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ABSTRACT. In a group channel, codes correcting and detecting
arbitrary patterns of errors (not necessarily “white noise”) are
described metrically. This yields sphere-packing and Gilbert
bounds on the sizes of all and of maximal codes respectively.
The loop transversal approach builds linear codes correcting
arbitrary error patterns. In the binary case, the greedy loop
transversal algorithm builds lexicodes.

The loop transversal appreach to coding theory [S2] focuses on the set
of errors to be corrected by a linear code, rather than on the code itself.
It is particularly suited to the construction of codes correcting errors that
do not have a “white noise” distribution. The present paper is part of a
continuing programme developing the theory of such codes. The basic locop
transversal approach is described in the first section. The second section
concentrates on the binary case, considering loop transversal codes built
by a greedy algorithm. The setting for these codes is the linearly ordered
set of natural numbers within Conway’s characteristic 2 field Ony [Co).
The third section introduces a metric such that codes in a group channel
correcting and detecting general error patterns are characterized (Theorem
3.3) by a minimum distance between codewords, much as in the traditional
white noise case. This yields a sphere-packing bound (Corollary 3.4) for all
codes and a Gilbert bound (Corollary 3.5) for maximal codes. The form of
these bounds is especially suited for application to loop transversal codes.

Loop transversal codes are always linear (although, for example, if they
are linear over Z4, they may map to non-linear binary codes via the Gray
map as in [CH]). Over arbitrary alphabets, the use of a greedy algorithm to
build a so-called lexicode may yield a non-linear code. In the binary case,
however, lexicodes are linear [BP), [CS], [Le]. The fourth section presents
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an adaptation of the Brualdi-Pless proof of the linearity of white-noise lexi-
codes: it is this proof which lends itself to the comparison with greedy loop
transferal codes. The result (Theorem 4. 1) is formulated quite generally,
showing how a binary greedy algorithm foliates vector spaces over GF(2).

The general result is specialized in the fifth section to yield the linearity of
white-noise lexicodes (Thrown 5.1) and lexicodes correcting and detecting
arbitrary error patterns (Theorem 5.2). Corollary 5.3 derives the linearity
of the Brualdi-Pless “B-greedy” codes in a novel way. Instead of being built
greedily with respect to a non-standard ordering to correct a white-noise
error pattern, they are considered as being built lexicographically (greed-
ily with respect to the standard ordering) but correcting a distorted error
pattern. The final section demonstrates the coincidence of binary lexicodes
and greedy loop transversal codes for arbitrary error patterns (Theorem
6.1).

1 Loop transversal codes

A transversal T to a subgroup C of a group (V,+,0) is a subset of V' with

v=_JC+1). (1.1)

teT

Thus each element z of V' can be expressed uniquely as
. :c=26+2.‘€ (1.2)

with 2§ in C and ze in T'. If C is a linear code in the channel V, then (1.2)
is interpreted as the decoding of a received word z to a codeword =6 with
presumed error z€. A binary operation * is defined on T by

txu=(t+u. (1.3)

For any ¢,u in T, the equation v*¢ = u has a unique solution v [S1,§2.2]. If
the equation ¢ *y = u also has a unique solution, then T is said to be a loop
transversal. Equivalently, the algebra (T, *,0¢) is a loop. If V is abelian
(as usual in coding theory), then each transversal is automatically a loop
transversal, and the loop (T, *,0¢) is an abelian group. For :z:, inT, it is
convenient to use the notation [];_, z; defined inductively by H —1Ti = 0e

and [[i_, i = [l'[;":l1 x,] * z, for r > 0. In compound expressions, * and
I1 will bind more strongly than + and Y.

Now specialize to the usual coding theory case that V is a finite-dimensional
vector space and C a subspace over a field F. Define A x t = (At)e for A in
F and t in T. This makes (T, », F) a vector space over F'. Induction on r
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extends (1.3) to

(zr: Agti) E= ﬁ(/\; X t;) (1.4)
i=1 i=1

for t; in T. Assume that T contains a basis {e,...,e,} for V,e.g. V=F"
and each e; has 1 in the ¢-th place as its only non-zero coordinate. Then
knowledge of the vector space (T, *, F) is sufficient to determine the code C.
Indeed C = {v6 |v eV} ={v—ve |v eV} ={3]_, hei — (Tio; Mei)e |
i € f}. Using (1.4), one then has

C = {Z’.l)\iei —lf!()\,' X e,-) I A € F} . (1.5)

This expression is useful for fecovering C.

