λ -Designs on 4p+1 points

Yury J. Ionin and Mohan S. Shrikhande*

Department of Mathematics

Central Michigan University

Mt. Pleasant, MI 48859

3aztpfs@cmuvm.csv.cmich.edu

3iamxmz@cmuvm.csv.cmich.edu

ABSTRACT. A λ -design on v points is a family of v subsets (blocks) of a v-set such that any two distinct blocks intersect in λ points and not all blocks have the same cardinality. Ryser's and Woodall's λ -design conjecture states that each λ -design can be obtained from a symmetric design by complementing with respect to a fixed block. In a recent paper we proved this conjecture for v=p+1, 2p+1, 3p+1, where p is prime, and remarked that similar methods might work for v=4p+1. In the present paper we prove the conjecture for λ -designs having replication numbers r and r^* such that $(r-1,r^*-1)=4$ and as a consequence the λ -design conjecture is proved for v=4p+1, where p is prime.

1 Introduction

Let v and λ be fixed integers, $0 < \lambda < v$. A λ -design \mathcal{B} on v points is a family of v subsets (blocks) of the set $[v] = \{1, 2, ..., v\}$ such that any two blocks meet in λ points, all blocks have cardinality greater than λ , and not all blocks have the same cardinality. The notion of λ -design was introduced independently by Ryser [7] and Woodall [10]. They proved that in any λ -design \mathcal{B} on v points, there are two distinct (point) replication numbers r and r^* ($r > 1, r^* > 1$) such that $r + r^* = v + 1$. The only known examples of λ -designs are those obtained in the following way: Let \mathcal{A} be the block set of a symmetric 2- $(v, k, k - \lambda)$ design with the point set

^{*}Acknowledges hospitality of the Mathematics Departments of Michigan Technological University and Ohio State University during sabbatical leave and support of Central Michigan University FRCE Grant #42493.

[v] and having $k \neq 2\lambda$. Let A be a fixed block in A. Form the family $\mathcal{B} = \{A\} \cup \{A\Delta B : B \in \mathcal{A}, B \neq A\}$, where $A\Delta B$ is the usual symmetric difference of A and B. Then B is a λ -design on v points. Any λ -design obtained in this manner is called type-1.

The λ -design conjecture due to Ryser [7] and Woodall [10] states that every λ -design is type-1. This conjecture has been proved for $\lambda=1$ (de Bruijn and Erdös [3]), $\lambda=2$ (Ryser [7]), $\lambda=3$ (Bridges and Kramer [2]), $\lambda=4$ (Bridges [1]), $5\leq\lambda\leq 9$ (Kramer [5], [6]), $\lambda=10$ (Seress [8]), and for any prime λ (Singhi and S.S. Shrikhande [9]).

In a recent paper, Ionin and Shrikhande [4] investigated the truthfulness of the λ -design conjecture as a function of v rather than λ . Let $g=(r-1,r^*-1)$ be the greatest common divisor of r-1 and r^*-1 . The main result of [4] is the assertion that the λ -design conjecture is true for g=1,2, and 3. As a consequence of this, it was shown in [4] that the conjecture is true for v=p+1, 2p+1, and 3p+1, where p is prime. It was remarked in [4] that the techniques developed in the proof of these results might work in some other cases, particularly v=4p+1, where p is prime.

The main results of the present paper are the following two theorems.

Theorem 2.1. Let \mathcal{B} be a λ -design with replication numbers r and r^* . If $(r-1,r^*-1)=4$, then \mathcal{B} is a type-1 design.

Theorem 2.2. Let p be a prime. Then any λ -design on 4p+1 points is type-1.

2 Preliminaries

We begin with the following two useful results.

