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Abstract

In this paper, we study the minimum co-operative guards
problem, a variation of the art gallery problem. First, we
show that the minimum number of co-operative guards re-
quired for a k-spiral polygon is at most Nj, the total number
of reflex vertices in the k-spiral. Then we classify 2-spirals
into seven different types based on the structure. Finally, we
present a minimum co-operative guard placement algorithm
for general 2-spirals.

1 Introduction

The art gallery problem deals with the placement of minimum num-
ber of stationary guards in an n-walled gallery room such that ev-
ery point in the room is visible to at least one guard. The floor
plan of the art gallery can be modeled as an n-vertex polygon and
the guards as points in the polygon. The problem now translates to
finding a set of minimum number of points in the polygon, where
guards can be posted such that every point in the polygon is visible
to some guard. Several variations of the art gallery problem have
been studied [2] such as mobile guards and co-operative guards.
In the mobile guards problem the guards are allowed to move and
in the co-operative guards problem, guards are supposed to co-
operate by watching each other. An extensive list of references and
results on the variations of art gallery problem can be found in [2]
and [3]. In this paper we study the minimum co-operative guard
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problem for k-spirals. This problem was proposed by Bern-Cherng
Liaw et al [1]. '

The Minimum Co-operative Guard (MCG) problem addresses
the issue of placing the minimum number of guards in an art gallery
such that every point is seen by at least one guard and each guard
is visible to at least one other guard. The need for reliability in the
safeguard of the objects and for the security of the guards them-
selves has inspired this problem. This problem has application in
the safeguard of equipments in military establishments, shopping
complex or any other installations. The MCG problem is proved
to be an NP-hard problem [1, 5]. Bern-Cherng et al solved the
minimum co-operative guard problem for 1-spirals by a greedy al-
gorithm [1]. They have also given a partial solution for the MCG
problem in 2-spirals. In this paper, we present a complete solu-
tion for the MCG problem in 2-spirals. We also establish an upper
bound on the minimum number of co-operative guards required for
a k-spiral.

Section 2 is devoted to preliminary discussions, definitions and
notations used. In Section 3, we show that the minimum number of
guards for the MCG problem is at most Ny where N denotes the
total number of reflex vertices in the given k-spiral. In Section 4,
we give a classification of the 2-spirals and then present the MCG
placement algorithm for general 2-spirals.

2 Preliminaries and Definitions

A boundary chain of a simple polygon P is an ordered sequence
of its vertices, v1, v2, ..., vn. Let G(P) = (V, F) denote the vis-
ibility graph of a simple polygon P, where V is the set of vertices
corresponding to the vertices of the polygon and E = {(v;, v;)|vi
is visible to v;}. Note that two vertices v; and v; in P are visi-
ble if the closed line segment joining v; and v; does not intersect
the exterior of the polygon. It may however touch the bound-
ary. Consider a counter-clockwise traversal of the boundary chain
{v1,v2,...,v}. A vertex v; is said to be a reflex vertex if the angle
V;—1Vi41 > 180°. Otherwise it is called a convex vertex. A chain
(z,r1,72,...,Tk,y) where (r1,72,...,7¢) is a maximal chain of re-
flex vertices is called a reflex chain. Note that £ and y are convex
vertices. Similarly, a chain of vertices, (z,c;,¢2,...,¢, ) is called
a convez chain if ¢;,...,c is a maximal convex chain and z and y
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are reflex vertices. A k-spiral is a simple polygon whose boundary
chain has exactly k reflex chains and & convex chains such that the
boundary chain forms an alternating sequence of convex and reflex
chains. Let H be a Hamiltonian cycle in G, the visibility graph of
a polygon. A cycle in G is said to be ordered with respect to H if v;
precedes v; in the cycle implies that v; precedes v; in H [4]. A ver-
tex v, is a blocking vertex with respect to H for an invisible pair of
vertices v; and vj, if no two vertices v in chain (vi, vig1,...,Vp—1)
and vy, in chain (Vp41, Upt2,-. .-, Vj-1,V;) are adjacent in G.