As an abstract vector space, the transversal (T, F) is isomorphic to
the dual (i.e. orthogonal complement) of the code C. Knowing a few ele-
ments of the usual dual merely restricts the possibilities for codewords, but
does not specify any (non-zero ones) exactly. By contrast, knowing small
parts of the transversal (T, , F') is sufficient to identify specific codewords;
conversely knowing specific codewords determines part of the structure of
(T, *, F). In particular, for ¢; in T,

Yu-Jltec (1.6)

The relationship (1.6) between C and T is such that small parts of T
determine small parts of C. The relationship is describes as local duality.

Normally, local duality is the most efficient way of passing between the
code and the transversal. However, an alternative route is available. Note
that (z+4y)e = ze *ye and (Az)e = A x (ze) for A in F and z,y in V. Thus
the parity map

e: (V,+,F) = (T, F) )

is a linear transformation. Since the code is the kernel of the parity map,
matrices of ¢ with respect to appropriate bases are parity-check matrices.

2 Greedy loop transversal codes

For the sake of simplicity, attention will generally be restrictecl to the binary
case F = GF(2) from now on. If p is a relation on a set X, and z is an
element of X, the notation 2 = {y € X | zpy} will be used. Consider the
ordered set (N, <) of natural numbers (including 0). The n-dimensional
vector space over F' may be realized concretely as the set V,, = 2" =
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{0,1,...,2" — 1} of natural numbers less than 2" under the exponent-2
abelian group operations + or ) of nim sum [Co, Chs. 6,11]. The subset
{27 | r < n} forms a basis of weight-1 vectors for V, = 2">. The advantage
of this notation is that it proyides a natural way to nest the various vector
spaces 2™ as (2°7,43) < (2!17,42) < --- < (2">,+2) < - < (N, +2),
with a corresponding nesting 0> < {1} < {1,2} < --- < {2' | <n} <

. < 2N of their standard bases of weight-1 vectors. A natural number
m appears as an element in each vector space 2"~ with n > log, m. Such
a possibility of referring to a vector “locally”, without leaving to mention
explicitly a “global” vector space in which it appears, is crucial to exploiting
the local duality afforded by the loop transversal approach.

The order (N, <) is total: any two elements are comparable. One prop-
erty of the structure (N, +2, <) is that it contains no chains of the form
m<n<n+22* <m+y2¥or m < 2¥+5n < n < 2F 45 m [BP, Lemma
2.1]. The set N of natural numbers also carries a partial order. Each natural
number m has a unique (binary) expansion as a sum

o0
m=>" m(i)2* (2.1)
=0
with m(i) < 2. A partial order C is then defined by
m C m' iff Vi € N,m.(i) < m'(3). (2.2)

For a subset X of a poset (Y, C), define the subordinate set X= of X to be
Uzex = The set X is subordinate or self-subordinate if X = X=.

An error paitern E is a self-subordinate subset of (N, €) containing 2N,
ie.

NCE=E2. (2.3)

An error pattern models a set of possible errors in the channels 29>,2!>, ...,
2">,... that codes could be designed to correct. For example, the error
pattern describing white noise double errors is

E={2"+27| {p.q} CNU{-oo}}, (24)
using the convention 27°° = 0. Codes correcting (2.4) are those of minimum
distance at least 5. The error pattern describing burst errors of length at
most 2 is (2.5)

E={0}u2Nu3.2N, (2.5)
Linear block codes correcting (2.5) do not appear to have a good character-

ization in terms of traditional coding theory concepts such as distance. Of
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course, codes correcting (2.4) will also correct (2.5). Indeed, error patterns
are ordered by containment, and codes correcting an error pattern E will
correct any error pattern E’ contained E. The ordered set of error patterns
has a least or “bottom” element

1= {0}u2N (2.6)

representing single errors.

Under the operation of nim sum, error patterns form partial algebras.
For example, in the double-error pattern E of (2.4), nim sums of pairs
2P, 27 are defined, namely as 2P 4229 =0 for p=q and 2P +5 27 = 2P 4+ 2¢
for p # g. In (2.5), these nim"sums are only defined if [p — ¢| < 1.

Fix an error pattern E. Then an E-syndrome, or just syndrome, is a
partial function s: F — N which:

(a) injects,

(b) is a partial nim-sun homomorphism,

(c) has a domain self-subordinate in (E, <), and (2.7
(d) satisfies: Vn € N, 3r € N. L Ns(V,, N E) spans V.

