The higher-order edge toughness of a graph and truncated uniformly dense matroids

Zhi-Hong Chen* Butler University Indianapolis, IN 46208

Hong-Jian Lai[†]
West Virginia University
Morgantown, WV 26506

ABSTRACT. In [Discrete Math. 111 (1993), 113–123], the cth-order edge toughness of a graph G is defined as

$$\tau_{c}(G) = \min_{X \subseteq E(G), \& \omega(G-X) > c} \left\{ \frac{|X|}{\omega(G-X) - c} \right\},\,$$

for any
$$1 \le c \le |V(G)| - 1$$
.

It is proved that $\tau_c(G) \geq k$ if and only if G has k edge-disjoint spanning forests with exactly c components and that for a given graph G with s = |E(G)|/(|V(G)| - c) and $1 \leq c \leq |E(G)|$, $\tau_c(G) = s$ if and only if $|E(H)| \leq s(|V(H)| - 1)$ for any subgraph H of G. In this note, we shall present short proofs of the abovementioned theorems and shall indicate that these results can be extended to matroids.

We use the notation in [2] for graphs, and [1] for matroids. Please refer to [2] and [1] for the literature. In [2], Chen et al proved these results:

Theorem 1. (Chen, Koh and Peng [2]) A graph G has k edge-disjoint spanning c-forests if and only if $\tau_c(G) \geq k$, where c = 1, 2, ..., |V(G)| - 1 and k is a nonnegative integer.

^{*}Partially supported by Butler University Academic Grant (1994)

[†]Partially supported by NSA grant MDA904-94-H-2012

Theorem 2. (Chen, Koh and Peng [2]) Let G be a graph with p vertices and q edges, and let s = q/(p-c), where c is an integer satisfying $1 \le c \le p-1$. Then $\tau_c(G) = s$ if and only if $|E(H)| \le s(|V(H)|-1)$ for every subgraph of G.

In this note, we shall present short proofs of Theorems 1 and 2, and shall indicate that these results can be extended to matroids.

For a matroid M, M|X denotes the loopless contraction, and ρ denotes the rank function. The density of a subset X with $\rho(X) > 0$ is $g(X) = \frac{|X|}{\rho(X)}$. In [1], the fractional arboricity and the strength of M are respectively defined as:

$$\gamma(M) = \max_{X \subseteq S, \rho(X) > 0} g(X)$$

and

$$\eta(M) = \min_{X \subset S, \rho(X) < \rho(S)} g(M|X).$$

Note that the strength of M can be alternatively expressed as:

$$\eta(M) = \min_{X \subset S, \rho(X) < p(S)} \frac{|S - X|}{\rho(S) - \rho(X)}.$$
 (1)

A matroid M on S is uniformly dense if $\eta(M) = \gamma(M)$. For a graph G, $\eta(G)$ and $\gamma(G)$ are defined as $\eta(M(G))$ and $\gamma(M(G))$, respectively, where M(G) is the cycle matroid of G. By a family we mean a multiset in which an element may occur more than once.

Theorem 3. (Theorem 4 and Theorem 6 of [1]) Let M be a loopless matroid on a set S and let h and k be two positive integers. Each of the following holds.

- (i) $\eta(M) \ge h/k$ if and only if M has a family \mathcal{F} of h bases such that every element in S lies in at least k bases in \mathcal{F} .
- (ii) $\eta(M)\rho(S) = |S|$ if and only if $\gamma(M)\rho(S) = |S|$.

Note that the truncation of M at k (see [3], Chapter 4), denoted by M_k , has rank

$$\rho_k(X) = \min\{k, \rho(X)\} \text{ for any } X \subseteq S.$$

In Lemmas 4 and 5 below, let G be a graph with p vertices and without isolated vertices, let M=M(G) be the cycle matroid of G, and let M_{p-c} denote the truncation of M at p-c, where c is an integer with $1 \le c \le p-1$. For an edge subset $X \subseteq E(G)$, G(X) denotes the spanning subgraph of G with edge set X.