Let P be a k-spiral polygon with reflex chains R;, Ry, ..., Ri
and convex chains Cj, Cs, ..., Ci labeled according to a counter-
clockwise traversal of the boundary chain. Now, R;, Ci, Ry, ...,
Ry, Ci defines a Hamiltonian cycle H. Let the reflex vertices
in chain R; be labeled as 71, Ti2, ..., Tin,, where n; is the
number of reflex vertices in the chain, R;. For each R;, extend the
edges (ri,j—1, i), 1 < j < nj till they hit the boundary at f; ;.
Similarly, extend each edge (rij+1, i) till it hits the boundary
at b; ;. Let B; denote the set {b;1, bi2, ..., bin;} and F; denote
the set {fi1, fi2, ---, fin;} for chain R;. We call B; U F;, the
extended vertices. We define a 1-coil as a 1-spiral with n; reflex
vertices whose reflex chain possess the property that for any j,
1 <j < ny —1, the pair (f1 j, b1,j+2) is not mutually visible. Fig 1
gives an example.

Let 1,3, 71,2, 71,3, --+» Tl C1,1y ---, C1,m; be the ver-
tices of a 1-coil labelled in a counter-clockwise order. Let B =
{bl.l’ bl,21 [EES} bl,nl} and F = {fl.l) f1.2s [RRR ) fl,n;} be the ex-
tended vertices. Let C(z,y) denote the counter-clockwise boundary
chain segment between two vertices x and y (x and y inclusive). The
extended edge (c1,m,, f1,1) together with C(fi,1,¢1,m,) encloses a
convex region, say CR;. Similarly, the extended edge (b1,1, f1.2)
along with the boundary segment C(f; 2,b;,) forms region CR;.
Thus the set of extended edges (b1,i-1, f1.i), 1 <i < m; and the
chain segments C(f1,i, b1,i—1) defines n; distinct convex regions.
The last reflex vertex ny and C(fi1,n,, 71,n,) defines the region
CR,, +1. Foreachi, 1 <i<ny, CR; and CR;y; has a non-empty
intersection bounded by the line (r1;, f1.:), C(fi,iy b1,;) and the
line (by,,71.4), say I;. Corresponding to each reflex vertex ry,
there is an I;. There are n; + 1 regions and therefore n; such inter-
section areas. A guard posted anywhere in I; can see the regions
CR; and CR;4;. He can also see the guard located at I;,;.

Example 1 Fig 1 is an example of a 1-coil with 5 reflex vertices.
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Ci = {ns¢c1.1,6,.2,€13,€1,4,€1,5,€1,6:C1,7, 71,1}

R = {a7m1,M.2:71371.4:7150,1}
CR, = {nnanbice finma}
CR;, = {by, a6 finbhiz,as 2z bl
CR; = {bha,cs fizbis,c1.4 373 2,02}
CRy = {bis,c14, 13,014,013 f1.4,71,4,713,b1,3}
CR; = {bia,c1,3, fi.4:01,5:€1.2, f1.5,T1.5,71,4,D1.4}
CRs = {c11,m15 05,612 fi50.1)

B, = {bi1,b12,b13,b1,4,b15}

B = {fix,fr2 fi3 frafr5}

L = {bhn,cre fi,mnbian}

L = {b2cgs fiz,r,2.02)}

I = {b3s,c14,/13 713 b3}

Is = {413 fia,71.4, 014}

Is = {bis,c12, fis:T15 D015}

Let = be a vertex in the given k-spiral. Let RVi(z) = {ri,,
Tims -+« Ti,q} denote the set of vertices in reflex chain R; which
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are visible to z. We call r;x € RV;(z), the left peripheral of
wrt R; if r; ; is not visible to z for all j < k and r;; is visible to
z. Similarly, r;; € RV; will be termed the right peripheral of z
if r; ; is not visible to « for all j > I and r;; is visible to z. We
will use the term spiral-degree to denote the maximum number
of reflex chains in a spiral polygon.

Let p and ¢q be two non-adjacent boundary vertices. If p and ¢
are visible to each other, then we can draw a line segment between
p and q that would be completely contained in the polygon. We call
such a line segment, an internal diagonal. An internal diagonal
drawn between two vertices on reflex chains R; and R; where i # j
is called a cross diagonal. Such a cross diagonal is said to be
incident on R; and R;. A set of cross diagonals is said to span a
set of reflex chains if at least one cross diagonal is incident to
each chain.

