in A$. Then either $x_ky \in A$ or $yx_k \in A$, but the first implies $d_G(x_1,y) \le k$ (since $x_kx_1 \in A$), and the latter implies even $d_G(x,y) \le k$ (since $xx_k \in A$). In any case we obtain $d_G(x,y) \le k+1$.

In the same way, the case $zx \in A', zy \in A$ is treated. Let $z = z_0, z_1, \ldots, z_k, z_{k+1} = x$ be P_{zx} . As above, it suffices to treat the case $y \notin P_{zx}$. In cases $(\alpha 2)$ or (β) we have $zz_k \in A$, thus $d_G(z_k, y) \leq k$. In case $(\alpha 1), zz_1 \in A$ implies $d_G(z_1, y) \leq k$. If $yz_1 \in A$, then $d_G(z_k, y) \leq k$, since $z_k z_1 \in A$. If $z_1 y \in A$, then $d_G(x, y) \leq k$, since $z_1 x \in A$. Again $d_G(x, y) \leq k + 1$ in every subcase.

- (2) Now let $d_G(x,z)=k+1=d_G(z,y)$. Let $x=x_0,x_1,\ldots,x_k,x_{k+1}=z$ and $y=y_0,y_1,\ldots,y_k,y_{k+1}=z$ be P_{xz} and P_{yz} respectively. In what follows, we want to derive $d_G(x,y)\leq k+1$ from either $xz,yz\in A'$ or $zx,zy\in A'$.
- For $(i,j) \in \{0,1,k\} \times \{0,1,k\} \setminus \{(k,k)\}, x_i = y_j \text{ implies } d_G(x,y) \le k+1$. But the case $x_k = y_k$ is also easy to treat: If then $zx_k \in A$, then $x_kx, x_ky \in A$ by (*). Then $d_G(x,y) \le k$. In the same way, $x_kz \in A$ implies $xx_k, yx_k \in A$ and $d_G(x,y) \le k$ under the hypothesis $x_k = y_k$.

So assume in the following that all seven vertices $x, x_1, x_k, z, y_k, y_1, y$ are distinct. Two special cases can now be treated: The first is $x_1z, y_1z \in A$. Then $x_1y_1 \in A$ or conversely $y_1x_1 \in A$, since (V, A) is a local tournament. But $xx_1, yy_1 \in A$ by (*), implying either $d_G(x_1, y) \leq k$ if $x_1y_1 \in A$ or $d_G(x, y_1) \leq k$ if $y_1x_1 \in A$. The second case is $zx_1 \in A$ and $zy_1 \in A$. Similiarly, $x_1y_1 \in A$ or $y_1x_1 \in A$, but now $x_1x, y_1y \in A$, whence $d_G(x, y_1) \leq k$ or $d_G(x_1, y) \leq k$.

Thus we may assume in what follows without loss of generality $x_1z \in A$ and $zy_1 \in A$ (implying also $xx_1, y_1y \in A$ by (*)).

- (2i) Let us first treat the case $xz, yz \in A'$. Then yz has been drawn under rule $(\alpha 2)$. So $yy_k, y_kz, y_ky_1 \in A$. Thus $x_1y_k \in A$ or reversely $y_kx_1 \in A$. In the first case, there follows $d_G(x_1, y) \leq k$ and we are done. In the second case, we use $xx_1 \in A$ to obtain either $xy_k \in A$ and $d_G(x, y) \leq k$, or $y_kx \in A$, implying $d_G(x, y_1) \leq k$. In any case we obtain $d_G(x, y) \leq k + 1$.
- (2ii) The other case is $zx, zy \in A'$. Here zx is an arc of type $(\alpha 1)$, and so $zx_k, x_kx, x_1x_k \in A$. Now either $x_ky_1 \in A$, which implies $d_G(x, y_1) \leq k$, or $y_1x_k \in A$. In this latter case we obtain $d_G(x_k, y) \leq k$. Then $x_ky \in A$

A implies $d_G(x,y) \leq k$, and $yx_k \in A$ implies $d_G(x_1,y) \leq k$, and again $d_G(x,y) \leq k+1$ in every subcase.

To prove (b), it suffices to note that cases $(\alpha 1)$ or $(\alpha 2)$ may not occur for acyclic (V, A). As noted above, these cases cannot occur for k = 1, but for k > 1 there would result directed cycles. But the (β) -arcs are taken from the transitive closure of (V, A), so $(V, A \cup A')$ is acyclic if and only if (V, A) is.

References

- [1] C. Flotow, On powers of circular-arc graphs and proper circular-arc graphs, 1994, to appear.
- [2] C. Flotow, Potenzen von Graphen, Dissertation, Hamburg 1995.
- [3] P. Hell, J. Bang-Jensen, Jing Huang, Local tournaments and proper circular-arc graphs, in: "Algorithms", Lecture Notes in Computer Science, Vol. 450 (T. Asano, T. Ibaraki, H. Imai, T. Nishizeki, eds.) (1990) 101-108.
- [4] A. Raychaudhuri, On powers of interval and unit interval graphs, Congressus Numerantium 59 (1987) 235-242.
- [5] A. Raychaudhuri, On powers of strongly chordal graphs and circulararc graphs, Ars Combinatoria 34 (1992) 147-160.
- [6] D. Skrien, A relationship between triangulated graphs, comparability graphs, proper interval graphs and nested interval graphs, J. Graph Th. 6 (1982) 309-316.