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ABSTRACT. A problem about “nine foreign journalists” from a
Nordic Mathematical Olympiad is used as the starting point
for a discussion of a class of extremal problems involving hy-
pergraphs. Specifically, the problem is to find a sharp lower
bound for the maximum degree of the hypergraph in terms of
the number of (hyper) edges and their cardinalities.

1 Introduction
The following problem appeared on the First Nordic Mathematical Olympiad.

Nine foreign journalists meet at a press conference. Each of
them speaks at most three different languages, and any two of
them can speak a common language. Show that at least five of
them speak the same language.

It is natural to express this problem in the language of hypergraphs.
We are given a hypergraph with nine pairwise intersecting hyperedges (or
simply edges), where multiple edges are allowed. Each edge has cardinality
at most three, and need to prove that some vertex is contained in at least
five edges. In standard terminology, we are given an intersecting hypergraph
with rank at most three, and are to prove that the mazimum degree of the
hypergraph is at least five. Generalizing this problem, we identify two
functions of combinatorial interest.
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Problem Let f(r,d) denote the smallest integer such that every intersect-
ing hypergraph H with f(r, d) edges and rank 7(H) < r has maximum
degree D(H) > d. In other words, f(r,d) is the minimum number of
pairwise intersecting edges having rank no more than r that neces-
sarily yield a vertex of degree at least d. Let fo(r,d) be defined the
same way, but with 7 restricted to be simple (no repeated edges).
Find f(r,d) and fo(r,d).

Thus, the problem from the Nordic Mathematical Olympiad asks for
a proof that f(3,5) < 9. More on this later. First, we establish some
general results concerning f(r,d) and fo(r,d). In particular, we show that
Jo(r,d) = f(r—1, d) for r > 5 and d large enough, provided that a projective
plane of order r — 2 exists.

2 Upper and Lower Bounds
First note that

fO(”' +1, d) 2 f(ra d) = fo('l’, d) (l)

The left hand inequality follows since, if f(r,d) sets are available, we can
add a distinct z; to each E; and obtain f(r, d) distinct (r + 1)-element sets.

In order to obtain bounds for f and fo, we shall need the following
hypergraph results.

Theorem 1. (Fiiredi [3]) Suppose H = {F, F>, ..., F,} is an intersecting
hypergraph with vertex set V(H) = X having rank r > 3. Then there
exists a labeling ¢: X — R* such that

> é(z) > 1 for all i, and
zEF;

Z¢(z)5r—l+;.

z€X

Moreover, if H does not contain a projective plane of order r — 1, then
2 zex ¢(x) < —1 can be ensured.

Corollary 1. If H is an intersecting hypergraph with rank r(H) < r and
m edges, then

m
> | —.
D(#) 2 [r -1+ l/r-l
If in addition, H contains no projective plane of order r — 1, then

r—1

D(H) > {l] .
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Proof: The bound on D(H) follows from
m< 3 Y ¢z) < D(H)- (r-1+l),
FieHzeF: T

and the same argument (with » — 1 + 1/r replaced by r — 1) takes care of
the case in which H contains no projective plane of order r — 1. O

Theorem 2. (Erdss, Lovész [2]) Suppose H = {Fy, Fs, ..., Fn} is a simple
hypergraph satisfying |F;| < r for 1 £ i < m, and for every F; and every
z € F; there is an F; such that F;N Fj = {z}. Thenm <r".

In fact, the upper bound " can be improved to ¢/ where c}./r" — 1—e~!
as r — oo [4], but we shall not need this stronger result in the proofs below
(except that it leads to sharper versions of parts (v) and (vi) of the following
theorem).

Theorem 3.

(i) If r — 1 is a prime power and d =1 (mod r), then
frd) > (d—-1) (r—1+%) +1.
(ii) If r —2 is a prime power and d =1 (mod r — 1), then
futrid) 2 @= 1) (r =2+ —15) 41

(i) f(rd) < [d-(r—1+71)].

(iv) If a projective plane of order v — 1 does not exist, then f(r,d) <
d-(r-1).

(v) For some ¢, < 1", independent of d,

r—1

fo(r,d>5d-(r-z+-l—)+c,.