Condition (b) means that zs +2 ys = 28 for {z,y,2} C E with z +oy = 2.
Condition (d) implies that 0s = 0, 1s = 1, 2s = 2, and more generally
2rs < 27. The syndrome is said to be proper if s is a properly partial
functioll. In view of (c), this is equivalent to finiteness of the domain of s.
For a proper syndrome, the length is defined to be

n = max{1 + |log, m| | m € dom s}. (2.8)
The redundancy is defined to be
r = max{1 + [log,(ms)] | m € dom s}. (2.9)
A proper syndrome s: E — N defines a parity map
€5: 2" o 27 (2.10)

by linearity and 2%, = ss for i < n. By (c), these values 2's are defined.
Condition (b) guarantees that s agrees with &, on V, N E. Condition (d)
guarantees that &, surjects. Condition (a) guarantees that dom s imbeds
into 27> under ¢,. Thus the partial algebra (dom s, +2) may be extended to
a total loop transversal (T, ) isomorphic via e, to (27, +2). Independently
of the extension chosen, a code C of redundancy r in the channel V,,, of
length =, correcting the set dom s of errors, is specified either as the kernel
of €, or, more efficiently, by local duality.
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The greedy algorithm for building the syndrome s: E — N is

2"s =min(N — {ms+om's | m,m' € V, N E and 2" +, m € E}).
(2.11)

This algorithm constructs the code
Cn =ker(e: V;, = N) (2.12)

with the parity map of (2.10). The code C, is called the greedy loop-
transversal code of length n correcting the error pattern E. The successive
dimensions of the codes C,, are collected by the following relationship.

Proposition 2.1.

dimC, £ dimCp,4+1 £14dimC,,. (2.13)

Proof: Since €: V.41 — Nextends e: V;, — N, one has Cp, = ker(e: V,, =
N) < ker(e: Vay1 — N) = Cpy1 and e(V,) < €(Va41). Thus dimC,, <
dimCry1 =14+ n—dime(Voy1) <14 n—dime(Vy) =1+ dimC,. a

3 Metrics and error control

Let (F,+r,—r,0) be an abelian group. Let V = F" be the n-dimensional
channel over the alphabet F. Let D and E be error sets in V that are
closed under negation, with 0 lying in E. The channel V' decomposes as
the disjoint union

V= U(Ns‘ - N;_1), (31)
i<d
where the neighborhoods of zero N; are

N_, =9, No={0}, Ny =E,
Ny=(DUE)+rF and
N3 =V.

Define a natural-number valued norm on V' by

".’B" =iz eEN; - N;_1. (3.2)

Proposition 3.1. The norm (3.2) satisfies the triangle inequality

=+ yll < ll=ll + liyll (33)

forz,yinV.
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Proof: The equality is trivially satisfied if the left hand side is less than
3. Otherwise, z+ry € (DU E) 4+ E, but then z and y cannot both lie in
E. a

Corollary 3.2. Under the distance function

(z,9) = llz s ull, (34)
the channel V' becomes a metric space. a

Corollary 3.2 provides a metric approach to code design in channels with
asymmetric error sets analogous to the convential metric approach used for
white noise channels. The set E comprises the errors to be corrected by a
code, while D comprises the (possibly empty set of) errors to be detected
1)ut not necessarily corrected.

Theorem 3.3. Let C be a subset of V. Suppose 0 € E = —pFE and
D = —pD. Then C is an E-correcting, D-detecting code iff the minimum
distance between its elements under the metric (3.4) is 3. In particular,
suppose that D is empty. Then C is an E-correcting code iff it has minimum
distance 3 under (3.1).

Proof: If C is not E-correcting, there is a pair of distinct codewords ¢y, co
and a pair of E-errors ey, es such that ¢ +re; =cy+rep. Thency—rep =
ez —re; =e3+r (—pe1) € E+p E, so that ||c; —p 2| < 3. If C is not
D-detecting, there is a pair of distinct codewords c;,cg, a D-error d and
all E-error e such that ¢y +r'e=co+rd. Thency —pcy =d+r (—pe) €
(DU E)+F E, so again |lc; —F caf] < 3.

Conversely, suppose that there is a pair of distinct codewords ¢;, ¢ with
||c1 -F 62" < 3,i.e. withe; —pey =d+pe, de DU E, e € E. Then
c1+r(—rd) = ca+re. If d, and thus —pd, lies in D, then C does not detect
the D-error —pd. If d, and thus —pd, lies in E, then C cannot correct the
E-errors —pd or e. ]

Let C(V') denote the subposet of the power set P(V') comprising all codes
correcting errors from E. For a finite alphabet F, Theorem 3.3 then yields
versions of the sphere-packing and Gilbert bounds.