Lemma 4. Let B be a subset of E(G). The following are equivalent:

- (a) B is a basis in M_{p-c} .
- (b) G(B) is a forest with exactly p-c edges.
- (c) G(B) is a c-forest.

Proof: Note that the rank of M_{p-c} is p-c and that an edge subset $X \subseteq E(G)$ is independent in M if and only if G(X) is a forest. These give (a) \iff (b). Since G(B) is a forest with p vertices and with p-c edges if and only if G(B) is a forest with p vertices and with p components, (b) \iff (c).

Lemma 5. $\eta(M_{p-c}) = \tau_c(G)$.

Proof: Let ρ_{p-c} denote the rank function of M_{p-c} . Let $X \subseteq E(G)$ be such that $\rho_{p-c}(X) < \rho_{p-c}(E(G))$. Then we have

$$\rho_{p-c}(E(G)) = p - c \text{ and } \rho_{p-c}(X) = \rho(X) = p - \omega(G(X)).$$
(2)

Note that if Y = E(G) - X for the subset X in (2), then G(X) = G - Y. Thus by (1) and (2), we have

$$\begin{split} \eta(M_{p-c}) &= \min_{X \subset E(G), \rho_{p-c}(X) < \rho_{p-c}(E(G))} \frac{|E(G) - X|}{\rho_{p-c}(E(G)) - \rho_{p-c}(X)} \\ &= \min_{X \subset E(G), \rho_{p-c}(X) < p-c} \frac{|E(G) - X|}{\omega(G(X)) - c} \\ &= \min_{Y \subset E(G), \omega(G-Y) > c} \frac{|Y|}{\omega(G-Y) - c} = \tau_c(G). \end{split}$$

Proof of Theorem 1: Let $k \ge 1$ be an integer, let G be a graph with p vertices and let c be an integer such that $c \in \{1, 2, ..., |V(G)| - 1\}$. Thus G has k edge-disjoint spanning c-forests if and only if M_{p-c} has k disjoint bases (by Lemma 4), if and only if $\eta(M_{p-c}) \ge k$ (by Theorem 3(i)), if and only if $\tau_c(G) \ge k$ (by Lemma 5).

Theorem 2 can have the following variation.

Theorem 6. Let G be a graph with p vertices and q edges, and let s = q/(p-c), where c is an integer satisfying $1 \le c \le p-1$. The following are equivalent:

- (i) $\tau_c(G) = s$.
- (ii) $|E(H)| \le s(|V(H)| c)$ for every subgraph H of G.
- (iii) $|E(H)| \le s(|V(H)| 1)$ for every subgraph H of G.

Proof: (i) of Theorem $6 \iff \eta(M_{p-c}) = s$ (by Lemma 5) $\iff \gamma(M_{p-c}) = s$ (by Theorem 3 (ii)) \iff (ii) of Theorem 6 (by the definition of γ).

Clearly (ii) of Theorem 6 implies (iii) of Theorem 6. Chen et al in [2] have a simple proof for (iii) \Longrightarrow (i). We quote their proof here for the sake of completeness.

Let $X \subseteq E(G)$ be such that G - X has components H_1, H_2, \ldots, H_t where t > c. Apply (iii) to each H_i to get

$$s(p-c)\sum_{i=1}^{t}|E(H_i)|+|X|\leq \sum_{i=1}^{t}s(|V(H_i)|-1)+|X|=sp-st+|X|.$$

Thus $s(t-c) \leq |X|$, and so (i) follows by the definition of τ_c .

References

- [1] P.A. Catlin, J.W. Grossman, A.M. Hobbs and H.-J. Lai, Fractional arboricity, strength, and principal partitions of graphs and matroids, *Discrete Appl. Math.*, 40 (1992), 285-302.
- [2] C.C. Chen, K.M. Koh and Y.H. Peng, On the higher-order edge toughness of a graph, *Discrete Math.* 111 (1993), 113-123.
- [3] D.J.A. Welsh, Matroid Theory, Academic Press, London (1976).