(vi) If a projective plane of order r — 2 does not exist, then fo(r,d) <
d-(r—2)+cy.
Proof:

(i) Take a projective plane of order r — 1, and let each line have multi-
plicity (d —1)/r. Then all degrees are d— 1, and the number of r-sets
is (d —1)(r2 — r 4+ 1)/r, any two of them intersecting.
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(ii) Use (i) and apply the left hand side of (1).
(iif) See Corollary 1.
(iv) See Corollary 1.

(v) Let Ey, Bs, ..., E, be m distinct intersecting r-sets. If there is an E;
and z € E; such that (E; \ {z}) N E; # 0, then replace E; by E; \ {z}
and repeat this procedure if possible. (Of course, the maximum degree
does not increase.) Finally, we obtain a set system Fy,..., F; with
multiplicities my, ma, . .., my telling how many E; were contracted to
an Fj. Then m; +---+mg = m and m; = 1 for |F;| = r. Using
Theorem 2, we see that k < r". Deleting those F; with |Fj| = r, we
obtain an intersecting collection of m — ¢, sets of cardinalities < r—1.
Thus the statements follow from (iii) and (iv).

(vi) same as (v)

Question. In fact, the preceding argument shows that
fo(r,d) < f(r—1,d) +c,.

Is is true that fo(r,d) = f(r — 1,d), for d > do(r)?

Denote by v(H) the matching number of H (the maximum number of
pairwise disjoint sets in the set system). Define the functions f(r,d,v)
and fo(r,d,v) in the same way, replacing the intersecting condition by the
requirement that the matching number is at most v. Then

f(r—l,d,l/) SfO(Tade) Sf("—l,d,ll)-}-c,-,y

for some constant ¢, ,,. Moreover, lower bounds are obtained from v disjoint
copies of the constructions given for f and fo, and the upper bounds remain
true if we replace d by vd and ¢, by Cru-

Theorem 4. Suppose that f(r —1,d) > d-(r -2+ (r —1)"!) + ¢ for

some constant ¢ = c(r) (i.e. a projective plane of order r — 2 exists.) Then
Jo(r,d) = f(r —1,d) for r > 5 and d > do(r).

Proof: Consider the set system Fy, F3, ..., Fj obtained in the proof of (v)
and (vi) of Theorem 3, and assume |F;| <r—1for1 <i<’and |F|=r
forli+1 <i<k. Notethat k—! < ¢ < r". If the sets Fy, F5, ..., F; do not
form a projective plane of order r — 2, then a -ariant of Theorem 1 yields
I < (d-1)(r — 2) (if the minimum degree is < d — 1). Thus for d > dj,

l-}-c,.<d(r—2+—1—) —-c
r—1
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would hold, contradicting our assumptions. Consequently, Fy, F3, ..., Fj is
a projective plane of order r — 2, and the proof will be finished if we prove
l=k.

Otherwise, there is a set Fj that meets all lines of the plane but does not
contain any line (because then Fj should be replaced by that line). Now
| Fx| = r, and thus F; meets r(r—1) lines, counting multiplicity. (Each point
has degree r—1 in the plane.) The number of lines is (r —2)24(r—2)+1 =
r2 — 3r + 3, so it is enough to show that

Z(]F,, NLjj-1)>2r-2,
L;

where the L; are the lines of the projective plane. Set H; = Fi N Lj.
Each pair of elements of Fj is contained in precisely one Hj;, and by our
assumptions |Fi| = r and 2 < |H;| < r — 2. The Erdés-de Bruijn theorem
[1] shows that we have at least r sets H;. Put t; = |H;|. Then under the

assumptions
rl
Z(té) = (;), 2<t;<r—2,7 >r,

=1

the minimum of Z;:__l(t_.,- — 1) is achieved when ' = r, t; = tp = -.- =
t,-_2=2, t,.=r—2a.nd

/ 7 1
tr—l—[ 2r—z+§].

Thus, Z,:-':l(tj —1)>2r—2forr>4. 0

3 Exact Values

If r — 1 is a prime power and d is sufficiently large (d > r(r — 3)(r + 1)
will do), there is an intersecting hypergraph H of rank < r with at least
(r —1)(d — 1) + 1 edges and maximum degree D(H) < d — 1. Just take
the edges to be the lines of a projective plane of order r — 1, with each
line repeated |(d —1)/r] times. In fact, any intersecting hypergraph with
these parameters must have the lines of a projective plane of order r — 1
as its distinct edges, and this fact reduces the determination of f(r,d) to a
relatively straightforward computation.