A reflex chain R; is said to be E—visible to another reflex chain
R; if 7i n,, an end vertex of R; is visible to r;,1, an end vertex of R;
or if r;,, the other end vertex of R; is visible to r;, ;» an end vertex
of R;. If R; and R;;; are E-visible then the convex chain C; is
said to have end-to-end visibility. It follows that the part of the
polygon, bounded by the arc segment (r;n,, Ci1, Ci2, -+ Tit+1,1)
and the internal diagonal (r;,n;, Ti+1,1) forms a convex region.

Fig2
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Example 2 Fig 2 is a spiral polygon of spiral-degree 3. Here,

Ci = {rs c1,1, €12, €13, €14, T2,1};

C; = {7‘2,6, C2,1, C2,2y C2.3, C2,4, C25, 7‘3,1};

C; = {7‘3,5, €3,1, C3,2, C3,3, C3,4, C3,5, C3,6, C3,7,C3,8, C3,9, C3,10y
C3,11, €3,12, €3,13, C3,14, 7‘1,1};

R, = {c314, T1,1, T1.2, T1.3, T1,4, T15) C101)};

Ry = {c1,4, T2, T2,2, T2,3, T2,4, T2,5, T2,6, C21};

R3 = {c25, 3,1, T32, 73,3, T3,4, T35, C3,1}

The line segments (113, T2,4) and (72,4, T3,3) are cross diagonals
which span all three reflex chains. Consider vertezcsg. RVa(cag) =
{1‘2'1, 72,2, T2,3, 1‘2‘4}. The left peripheral of c3 9 w.r.t Ry isrs;.
The right peripheral of c39 w.r.t. Ry i3 ro4. Similarly, 7,2, and
71,5 are respectively, the left and right peripherals of c3 9 w.r.t. R,.
In this example, Ry is E-visible to Ry since v g is visible to s .
R, is E-visible to R3 since the last reflex vertez in chain Ry, 126
is visible to 13,1, the first reflex vertex in chain R3. But Rj3 is not
E-uvisible to R; or vice-versa.

3 Upper bound on the number of M.C.
Guards

The original art gallery problem needs at most [n/3] vertex guards.
Chvétal’s famous art gallery theorem states that [n/3] guards are
occasionally necessary and always sufficient to cover a polygon of n
vertices. For mobile guards, O’Rourke has proved that any polygon
P of n > 4 edges can be covered by |n/4]| geometric diagonal or
line guards. We do not know of any such bounds on the number
of guards for the MCG problem. In this section, we show that the
minimum number of guards required for the MCG problem is at
most Ny, where Ny = n) +n2 +... + ni.

Lemma 1 Let P be a 1-coil with ny reflex vertices and intersection
areas I;, 1 £ i < m; as defined in section 2. Given an I; and I, a
point in I; is visible to some point in I; iff |i — j| <= 1.
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Proof: (=) Let p and g be two points in I; and I; respectively,
where |i — j| < 1. We will prove that p and ¢ are mutually visible.
If |¢ — j| = 0, then p and q both belong to the same convex region
and hence are mutually visible. Let |[i — j| = 1. With no loss of
generality, we will choose p to be at by ; and q to be at f; ;. Now by ;
and f;,; are the extreme ends of the line segment passing through
71,: and ry j. Hence they are mutually visible. Also they: are the
farthest two points when I; and I; are considered. Therefore p
located anywhere in I; and q located anywhere in I; are mutually
visible.

(«) Let p and q be two mutually visible points in I; and I; respec-
tively. We will show that |¢ — j| < 1. Proof is by contradiction.
Assume |i — j] > 1. Let j = i + 2. Consider p to be at f; and g to
be at bi;2, the nearest points as far as I; and I; are concerned. By
definition of 1-coil, p and q are not visible. This contradicts the
assumption and hence the result.

Corollary 1 A I-coil with ny reflex vertices needs at least ny guards
for a minimum co-operative guard placement.