Corollary 3.4 (Sphere-packing bound). For any element C of C(V),
ICl < VI/|N1| = [VI/|E|. (3.5)

Proof: The first neighborhoods ¢ +r N; of the codewords are disjoint.
Indeed, (c1 +7 N1) N (cz +r N1) # O for distinct codewords c;,ca, say

c1 +r €1 = ca +p ey with ¢; € E, would imply |l¢; —F 2| < 3. O
Corollary 3.5 (Gilbert bound). For a maximal element c of C(V),
IC| 2 [VI/IN2| = |VI/IE +F E|. (3.6)
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Proof: If a code C is such that |C| < |C|/| N2/, then the second neighbor-
hoods c+p Ny of the codewords do not cover V. An uncovered element v
could then be adjoined to C to produce a larger element CU{v} of C(V). O

Maximal codes C thus satisfy

\4 \4
— <L |0 € ——. 3.7
4 Linearity of greedy foliations

Let (V, +2) be the n-dimensional initial segment 2"> of the natural num-
bers, considered as a vector space over GF(2). Let x: V — {0,1} satisfy
0, = 1. Define a function

g: (Vi+2) - (N, +2) (4.1)

inductively by the following greedy algorithm:

begin 0g :=0
for 1<zx<2"do
if  Vteg(z>), x(z+2 (g[z>)7H{t}) # {1} (4.2)

then zg := min(N — g(z>))
4 else zg:=min{t|x(z+2 (g[z>)~1{t}) = {1}}
end.

Thus the algorithm assigns the smallest possible numerical value to a vector
z consistent with the requirement that no two vectors y, z in any pre-image
g~ {t} have (y +2 z)x = 0.

Theorem 4.1. The function (4.1) defined by the greedy algorithm (4.2) is
linear.

Proof: Filter the vector spade V as
{0}=W<WVi<--<Vu=V (4.3)

with subspaces V; = 2> of dimension i. Induction on i will be used to prove
the linearity of the restriction g;: (V;, +2) — (N, +2) of g to V;. Certainly
go is linear. Assume that g;: (V;,+2) — (N, +2) is linear for fixed i. To
prove the linearity of g;+1, it suffices to verify

(2 +2 2)git1 = 2gis1 +2 20 (4.4)

for each z in V;. There are two cases to deal with.
Case I: Vi € gi(Vi), x(2° +2 9 ' {t}) # {1}.
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By the greediness and linearity of g;, the image g;(V;) is an initial sub-
space 29> of (N, +32,<). Thus min(N — g;(V;)) = 27 and 2g;4; = %, so
that (4.4) reduces to

(2 +2 2)git1 =27 +3 2g;. (4.5)

Note that (4.5) holds for z = 0. To prove (4.5) by induction on z, assume
that (4.5) holds for all 2 less than some non-zero y in V;. Consider the
computation of (2 +3 y)gis1 by (4.2). For ¢ in 27>, one has x(2' +2y +2
971t} = x(2F +2 9; Hyg: +2t}) # {1} and x(2 +2y +2 94 {2 +2}) =
x(2 +2y+2 +2(e:[v”)~H{t}) = x(y +2 (9:[v”) ' {t}). The circuit

if  Vteg((2 +29)7), x(2 +2y+2 (9[(2F +29)>) 7 H{t}) # {1}

then (2° +2y)g := min(N v g((2 +2%))) (4.6)
else (2! +3y)g :=min{t | x(2t +2 ¥ +2 (9[(2* +29)>)"{t}) = {1}

of the loop of the algorithm (4.2) thus reduces to

if  Yteg(y”), x(y+2 (g:fy”) " {e}) # {1}
then (2 +2 y)g := min(2? +2 (N - g(3)) (4.7)
else (2¢+2y)g :=min{27 +2¢ | x(v +2 (&[v”) " }{t}) = {1}},

whence (4.5) holds also for z=1y.
Case II: 3t € g:(Vi). x(2* +2 97 {t}) = {1}.