Theorem 1.1. (Ryser [7], Woodall [10]) Let a λ -design \mathcal{B} on v points have replication numbers r and r^* . Then

$$\frac{1}{\lambda} + \sum_{A \in \mathcal{B}} \frac{1}{|A| - \lambda} = \frac{(v - 1)^2}{(r - 1)(r^* - 1)}.$$
 (1)

Theorem 1.2. (Woodall [11]) A λ -design \mathcal{B} on v points with replication numbers r and r^* is type-1 if and only if r(r-1)/(v-1) or $r^*(r^*-1)/(v-1)$ is an integer.

If A is the family of blocks of a symmetric $(v, k, k - \lambda)$ -design, where $k \neq 2\lambda$, with a fixed block A, then the family $B = \{A\} \cup \{A \Delta B : B \in A, B \neq A\}$ is a λ -design. This is the only known construction of λ -designs. Any λ -design which can be obtained by this construction is said to be type-1. The main conjecture of Ryser [7] and Woodall [10] in the area of λ -designs is

the λ -design conjecture:

every λ -design is a type-1 design.

The following theorem summarizes results of de Bruijn and Erdös, Ryser, Bridges, and Kramer ([1], [2], [3], [5], [6], [7]) which will be needed in the present paper.

Theorem 1.3. Any λ -design with $\lambda \leq 6$ is a type-1 design.

The following result from Ionin and Shrikhande [4, Theorems 4.1 and 5.1] will also be used in the sequel.

Theorem 1.4. Let \mathcal{B} be a λ -design on v points and with replication numbers r and r^* . Let $g = (r-1, r^*-1)$ be the greatest common divisor of r-1 and r^*-1 . Then

- (i) if g = 1, then $\lambda = 1$ and hence \mathcal{B} is type-1;
- (ii) if g = 2, then \mathcal{B} is type-1.

We now collect all relevant notions about λ -designs and results from Ionin and Shrikhande [4] which will be needed in the sequel. The set [v] is partitioned into subsets E and E^* of points having replication numbers τ and τ^* respectively. Let e = |E| and $e^* = |E^*|$, so $e + e^* = v$. For any block A, let $\tau_A = |A \cap E|$ and $\tau_A^* = |A \cap E^*|$ and hence $\tau_A + \tau_A^* = |A|$.

The following result is used often in [4].

Proposition 1.5. For any block A of a λ -design B on v points, the relation below holds:

$$(r-1)(|A|-2\tau_A) = (v-1)(|A|-\tau_A-\lambda).$$
 (2)

Proof: Let \mathcal{B} be a λ -design on v points. Fix a block A in \mathcal{B} and count in two ways pairs (i, B), where B is a block in \mathcal{B} , $B \neq A$, and $i \in A \cap B$. This yields the equality $\tau_A(r-1) + \tau_A^*(r^*-1) = (v-1)\lambda$, which can be transformed into (2) by routine manipulations.

Next, since $g = (r-1, r^*-1)$ and $(r-1) + (r^*-1) = v-1$, hence $g = (r-1, v-1) = (r^*-1, v-1)$. We let

$$q = (v-1)/q. (3)$$

Since ((r-1)/g,q)=1, eq. (2) implies $|A|-2\tau_A\equiv 0\pmod q$ for any block A. We now define integers σ_A and s by

$$|A| - 2\tau_A = \sigma_A q \tag{4}$$

and

$$s = \sum_{A \in \mathcal{B}} \sigma_A. \tag{5}$$

Set $\sigma_A^* = -\sigma_A$. The following three equations are easily verified:

$$\tau_A = \lambda - \frac{r^* - 1}{g} \sigma_A. \tag{6}$$

$$\tau_A^* = \lambda - \frac{r-1}{g} \sigma_A^*. \tag{7}$$

$$|A| = 2\lambda + \frac{r - r^*}{q} \sigma_A. \tag{8}$$

The next series of identities is easily verified:

$$\sum_{A \in \mathcal{B}} |A| = er + e^* r^*. \tag{9}$$

$$\sum_{A \in \mathcal{B}} \tau_A = er. \tag{10}$$

$$sq = gq(gq - e - r + 3) - (2e + r - 2).$$
 (11)

