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ABSTRACT. In this paper we obtain some combinatorial in-
equalities involving the parameters of a balanced array (B-
array) T of strength féur and with two levels. We discuss the
usefulness of these inequalities in obtaining an upper bound for
the number of constraints of 7', and briefly describe the im-
portance of these arrays in design of experiments as well as in
combinatorics.

1 Introduction and Preliminaries

An array T with m rows (constraints), N columns (runs, treatment-combin-
ations) and with s levels (symbols) is merely a matrix T' of size (m x N)
whose elements are (say) 0,1,2,...,8—1. T is called a binary array if s = 2.
Here we restrict ourselves to binary arrays. The weight of a column o of
T, denoted by w(a), is the number of 1’s in @, and clearly 0 < w(a) < m.
T is said to be of strength (0 < ¢ < m) if in every sub-matrix T* (¢t x N)
of T, the vectors of weight (0 < i < t) appear with a frequency (say) u,
with u; depending only on i. Imposing further combinatorial constraint on
T, we obtain the following definition of a balanced array (B-array).

Definition 1.1. T is called a B-array of strength ¢ if in every (¢ x N) sub-
matrix T* of T', every (tx 1) vector of weight i(0 < ¢ < t) appears a constant
number y; (say) times. The vector u’ = (po, pi1, 42, . - -, f2¢) is called the in-
dex set of T, and we denote T sometimes by B-array (m, N;p',t,s = 2).

Obviously
t
t
=3 (s
i=0

Thus the number of runs in T is a linear function of the y;’s. In this
paper we restrict ourselves to arrays with ¢ = 4, but the results can be
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extended to general ¢ without much difficulty. For t = 4, clearly N =
po + 4py + 6p2 + 4uz + p4. B-arrays have been extensively used in the
constructions of symmetrical as well as asymmetrical factorial designs. B-
arrays with p; = pu for each ¢ give rise to orthogonal arrays (O-arrays),
and the incidence matrices of balanced incomplete block designs (BIBD)
are special kind of B-arrays with ¢ = 2. Those who are interested to gain
further insight into the importance of B-arrays may consult the list of
references given at the end.

The existence and construction of B-arrays with m > ¢ and g’ = (uo, p1,
..+, p¢) is a non-trivial problem. Furthermore, for a given 4’, the construc-
tion of these arrays with maximum possible value of m is an important
problem both in combinatorics and design of experiments. Such problems
for O-arrays for a given p and m have been studied, among others, by Bose
and Bush (1952), Seiden and Zemach (1966). The corresponding problems
for B-arrays have been investigated by Chopra (1985), Chopra and Dio’s
(1989), Longyear (1984), Rafter and Seiden (1974), etc. In this paper we
obtain further results on the existence of B-arrays of strength four and with
arbitrary values of m and yu’. We will describe how the results obtained
here can be used to obtain an upper bound for m for a given value of .’
The generalization of these results to B-arrays with ¢ = 2l is quite straight-
forward, but the resulting notation is both messy and cumbersome. For
B-arrays with ¢ = (2I 4+ 1), one can obtain similar results by considering
the fact that these are also arrays with ¢ = 21.

2 Main results with Discussion
It is easy to establish the results given in the next three lemmas.

Lemma 2.1. A B-array T with m =t =4 always exists.

Lemma 2.2. A B-array T(m, N;(po, p1, p2, 43, pa),t = 4) is also of
strength t' where 0 < t' < 4. Considered as an array of strength 3, 2
and 1 its index sets are {ai;a; = p; + piy1 wherei =0,1,2,3}, {bj;b; =
a;j + aj41 where j = 0,1,2}, and {cx; ck = bg + b1 where k = 0,1} re-
spectively.

Definition 2.1. Two columns of an (m x N) binary B-array T are said
to have ¢ coincidences (0 < ¢ < m) if the symbols appearing in these two
columns in exactly ¢ of the rows are identical.

Lemma 2.8. Consider a B-array T(m x N) with s = 2 and p' =
(10, 81, pi2, p13, pa). If w(a) = I, where a denotes some column (say, the
first) of T, then the following results hold: (Here z; is the number of
columns of weight j).
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Next, we state some classical inequalities from Mitrinovic’ (1970) for later
use to derive results on the existence of B-arrays.

Result 1. For any finite sequence of positive numbers

n 1
a=(aj,a,...,a;), we have — < (a1a2...a,)"
X

Result II. If a = (a1,a2,...,a,) and b = (by,ba,...,b,) are two real
sequences such that a1 < a; < --- < apand by < bp < -+ < by, Or
a1 >ay >+ > anand by > by > .-+ > by, then the following inequality
(called the Cebysev inequality) is true

(255w

=1

Remark: The above inequality can be generalized to more than two such
sequernces.

Result IIL. If a; > a2 > - -+ > a, > 0, then the following are true
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(g ak) (E(3k2 + k)ak) -4 (Z kak)z o

b)
s (Soter) ~2(T) (Sher) -5 (L) (S ) >0

Theorem 3.1. Consider a B-array T with p = (po, p1, p2, 3, p4) and
m > 5. Then for T to exist, we must have

5 5

[ln Z ApAgAcrA; wherep<g<r< s] >In5+ 5 X:lnA,c (2.6)
5

P.qT8=1 k=1

Where A;’s are as defined in Lemma 2.3.

Proof: By using (2.1) - (2.5), and Result I with n = 5, a; = A; (i =
1,2,3,4, and 5), we obtain (2.6) after some simplification.

Theorem 3.2. For & B-array T (m, N, p,t = 4,s = 2) to exist, we must
have

AI(A4 + A5) + Ag(Al + As) + A3(A1 + A4) < ZA% +2A3A4 + 2A3A5
@2.7)

Proof: Here we use Cebysev’s inequality for the two sequences A; < A, <
As, and A; < A4 < As made out of A;’s given in (2.1) - (2.5) we obtain

A1+ A2+ As A1+ As+ As < A2 + A2Aq + A3As
3 3 - 3
Simplifying this leads us to (2.7).

Theorem 3.3. If T is a B-array of strength four with ' = (po, p1, 2, 13, i44)
and with m > 5, the following results are true

a)

5 5 5 2
(Z Ak) (Z(3k2 + k)Ae_k) >4 (Z kAs_,,) (2.8)
k=1

k=1 k=1
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b)

5 (g kAs_k) 2 >2(3 4x) (30 kAs-s)
+3(3 Ak) (Z k”Aa_,,) (2.9)

Proof: It is quite clear that A;’s (i = 1,2, 3,4, and 5) satisfy A5 > A4 >
Az > Az > A; > 0. Thus replacing ax’s in Result III in (a), and (b) by
Ag-’s from (2.1) - (2.5), and letting k takes values 1 through 5, we obtain
(2.8) and (2.9) respectively.

Remark 1. The inequalities (2.6) - (2.9) are very useful in checking the
existence of a B-array T for a given m and p. A contradiction obtained in
any one inequality will mean that T does not exist for the given values of m
and u. However, we must stress that if all the inequalities are satisfied does
not imply that B-array exists necessarily. Thus conditions (2.6) - (2.9) are
necessary conditions for the existence of B-arrays.

Remark 2. In order to obtain an upper bound on m, for a given , a
computer program can be easily prepared to check conditions (2.6) - (2.9)
for the given values of m > 5. If m = m* is the least value of m for which
all the conditions (2.6) - (2.9) are satisfied, then m* is an upper bound for
T.
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