Choose v minimal in g;(V;) with x(2'+2g; '{v}) = {1}. Then 2'g;4, = v,
so that (4.4) reduces to

(2° +2 2)gi41 = v+ 2,9: (4.8)

for z in V;. Now for z in V;, t in g;(V;) and cg; = 0, one has x(2* +2 z +2
c+297 {t}) = x(2 +3 24297 {t}) and x(2Z +2 2 +2c+22 +29; ' {t}) =
x(2° 42 2 +2 2 +2 g, {t}) = x(z +2 9; ' {t}). Thus as z runs from 1 to
2¢ — 1, the algorithm (4.2) assigns values (2! 43 z)g;+; that only depend on
the coset g, 1{zg;}, not on z itself. In other words, g;11: Vi+1 — N factors
through the natural projection:

Vii — Viur/g7 {0}

g1 | |~ (49)
N = N

The requirements (4.4) and (4.8) then reduce to

(2 4297 {tHy=t+2v (4.10)
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for ¢t in g;(V;). This requirement already holds for ¢ = 0. It will be proved
by induction. Assume that it holds for all £ in 4™, so that in particular

@ 4207 IV £ utav (4.11)

for t <u. Set s = (2 +2 g; '{u})y. Consider 2* +3 z = min(2* +2 g, '{u}).
By (4.11), u +2 v € gi+1((2* +2 2)> — Vi). Thus

sSutpv=2Ffrw, 4.12)

with k = |logyu] (so that k is minimal with 2* 4+ 4 < ) and w =
2 tru+ 2 = (2 +2 97 {25 +2u)).

Now suppose that 2% +3 s < w were to hold. Since s = (2' +2 g; 1{u})y,
one has {1} = x(2' +2 ¢; '{u} +2 g {s}) = (2 +2 97 {2" +2 u} +2
9. 1{2% 45 s}). There would thus be some r strictly less than 2¥ +, u with
(2° +2 g7 }{r})y = 2% +2 5. By the induction hypothesis, r +2 v = 2% 45 5.
Now r < 2¥ 454 < u. Since (N, <) contains no chain of the form r <
2% 4o u < 25 49 (2F 49 u) & 2% 49 1, it follows that 25 +o 7 < u. But
then (28 +2 g, 1{2* +27})y = 2¥ +2 7 +2 v = s by the induction hypothesis,
contradicting (2f +3 g; ' {u})y = s. Thus in fact

w< 2% 4os. (4.13)

The induction step proving (4.10) will be complete if it can be shown that
s+au+tov =0, ie. s = 2% 4+ w. Now by the choice of k, one has
u +2 25 45 (2¥)> C v>. By the induction hypothesis, ¢ +3 v = (28 +2
g7 Ht})y # (20 +2 97 {u})y = s for t € u 49 25 4+, (25)>, whence s ¢
v 42 u 43 2% 49 (25)> = w +, (2%¥)>. Suppose that s #£ 2% 4+, w. Then
in view of (4.12) and (4.13), the only possible order relationships for the
four-element subset {s,w,2* +2 5,2% 42 w} of (N, <) would be

w<s<2tow< 2495 (4.14)
or
s<w<245< 2 o w. (4.15)

First suppose that (4.14) holds. Then s € w +2 2% 45 (2%)>, ie. s+22*F €
w +2 (2¥)>. With (4.14), this gives the contradiction 2* > |(2* + s)> —
w>| > |(25+25)> —s>| = 2. On the other hand, suppose that (4.15) holds.
Then again s+22* € w+3(2%)>, so that w+22* € s+2(2%)>. With (4.15),
this gives the contradiction 2% > |(2¥4+ow)> — 57| > |(2¥+2w)> —w™| = 2*.
Hence s = 2* 45 w, as required. 0
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5 Linearity of binary greedy codes

As a first application of Theorem 4.1, consider the n-dimensional binary
channel V with Hamming weight w. For 0 < d < n, let x be the character-
istic function of the complement of the shell

{zeV|0<w(z)<d}. (5.1)

In this case, the algorithm (4.2) builds the syndrome function of the lexicode
of minimum distance d. Thus Theorem 4.1 recovers (cf. [CS])

Theorem 5.1. The n-dimensional binary lexicode of minimum distance d
is linear. O

Now let E and D be arbitrary error sets in V, with 0 in E. Note that E
and D are trivially closed under negation. Consider the neighborhcods of
zero defined under (3.1). Let x be the characteristic function of NoUNa, i.e.
the complement of the “shell” Ny U Na. Consider the function g: V — N
built by the algorithm (4.2) in this case. Let C be the kernel of g. By
construction, C has minimum distance 3 under (3.4). By Theorem 3.3, the
code C corrects E-errors and detects D-errors. Indeed, C is the greedy
E-correcting and D-detecting code. Thus:

