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ABSTRACT. In [Discrete Math. 111 (1993), 113-123], the cth-
order edge toughness of a graph G is defined as

_ ; Xl
7e(G) = XCE(G) G- X)>e {w(G -X)-c|[’

forany 1 <c < |V(G) -1

It is proved that 7.(G) > k if and only if G has k edge-disjoint
spanning forests with exactly ¢ components and that for a given
graph G with s = |E(G)|/(I[V(G)| - c) and 1 < ¢ < |E(G)],
7.(G) = s if and only if |E(H)| < s(]V(H)| — 1) for any sub-
graph H of G. In this note, we shall present short proofs of the
abovementioned theorems and shall indicate that these results
can be extended to matroids.

We use the notation in [2] for graphs, and [1] for matroids. Please refer
to [2] and [1] for the literature. In [2], Chen et al proved these results:

Theorem 1. (Chen, Koh and Peng [2]) A graph G has k edge-disjoint
spanning c-forests if and only if 1.(G) > k, where c=1,2,...,|V(G)| -1
and k is a nonnegative integer.
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Theorem 2. (Chen, Koh and Peng [2]) Let G be a graph with p vertices
and g edges, and let s = q/(p — c), where c is an integer satisfying 1 <
¢ <p—1. Then 7.(G) = s if and only if |E(H)| < s(|V(H)| - 1) for every
subgraph of G.

In this note, we shall present short proofs of Theorems 1 and 2, and shall
indicate that these results can be extended to matroids.

For a matroid M, M|X denotes the loopless contraction, and p denotes
the rank func-tion. The density of a subset X with p(X) > 0 is g(X) =

Jd’ In [1], the fractional arboricity and the strength of M are respectively
defined as:

YM) = XCS, (X)>og(X)
and
= M| X).
(M) = XC-S'.p(X)<p(S) 9(M|X)
Note that the strength of M can be alternatively expressed as:
Is-x|

(M) = 1)
A matroid M on S is uniformly dense if n(M) = y(M). For a graph G,
7(G) and «(G) are defined as n(M(G)) and v(M(Q)), respectively, where
M(G) is the cycle matroid of G. By a family we mean a multiset in which
an element may occur more than once.

Theorem 3. (Theorem 4 and Theorem 6 of [1]) Let M be a loopless
matroid on a set S and let h and k be two positive integers. Each of the
following holds.

n —————
xcs,p(X)<p(S) p(S) — p(X)

(i) (M) > h/k if and only if M has a family F of h bases such that
every element in S lies in at least k bases in F.

(i) n(M)p(S) = |8 if and only if y(M)p(S) = |S|.

Note that the truncation of M at k (see [3], Chapter 4), denoted by Mj,
has rank

Pe(X) = min{k, p(X)} for any X C S.

In Lemmas 4 and 5 below, let G be a graph with p vertices and without
isolated vertices, let M = M(G) be the cycle matroid of G, and let M,
denote the truncation of M at p—c, where cis an integer with 1 < ¢ < p—1.
For an edge subset X C F(G), G(X) denotes the spanning subgraph of G
with edge set X.

Lemma 4. Let B be a subset of E(G). The following are equivalent:
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(a) B is a basis in M,_..
(b) G(B) is a forest with exactly p — c edges.
(c) G(B) is a c-forest.

Proof: Note that the rank of M,_. is p — c and that an edge subset
X C E(G) is independent in M if and only if G(X) is a forest. These give
(a) <= (b). Since G(B) is a forest with p vertices and with p — c edges
if and only if G(B) is a forest with p vertices and with ¢ components, (b)
<+ (c). O
Lemma 5. n(Mp_.) = 7.(G).

Proof: Let p,_. denote the rank function of Mp,_.. Let X C E(G) be such
that pp_o(X) < pp—c(E(G)). Then we have

Po—c(E(G)) =p —cand py—o(X) = p(X) =p —w(G(X)). (2)

Note that if Y = E(G) — X for the subset X in (2), then G(X) =G -Y.
Thus by (1) and (2), we have

|E(G) — X|
XcE(G),p,_c(x)<p,,_,(E(G)) Pp—c(E(G)) — pp—c(X)
= min M
XCE(G),pp—e(X)<p—e w(G(X))—c

Y]
= yerGlR vyse w@-Y)—c ~ C)

W(Mp-—c) =

a

Proof of Theorem 1: Let k > 1 be an integer, let G be a graph with p
vertices and let ¢ be an integer such that c € {1,2,...,|V(G)| — 1}. Thus
G has k edge-disjoint spanning c-forests if and only if M,_. has k disjoint
bases (by Lemma 4), if and only if (M,_.) > k (by Theorem 3(i)), if and
only if 7.(G) > k (by Lemma 5).

Theorem 2 can have the following variation.

Theorem 6. Let G be a graph with p vertices and q edges, and let s =
q/(p — c), where c is an integer satisfying 1 < ¢ < p— 1. The following are
equivalent:

(i) 7¢(G) = s.
(ii) |[E(H)| < s(|V(H)| — ¢) for every subgraph H of G.
(iii) |E(H)| < s(|V(H)| — 1) for every subgraph H of G.
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Proof: (i) of Theorem 6 <= n(Mp_.) = s (by Lemma 5) <= v(M,—.) = s
(by Theorem 3 (ii)) <= (ii) of Theorem 6 (by the definition of ~).

Clearly (ii) of Theorem 6 implies (iii) of Theorem 6. Chen et al in [2]
have a simple proof for (iii) = (i). We quote their proof here for the sake
of completeness.

Let X C E(G) be such that G— X has components H,, Ha, ..., H; where
t > c. Apply (iii) to each H; to get

t t
sp— ) 3 IB(H)| +1X] <3 s(V(H:)| = 1) +|X| = sp — st + | X].

=1 i=1

Thus s(t — ¢) < |X|, and so (i) follows by the definition of 7. O
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