Proof: Any optimal algorithm for minimum co-operative guard
placement has to take advantage of the intersection areas in placing
the guards so that each guard can completely cover two convex
regions and be visible to the next guard. By lemma 1, a single
guard can completely cover no more than two convex regions, CR;
and CR; such that CR; NCR; # ¢. Assume that we can achieve
a minimum guard placement with n; — 1 guards. that means one
of the intersection areas, say I; has no guard placed in it. There
are two cases to consider.

Case 1: Suppose 1 < i < n;. Now none of the guards in I
to I;_; can see any of the guards in areas Ii}; to I,,. So
the guards visibility graph is disconnected. Hence the guard
placement does not comprise a feasible solution to the minimum
co-operative guard problem.

Case 2: i=1 ori=mn;. With no loss of generality, assume that
i = n;. Now the vertex ¢;,m, and the region enclosing c; m,
which is beyond the line segment (ry,,,, fi,s,) is not visible to
any guard. This again implies that the guard placement does
not comprise a feasible solution to the minimum co-operative
guard problem.
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The above discussion suggests a simple, but optimal algorithm
for minimum co-operative guard-placement in a 1-coil. Place a
guard at each f;;, 1 < ¢ < n;. This algorithm needs exactly n;
guards. The optimality is proved by corollary 1.

Now, consider a k-spiral P, whose reflex chains, ordered ac-
cording to a counter-clockwise traversal of the boundary chain, are
respectively R), Rp, Rs,...R¢. We call R; a neighbor of R; if at
least one reflex vertex of R; is visible to a reflex vertex of R;. Py
will be defined as a k-coil if it meets the following criteria.

1. The extended vertices f; ; and b; j;2 are not visible for each
j31<j<mn;and for alli, 1 < i < k, where n; denotes the
number of reflex vertices in chain R;.

2. A reflex chain R; has at most two neighbors.

3. If R; and R; are neighbors, then there exists exactly one reflex
vertex in R; which is visible to exactly one reflex vertex in
R;.

In Fig. 3.a, we show an example of a k-coil, where k = 5. However,
the polygon in Fig. 3.b does not qualify to be a k-coil since it
violates conditions 2 and 3.

Condition 1 above and the counter-clockwise labeling of the
alternating sequence of reflex and convex chains in the boundary
chain defines the following chain of neighbors. The neighbor-
chain of a k-spiralis Ry, Ry, ..., Ri, Rk—it1, ---, R(t/2). Given
two neighbors R; and R;, reflex vertex rin; (rjn;) is visible to r;,
(ri1) if R; (R;) appears before R; (R;) in the chain of neighbors.

Lemma 2 A k-coil needs ezactly Ny guards, where Ny = n; +ng+
...+ ng, for a minimum co-operative guard placement problem.

Proof: Consider the chain of neighbors, Ry, R, Ry, ... The poly-

gon bounded by Ckmy, T1,1, T1,25 -+ TLinys Sk Okmes Thin, and
the counter-clockwise boundary segment C(rg 5, , Ck.m,) forms a 1-
coil. Similarly C1,1, fk.n:.: Thanus Thae_1s Tkne_2s +++ s Tk, b2.11 .f2.l’

r2, and the counter-clockwise boundary segment C(r2,1, fi.n,)
forms a 1-coil. Thus, each reflex chain has a 1-coil associated with
it. The optimal algorithm discussed above can be applied for the
k-coil. By condition 1 and corollary 2, each such coil needs n;
guards. Thus the k-coil needs Ni = Y5 | n; guards.
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Fig.3.b

Fig 8.a

Theorem 1 Let P be a k-spiral polygon with Ni reflex vertices,
where N = ny + ng + ... + ng, and n; is the number of vertices
in R;. P needs at most N guards for the minimum cooperative
placement of guards, for Ni > 1.

Proof: It is quite obvious that by placing a guard at each of the
reflex vertices, the entire polygon can be covered and at the same
time the guards visibility graph forms a chain. Thus the sufficiency
of N guards for a k-spiral is established. Now consider the worst
case scenario of a k-coil with Ny reflex vertices. By lemma 2, it
needs Nk guards. Thus for the special case where a k-spiral be-
comes a k-coil, N} guards are necessary for a minimum co-operative
guard placement.