Eq. (11) implies $2e + r - 2 \equiv 0 \pmod{q}$. We therefore define integers m and m^* by

$$2e + r - 2 = mq \tag{12}$$

and

$$2e^* + r^* - 2 = m^*q. (13)$$

Then it follows that

$$m + m^* = 3g \tag{14}$$

and

$$s = g^2 q - g(e + r) + m^*. (15)$$

Thus, to each λ -design \mathcal{B} on v points we associate integer parameters r, e, g, q, m (and "dual" parameters r^* , e^* , m^*). When necessary, we

will denote these parameters as $r(\mathcal{B})$, $e(\mathcal{B})$, etc. The following lemma from Ionin and Shrikhande [4, Lemma 3.5] establishes relations between these parameters.

Lemma 1.6. If $v \neq 4\lambda - 1$, then

$$r = [(2g - m)(gq + 2) - 2\lambda g]/(3g - 2m) \tag{16}$$

and

$$e = [\lambda g - (g - m)^2 q + g - m]/(3g - 2m). \tag{17}$$

The next result is folklore in the area of λ -designs. A proof can be found in Ionin and Shrikhande [4, Proposition 3.7].

Lemma 1.7. Let \mathcal{B} be a λ -design on v points and let A be a fixed block in \mathcal{B} . Define

$$\mathcal{B}(A) = \{A\} \cup \{A \triangle B \colon B \in \mathcal{B}, B \neq A\}.$$

Then

- (i) $\mathcal{B} = \mathcal{B}(A)(A)$;
- (ii) if A = E or $A = E^*$, then $\mathcal{B}(A)$ is a symmetric $(v, |A|, |A| \lambda)$ -design;
- (iii) if $A \neq E$ and $A \neq E^*$, then $\mathcal{B}(A)$ is a $\lambda(A)$ -design on v points, where $\lambda(A) = |A| \lambda$, and $\mathcal{B}(A)$ has the same replication numbers r and r^* as \mathcal{B} ;
- (iv) if $A \neq E$ and $A \neq E^*$, then $e(\mathcal{B}(A)) = e + q\sigma_A$ and $m(\mathcal{B}(A)) = m + 2\sigma_A$;
- (v) if $A \neq E$, $A \neq E^*$, and B is type-1, then B(A) is type-1 too.

We will conclude this section with a simple inequality for the integers σ_A .

Lemma 1.8. If $\lambda \neq 1$, then for any block A, $|\sigma_A| \leq g - 1$.

Proof: Since $-|A| \le |A| - 2\tau_A \le |A|$ and $|A| \le v - 1 = gq$, (4) implies that $|\sigma_A| \le g$. If $|\sigma_A| = g$ for a block A, then |A| = v - 1 and $\tau_A = 0$ or |A|, so $A = E^*$ or A = E. Therefore, Lemma 1.7 implies that $\mathcal{B}(A)$ is a symmetric $(v, v - 1, v - 1 - \lambda)$ -design and then the basic symmetric design equation $(v - 1)(v - 1 - \lambda) = (v - 1)(v - 2)$ implies $\lambda = 1$.

3 Main Results

Theorem 2.1. Let \mathcal{B} be a λ -design with replication numbers r and r^* . If $(r-1,r^*-1)=4$, then \mathcal{B} is a type-1 design.

Proof: Let a λ -design \mathcal{B} on v points have replication numbers r and r^* and let $g = (r-1, r^*-1) = 4$. By (3), v = 4q + 1. Then eq. (1) reads

$$\frac{1}{\lambda} + \sum_{A \in \mathcal{B}} \frac{1}{|A| - \lambda} = \frac{16q^2}{(r - 1)(r^* - 1)}.$$
 (18)