Theorem 5.2. Let E and D be arbitrary error sets in the binary channel
V, with 0 in E. Then the greedy E-correcting, D-detecting code C is
linear. a

Brualdi and Pless [BP] generalized lexicodes in V' by considering an ar-
bitrary ordered basis B of V and ordering V' by lexicographic order on
the coordinate vectors of elements of V' with respect to the basis B. This
order was called the B-order on V. The code C in V constructed greedily
with respect to the B-order subject to maintenance of minimum Hamming
distance d was called the B-greedy code of designed distance d. Brualdi and
Pless [BP, Th. 2.2] showed that B-greedy codes are linear. The proof of
Theorem 4.1 above is modeled on the proof of [BP, Th. 2.2]. On the other
hand, the Brualdi-Pless result may be recovered from Theorem 5.2.

Corollary 5.3. For an arbitrary ordered basis B of a n-dimensional binary
channel W, the B-greedy code of designed distance d is liner.

Proof: Identify vectors from the channel W with their coordinate vectors
with respect to the ordered basis B. Let V be the set of coordinate vectors.
Let E be the set of coordinate vectors of W-vectors of Hamming weight at
most |(d—1)/2]. If d is odd, let D be empty. If d is even, let D be the set
of coordinate vectors of W-vectors of Hamming weight d/2. The B-order
on W corresponds to lexicographic order on V. The greedy E-correcting,
D-detecting code in V is the set of coordinate vectors of the B-greedy code
of designed distance d in W. By Theorem 5.2, the formel code is linear.
Thus so is the latter. o
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6 Binary loop transversal codes and lexicodes

Let E be an error pattern in N, i.e. a self-subordinate subset of (N, C)
containing 2N. For each n, let V, be the initial segment 2*> considered
as an n-dimensional binary channel. Let L, be the lexicode correcting
EnYV,. In other words, let x: V,, — 2> be the characteristic function of
(ENVu)UWENV,) +2(ENV,)). Then if g: V,, — N is built by the
algorithm (4.2) using this function yx, the lexicode L, is the kernel of g.
Let C, be the loop transversal code obtained from the greedy syndrome
s: ENnV, >N,

Theorem 6.1. For each natural number n, the lexicode L,, and greedy
loop transversal code Cy, coincide. Moreover, s = g[(E N V,).

Proof: By induction on n. Note Ly = {0} = Cp. Suppose that the
theorem holds up to dimension n. It will be verified for dimension n + 1.
First, suppose that dim Ln41 = dimL,,. Thus Lpy1 = L, = Cp C Cpy1.
The maximality of Ln+1 in C(Va41) then shows that Lpy; = Cpyi. Since
dim g(V,+1) > dim g(V;,), Case I of the proof of Theorem 4.1 describes the
construction of 2*g. Thus 2"g = min(N — g(V,,)) = 2"s.

Now suppose that dim L1 > dim L,. If dim L, 4; > 1+ dim Ly, pick
a basis for L, and extend it to a basis for L,4;. There are then two
distinct elements z, y of the extension. By the maximality of L,, in C(V,,),
neither z nor y lies in V,,. But dim(V,41/V,) = 1, so the element z +5 y
of Lnt1 lies in V. This contradicts the maximality of L, in C(V,). Hence
dimLyy; = 14 dimL, in this case. Now dimL,,; > dim L, implies
dimC,4; > dimC,. Indeed, the increase in dimension in the lexicode
construction implies that there is a possible choice of syndrome in the greedy
loop transversal construction that will increase the dimension of the loop
transversal code. Then by Proposition 2.1, dimCyp41 = 1 + dimC,. Thus
dimL,;; = dimC,,, in this case.

Let l = min(L,H_l - Ln) and c = min(Cn.H - Cn). Then Ln+1 = Cn+l
iffl=c. By t}}e lexicode’ construction, ! < ¢. Suppose 2"s = 2ies 2¢ and
2"g = Y ;e 2. Suppose | = 2" 4 YieL 27, Thenlg=0= Y2 +2
Yier P9=2icc 2 +2 Tjer, 295, 50 that I = 2" + 3", - 2's~1. Similarly
(but using s in place of g), c = 2"+ 3, s 2's~1. Then 2"+ Y, - 2's7! <
2"+3 5 2's~ 1. But by the greediness of the loop transversal construction,
and the monotonicity of s on s~1(2V), one has 3, g 2571 < 3,5 28571
Thus I = ¢ and 2"s = 2"g, as required.
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