4 Classification of 2—spirals

A better understanding of the possible structures of 2-spirals is
essential for the optimal placement of guards. To do the classifica-
tion, we need the following definitions. Consider a cross diagonal
(a, b), where @ = 7y, is in chain R; and b = rj; is in chain R;.
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The line obtained by extending this diagonal to both directions ba
and ab divides the plane into two half-planes. If the two boundary
edges incident on a lies in the same half-plane w.r.t. (a,b) and
both edges incident on b lies in the other half-plane then (a,b) is
called a cross tangent. If the edges incident on a as well as b lie
in the same half-plane w.r.t. (a,b) then (a,b) is called a common
tengent.

Lemma 3 Let (a,b) be a cross tangent, where a = r;; is in reflez
chain R; and b = 1 is in reflex chain R;. Then a is the left(right)
peripheral of b w.r.t. R; and b is the lefi(right) peripheral of a w.r.t.
R;.

Proof: We will prove the result for the case of left peripheral. The
proof for the right peripheral is similar. Proof is by contradic-
tion. Assume that (a,b) is a cross tangent. In the case of the left
peripheral, there are two cases to consider:

Case 1: Assume that a is the left peripheral of b w.r.t. R; but b
is not the left peripheral of a w.r.t. R;.

Then there exists some vertex r;j,,, whose index is smaller than
that of b = r; but is visible to a. Let m = k—1. This implies
that edge (rj,k—1, 7j,x) is in one half-plane and edge (Tides Tik41)
is in the other half-plane with respect to (a,b), which implies
that (a, b) is not a cross tangent, a contradiction and hence the
result.

Case 2: bis the left peripheral of a but a is not the left peripheral
of b

The proof for this case is similar to that of Case 1 and hence
omitted.

Lemma 4 Let (a,b) be a common tangent, where a = Tig 18 in
reflex chain R; and b = r;; is in reflex chain R;. Then a is the
lefi(right) peripheral of b w.r.t. R; andb is the right(left) peripheral
of a w.r.t. R;.

proof: Suppose a is the left peripheral of b but b is not the right
peripheral of a. Then at least the vertex r;x4; should be visi-
ble to a. This would then imply that the edges (rj,7jk+1) and
(j,k-1,7j) are in different half-planes w.r.t. (a,b), which contra-
dicts the assumption that (a,bd) is a common tangent. The proof
for the following cases are quite similar to this and hence omitted.
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Case 1: a is the right peripheral of b but b is not the left periph-
eral of a

Case 2: a is not the left peripheral of b but b is the right periph-
eral of a

Case 3: a is not the right peripheral of b but b is the left periph-
eral of a

Two spirals can be classified into the following types based on the
number of common tangents and cross tangents (Fig 4 gives exam-
ples of each type).

Type A: those with two common tangents and two cross tan-
gents

Type B: those with one common tangent and two cross tangents
Type C: those with one common tangent and one cross tangent
Type D: those with one common tangent and zero cross tangents

Type E: those with zero common tangents and two cross tan-
gents

Type F: those with zero common tangents and one cross tangent

Type G: those with zero common tangent and zero cross tan-
gents

Next, we discuss the algorithm for minimum co-operative guard
placement in each of these types. Since this algorithm is related to
earlier work on minimum co-operative guards by Bern-Cherng et
al, we first discuss their algorithm. We claim that the algorithm
presented by Bern-Cherng et al[l] is incomplete since it does not
completely cover all possible cases of 2-spirals. Their algorithm
covers Type A 2-spirals. We present an algorithm that can handle
all possible types of 2-spirals such as types A through G. Then we
extend it for 3-spirals in a forth coming paper.