If $\lambda = 1$, then \mathcal{B} is type-1, so from now on we assume that $\lambda \neq 1$. Then Lemma 1.8 implies that for any block A, $|A| = 2\tau_A + \sigma_A q$, where $|\sigma_A| \leq 3$. For $-3 \leq i \leq 3$, we denote by a_i the number of blocks A for which $\sigma_A = i$. Using (8), we rewrite (18) as follows:

$$\frac{1}{\lambda} + \sum_{i=-3}^{3} \frac{4a_i}{4\lambda + (r - r^*)i} = \frac{16q^2}{(r - 1)(r^* - 1)}.$$
 (19)

Since $r-1 \equiv 0 \pmod{4}$, r is odd, and then (12) implies that q and m are odd. Without loss of generality, we assume that $m \leq m^*$, and then (14) implies that $m \in \{1, 3, 5\}$.

Case 1. m = 1.

In this case, Lemma 1.6 implies that $r^* = (6q + 4\lambda + 3)/5$ and $e = (4\lambda - 9q + 3)/10$. Eq. (6) implies that $\tau_A = \lambda - \sigma_A(3q + 2\lambda - 1)/10$, for any block A. Since $\tau_A \le e$, we obtain that $\sigma_A \ge 3$. By Lemma 1.8, $\sigma_A = 3$ for any block A, and therefore all blocks have the same cardinality. Since this contradicts the definition of a λ -design, the case m = 1 is impossible. Case 2. m = 3.

In this case, Lemma 1.6 implies that $r=(10q-4\lambda+5)/3$, $r^*=(2q+4\lambda+1)/3$, $e=(4\lambda-q+1)/6$. Eq. (6) implies that $\tau_A=\lambda-\sigma_A(q+2\lambda-1)/6$ for any block A. Inequalities $0\leq \tau_A\leq e$ imply that $1\leq \sigma_A\leq 2$. Therefore, $a_i=0$ for all i except 1 and 2 and $a_1+a_2=4q+1$. Using (5) and (15), we obtain that $a_1+2a_2=(10q+8\lambda+5)/3$. Therefore, $a_1=(14q-8\lambda+1)/3$, $a_2=(8\lambda-2q+2)/3$. Substituting the values of the a_i 's in (19), we obtain by routine manipulations the following equation:

$$e(2\lambda - 2q - 1)^{2}[4\lambda^{2} - 3\lambda + 2 - q(7\lambda - 10)] = 0.$$

Obviously, $2\lambda - 2q - 1 \neq 0$. Therefore, $q = (4\lambda^2 - 3\lambda + 2)/(7\lambda - 10)$ which can be transformed into

$$(7q - 4\lambda - 2)(7\lambda - 10) = 5\lambda + 34. \tag{20}$$

If $7\lambda - 10 = 5\lambda + 34$, then $\lambda = 22$ and q = 13. In this case, r = 47/3, a contradiction. Therefore, $2(7\lambda - 10) \le 5\lambda + 34$, which implies $\lambda \le 6$, and we refer to Theorem 1.3 to conclude that \mathcal{B} is type-1. Case 3. m = 5.

In this case, Lemma 1.6 implies that $r = 6q - 4\lambda + 3$, $r^* = 4\lambda - 2q - 1$, $e = (4\lambda - q - 1)/2$. Eq. (6) implies $\tau_A = \lambda - \sigma_A(2\lambda - q - 1)/2$ for any block A. Using $\tau_A \leq e$, we obtain $\sigma_A \geq -1$.

Suppose \mathcal{B} contains a block A with $\sigma_A \geq 2$. Consider the family $\mathcal{B}(A)$. If it is a symmetric design, then \mathcal{B} is type-1. Otherwise, by Lemma 1.7, $m(\mathcal{B}(A)) = 5 + 2\sigma_A \geq 9$, so $m^*(\mathcal{B}(A)) = 12 - m(\mathcal{B}(A)) \leq 3$. Cases 1 and 2 imply that $\mathcal{B}(A)$ is type-1, so \mathcal{B} is type-1 too.