4.1 Discussion of 2—spiral algorithm

First, we discuss the algorithm proposed by Bern-Cherng et al for
minimum co-operative guard placement in 1-spirals. Given a 1-
spiral P and a point p within P, their algorithm places the mini-
mum number of guards inside P such that a guard is stationed at
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Fig 4.a Type A 2-spiral (2 common tangents & 2 cross tangents)

p. Let the vertices of the polygon, labeled according to a counter—
clockwise traversal of the boundary chain be r, 73, 73, ..., 13, €1,
€2, ..., ¢j where (cj,71,72,...,7i,¢1) constitute the reflex chain R
and (ri,ci,cz,...,¢5,71) constitute the convex chain. Extend the
edge (cj,71) till it hits the convex boundary chain at I;. Similarly,
extend the edge (c1, ;) till it hits the convex boundary at e;. From
l;, draw a tangent to R in the clockwise direction. Let I be the
point of intersection of this tangent with the convex chain. From
l2, draw a tangent to R to hit the convex boundary chain at I3.
Proceed this way till the tangent (l;14z—1, lmaz) hits the convex re-
gion bounded by the line segment (c;, e; ) and the counter-clockwise
chain segment (c;,c2,...,e;). Similarly, draw tangent from e, to
R in the clockwise direction. Let e; be the point of intersection of
this tangent with the convex chain. Repeat this process till tan-
gent (€maz—1,€maz) hits the convex region bounded by (cj,01) and
the boundary segment (cj,cj—_1,...,51). Let L; denote the con-
vex region enclosed by (l;,/;—1) and the convex boundary segment
(li-1,L). Let E; denote the convex region enclosed by (e;,e;—;)
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Fig 4.b TypeB 2-spiral (1 common tangent & 2 cross tangents)

Fig 4.c Type C 2-spiral ( one common tangent & one cross tangent )
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Fig 4.d Type D 2-spiral (1 common tangent & O cross tangents)

Fig 4.e Type E 2-spiral (0 common tangent & 2 cross tangents)
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and the convex boundary segment (e;—i,e;). Place a guard at the
given point p. If p lies in the non-empty intersection of regions
Ly and Epp0—p+1 for some k then place guards at each of the re-
maining maz — 1 such regions. Otherwise, the algorithm places the
guards at 3,03, ... 0.

In the description of their algorithm for 2-spirals, they assume the
existence of all four tangents. However, there exists 2—spirals that
do not have all four tangents as can be seen in Fig 4 for Types
B through G. Bern-Cherng’s algorithm is therefore based on an
incorrect assumption and does not work for general 2-spirals. We
present a detailed algorithm for minimum co-operative guard place-
ment in a general 2-spiral that covers all cases.

First, we define some terms that are used in the algorithm.
We call the process of drawing tangents (lo, 1), (I1,12), (l2,13), - - -
(Imaz—15maz) the forward-sweep. The term reverse-sweep denotes
the process of drawing tangents (eg, 1), (€1,€2), . - -5 (Emaz—1;€maz)-
We use the term bold chain defined in [1] to denote the convex
boundary segments (l;,emaz—i+1) for 0 < i < maz. The com-
mon tangents in a 2-spiral are denoted as CT} and CT; and the
cross tangents are denoted as XT; and XT;. Let ct} and ct! de-
note the reflex vertices where common tangent CT; touches R,
and R; respectively for 1 < ¢ < 2. Similarly, let z¢t; and zt! de-
note the points where XT; touches R; and R, respectively. We
use the term pred(z) to denote the vertex which appears immedi-
ately before vertex x in the boundary chain ordered according to
the counter-clockwise traversal and succ(z) to denote the vertex
which appears immediately after vertex z in the boundary chain.
If vertex = appears earlier than y in the counterclockwise ordering
scheme then we denote it as z <z, y. For a 2-spiral with at least
one common tangent CT;j, P, denotes the 1-spiral formed by ct],
pred(ct’l), ey T, pred(r1 ), c0e3C21yT2n0s T2, m0—19 +++ 5 SUCC(Cti’),
cty, ct{. The sub-polygon enclosed by ctj, succ(ct}), ..., Tin,,
1.1, succ(cr), ..., pred(ra,y), 2.1, - - . , pred(ct!), ct! is denoted
as P;. The points of intersection of XT; with the boundary chains
of P, and P, are denoted as aj and of respectively. The points of
intersection of C'T; with the convex boundary chains of P, and P,
are denoted as 3] and 8}’ respectively.

P, is further split into a 1 or 2-spiral P, and a l-spiral P;.
It may be noted that, for Type F, P> degenerates into an empty
polygon. Bern-Cherng’s 1-spiral algorithm is used in placing the
guards optimally in P, and P; such that the combined solution of
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the two 1-spirals yields a minimum co-operative guard placement
for the 2-spiral. In order to obtain the optimal solution, we may
introduce fake cross tangents if there are fewer than two cross tan-
gents in the 2-spiral (as in the case of Type C and Type G). For
purposes of placing guards, fake cross tangents are treated as real
cross tangents. In particular, we use notations o} and af to denote
the points of intersection of fake cross tangent XT; with the con-
vex boundary chains of P, and P, respectively. The construction
of fake tangents is described in algorithm two-split. We call the
parts of the convex boundary chains between o and o) and that
between of and of the visible regions VR, and VR,.

Algorithm two—split
Case polygon of

Type A: (two common tangents and two cross tangents)

Py« cty, pred(cty), ..., 711, pred(ri,1), ..., C2,,
T2mgs T2ma—1y -- -, Succ(cty), cty, ct}

P « cty, succ(cty), ..., cty, cty, succ(cty), ...,
pred(cty), ct{, ct]

P; « ct), succ(cty), ..., T1,n,, C1,1, C1,2y ++-y PTEA(T2,1),
r21, succ(ra,), ..., pred(cty), cty, cty

Type B: (one common tangent and two cross tangents)

P, « cty, pred(cty), ..., 711, pred(ri,1), .- €2,
T2.mg> T2ma—1y -+ -y Suce(cty), ctf, ctj

P, + ctj, succlcty), ..., pred(zty), zty, xty, succ(zty),
..., pred(cty), ct{, ct]

P3 « axth, succ(xth), ...y Tinys Clly €12y «++»
pred(rz1), T2, ..., T}, Tty

Type C: (One common tangent and one cross tangent)

P, « cty, pred(cty), ..., 71,1, pred(ri,y), ---» C2,1

'} " !
Tanay T2ma—1) --., Stcc(cty), cty, ¢t
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In this case there is only one cross tangent, say X7,. We
construct a fake cross tangent as follows. With no loss of
generality, assume that z#{ is in P| and z#{ is in P,. Let y
denote the vertex adjacent to zt; which is not visible from
Py. To construct a fake cross tangent, extend the edge (y, zt})
till it hits the boundary chain at aj. From af, draw a line
segment such that it is tangential to the left peripheral of oy
w.r.t. R;. Let ) denote the point of intersection of this line
with the convex boundary of P,. Then the line joining ay
and a; define the fake cross tangent.

If y = succ(xt]) then
Py + cty, succ(cty), ..., zt}, of, ..., at!, succ(xty),
.., cty, ct
’ 1 1

P; ¢, o}, y, succ(y), succ(suce(y)), ..., of
else
P, « ctf, succ(ct)), -.., af, zt), succ(zt]) ..., pred(ct!),

" !
Ctl’ Ctl " ' 1
P; « zty, oy, succ(af), ..., r21, ..., zt}

Type D: (One common tangent and zero cross tangents)
In this case, no further splitting or fake tangents is needed.

! '
P« cty, pred(cty), ..., 11,1, pred(r1,), ..., ca1,
" " !
T2,nzs T2,np-1, ---, Succ(cty), cty, ct}

Type E: (Zero common tangent and two cross tangents)
With no loss of generality assume that zt] <, zt}, and zt} <,
zty

Let z; = left peripheral of zt] with respect to. R,
y1 = right peripheral of z; with respect to. R,
z2 = right peripheral of zt] with respect to. R,
y2 = left peripheral of z, with respect to. Ry

Pl ~ o, pred(zl)) Wed(pred(zl))v ey T151, pred(rl.l)a
<0y €215 T2,npy «ooy Y1, 41
P2 ~ , 8000(1'1), ceey Tings CLdy o0y pred(TZ,l)) 72,1,
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ey Y15, T
Py « 1, succ(z2)7 -eey Timys €11y 200y Pfed(rz.l): Y2, T2

Type F: (One cross tangent and no common tangents)

In this case, the cross tangent splits the 2-spiral into two
1-spirals P, and P (Pz is empty).