Suppose \mathcal{B} contains a block A with $\sigma_A = -1$. Then $m(\mathcal{B}(A)) = 3$ and again \mathcal{B} is type-1. Thus we can assume that $a_i = 0$ for all i except 0 and 1. Then, by (5), $s = a_1$. Using (15), we obtain that $a_1 = 8\lambda - 6q - 3$ and then $a_0 = 4q + 1 - a_1 = 10q - 8\lambda + 4$. By routine manipulations, (19) can be transformed into the following equation:

$$(2\lambda - 2q - 1)^{2}[15q^{2} - 2(16\lambda - 10)q + (16\lambda^{2} - 16\lambda + 5)] = 0.$$

Since $2\lambda - 2q - 1 \neq 0$, the discriminant of the quadratic (in q) equation

$$15q^2 - 2(16\lambda - 10)q + (16\lambda^2 - 16\lambda + 5) = 0$$
 (21)

must be a perfect square. This condition yields the equation $(4\lambda - 10)^2 - x^2 = 75$ with a positive integer x. The solutions of this equation are $\lambda = x = 5$; $\lambda = 6, x = 11$; $\lambda = 12, x = 37$. The last solution does not yield an integer q in (21), so $\lambda \le 6$, and we again refer to Theorem 1.3 to conclude that \mathcal{B} is type-1. This completes the proof of Theorem 2.1.

Theorem 2.2. If p is prime, then any λ -design on 4p+1 points is type-1.

Proof: Let \mathcal{B} be a λ -design on 4p+1 points, where p is prime. Let r and r^* be replication numbers of \mathcal{B} and let $g=(r-1,r^*-1)$. If p=2, then v-1=8, so $g\in\{1,2,4\}$ and we apply Theorem 1.4 and Theorem 2.1 to conclude that \mathcal{B} is type-1. Suppose that p is an odd prime. If $g\equiv 0\pmod p$, then $r\equiv r^*\equiv 1\pmod p$. Assuming $r>r^*$, we obtain r=3p+1, $r^*=p+1$. If $p\equiv 1\pmod 4$, then r(r-1)/(v-1) is an integer; if $p\equiv 3\pmod 4$, then $r^*(r^*-1)/(v-1)$ is an integer. In either case, Theorem 1.2 implies that \mathcal{B} is type-1. If p does not divide p, then p is type-1.

References

- [1] W.G. Bridges, Some results on λ -designs, J. Combin. Theory 8 (1970), 350-360.
- [2] W.G. Bridges and E.S. Kramer, The determination of all λ -designs with $\lambda = 3$, J. Combin. Theory 8 (1970), 343-349.
- [3] N.G. De Bruijn and P. Erdös, On a combinatorial problem, *Indag. Math.* 10 (1948), 421-423.
- [4] Y.J. Ionin and M.S. Shrikhande, On the λ -design conjecture, J. Combin. Theory Ser A, (in press).
- [5] E.S. Kramer, "On λ -designs", Ph.D. dissertation, Univ. of Michigan, 1969.
- [6] E.S. Kramer, On λ-designs, J. Combin. Theory Ser. A 16 (1974), 57-75.
- [7] H.J. Ryser, An extension of a theorem of de Bruijn and Erdös on combinatorial designs, J. Algebra 10 (1968), 246-261.
- [8] A. Seress, On λ-designs with λ = 2p, in Coding Theory and Design Theory, Part II, Design Theory, The IMA Volumes in Mathematics and its Applications 21, edited by D.K. Ray-Chauduri, pp. 290-303, Springer-Verlag, New York, 1990.
- [9] N.M. Singhi and S.S. Shrikhande, On the λ -design conjecture, *Utilitas Math.* 9 (1976), 301–318.
- [10] D.R. Woodall, Square λ -linked designs, *Proc. London Math. Soc.* 20 (1970), 669–687.
- [11] D.R. Woodall, Square λ -linked designs: A survey, in Combinatorial Mathematics and Its Applications, pp. 349–355, Academic Press, New York/London, 1971.