P, « ati, pred(zt}), ..., r11, pred(ri), ---, C2,1,
Tongy --+s Tt

P3 « =t} succ(zt]), ---s TLnys €1, -+, Pred(r21),
2,15 -« :L’t'l'

Type G: (No common tangent and no cross tangent)

Locate a pair 14,724 such that 7, , is the left peripheral of
ro4 w.r.t. Ry and rpy is the right peripheral of r,, w.r.t.
R;. Similarly, locate another pair 7y ¢,72,m such that r; is
the right peripheral of r2m w.r.t. R and rz., is the left
peripheral of r; s w.r.t. Ra.

Py« T8 T1e-15 +--5 T, pred(riy), ..., €22, €21,
ey T20, T1,s

P, « 7114, succ(rys), ..., pred(rie), Tie T2,ms
succ(f'z.m)» CRRE} pred(r2.l)a T2

Ps «— T4, succ(rig), ..., pred(ram), T2,.m, Tt

Let A,, A3, B; and B; denote respectively, the directed line
segments obtained by extending the edges (pred(r1,s), 71,s)s
(8“00(1'1'5), ’I‘1,¢), (8“06(1‘2'[), 1‘2,1) and (pred('rz,m), Tz‘m).

If A, and A, intersect then XT; is constructed by drawing
the line segment joining 7, , and the left peripheral of 1,
w.r.t. R, and extending it till it hits the convex boundary
at of. Similarly XT; is constructed by extending the line
segment joining 1 and the right peripheral of r1,¢ wrt. R
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extended to meet the convex boundary at o). Note that o)
=T1,s and 0'2' =Tt

IF A) and A; do not intersect then XT) is constructed by
drawing a line segment joining 73, with its right peripheral
w.r.t. R; and extended, if needed to meet the convex bound-
ary at of. Similarly XT; is constructed by joining 3 ,,, with
its left peripheral w.r.t. R; and extended to meet at o}. In
this case o) =12, and af =72 1.

The fake cross tangent X T} is defined by o} and af and XT3
is defined by o} and af.

Next we give the algorithm for placing the guards in the 1-spirals
and combining the solutions. For Type A, we use the algorithm
given in [1].

Algorithm Combine:

Construct bold chains in P, and P;.
Case polygon of

Type A: There are four cases to consider.

Case 1: There exists two bold chains BS; in VR, and BS;3
in VR,. Choose point z from BS, and y from BS;3 such
that z and y are mutually visible.

Case 2: There exists one bold chain that is either BS; in
VRl or BSs in VRg.

Let z denote a point in BS; (BS;) which is in the visible
region. Choose y in BS3(BS;) such that z and y are
mutually visible.

Case 3: No bold chain is present in VR; and VR, but there
exists a point z in P, which is visible to some point z in
BS) and some point y in BS;. Place a guard at z and
choose z and y.

Case 4: No bold chain in VR and VR; and no point z in
P, which is visible to both BS; and BS;.

Choose some z in VR; and some y in VR,.

Apply Bern—-Cherng et el ’s 1-spiral algorithm for P, and P;
with guards placed at z and y respectively.
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Type B, C, E, G: Apply the same technique as in type A.

Type D: Construct two lines by extending the edges (c1,1,71,n,)
and (pred(rs,1),72,1)) till they intersect the boundary chain
Cy at z and y respectively. Now there are three cases to
consider.

Case 1: The lines intersect at z within P,;.

Case 2: The lines intersect at 2’ within P;. Place a guard
at 2’ and choose a point z on the convex boundary chain
in P, which is visible to 2.

Case 3: The lines do not intersect within the 2-spiral. Here
there are two subcases:

1. The convex boundary segment zy has non-empty in-
tersection with some bold chain in P;.
Choose z to be a point in this intersection.

2. zy does not have a non-empty intersection with any
bold sub-chain in P).

Choose z to be z.

Apply Bern-Cherng’s 1-spiral algorithm on P, with 2 as the
special node.

Type F: Let XT) denote the only one cross tangent. Apply
Bern-Cherng’s 1-spiral algorithm on P; with o as the special
node and on P; with af as the special node.

So, given a 2-spiral, we apply algorithm two-split and then
algorithm combine to place the minimum co-operative guards.
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