Lemma 1. Suppose that r — 1 is a prime power. Let H be an intersecting
hypergraph with at least (r — 1)(d — 1) + 1 edges, rank at most r and
maximum degree at most d— 1. Then H is r-uniform and its distinct edges
are lines of a projective plane of order r — 1.
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Proof: If H contains an edge E with |E| < r, then some element of E
has degree at least [|H|/(r — 1)] > d, a contradiction. Hence H must
be r-uniform. If H contains no projective plane of order r — 1, then by
Corollary 1,
D(H) > [ ﬂ_] >d
— r - 1 — t]
a contradiction. Now it is easy to see that there is no set E that meets each
of the lines of the projective plane but is not identical with any of them.
Thus the distinct edges of H are the lines of the given projective plane. O

Theorem 5. Suppose that r — 1 is & prime power and d is appropriately
large. Let A denote the incidence matrix of the projective plane of order
r —1. Then

f(r,d)=max1Tq +1,
where 1 denotes the vector of all ones, and the maximum is taken over all
vectors q with positive integer coordinates satisfying Aq < (d - 1)1.

Proof: Since d is appropriately large, there is an intersecting hypergraph
H with at least (r — 1)(d — 1) + 1 edges having rank #(H) < r and maxi-
mum degree D(H) < d — 1. Let H be such a hypergraph with f (r,d) -1
edges. By Lemma 1, H is r-uniform and its distinct edges are the lines of a
projective plane of order r — 1. Enumerate the lines of the projective plane
Ly, Ly,..., Ly, where n =r2—r+1. To specify H it is only necessary to list
the corresponding multiplicities g1, g, ..., gn. The fact that D(H) < d—1
is expressed by Aq < (d — 1)1, and since H is extremal, the number of
edges, g1 + g2 + - - - + go = 17 q, has the maximum possible value. (]

Theorem 6. For every d > 5,
8 ifd=0 (mod 3),
fBd)=¢N 11 jfd=1 (mod 3),
A 42 ifd=2 (mod 3).

Proof: We take the incidence matrix of the projective plane of order two
to be

1 11 0 0 0 0]
1 001100
1000011
A=1]|01 01010
0100101
0011001
0 01 01 1 0
First, we give the required constructions. Throughout this discussion, k is

a positive integer.

188



(i) d=3k. Set ¢ = g2 =qs =gr=kand g3 =q4 =¢s =k — 1. Then
Aq<(3k—1)1and 1Tq="7k-3.

(ii) d =3k + 1. With g =g = -+ = g7 = k we have Aq < 3kl and
17q = 7k.
(ili) d=3k+2. Set ¢y =k+1 and g2 = g3 = --- = ¢ = k. Then

Aq<(3k+1)1and 1Tq="7k+1.

Next, we prove that these are best possible. Suppose in each case that
there is an intersecting hypergraph with rank »(H) < 3, maximum degree
D(H) < d—1 and at least 7d/3 — 2 edges if d = 0 (mod 3) etc. Then
|H| = 2d - 1, the distinct edges of H are the lines of a projective plane,
and H is completely described by the number of times each line occurs. By
assumption, the multiplicity vector q satisfies Aq < (d - 1)1.

(i) d = 3k. Since 1Tq > 7k — 2, we may assume ¢; > k. Adding the
inequalities involving ¢;, we obtain

2%k+(Tk—2) <3q1+q2+as+---+q7 < 3(3k—-1),
a contradiction.
(i) d = 3k+1. By assumption, 17q > 7k+1. Adding all of the constraint
inequalities, we obtain

3(7Tk+1) < 3(q1 + g2 + -+ + g7) < 7(3k),

a contradiction.

(iii) d = 3k+2. Since 17q > 7k+2, we may assume ¢, > k+1. Adding the
constraint inequalities involving ¢;, we again obtain a contradiction.
This time, it is

2k+1)+7k+2<3q1+ g2+ +¢7 < 3(3k +1).

Thus the proposed formula for f(3,n) holds in all cases. o

Oh yes, for d =5 we have f(3,5) = 7(5 — 2)/3 + 2 = 9. Nine journalists
suffice! *

4 As a Student Might Have Done It

We have used the “nine foreign journalists” problem from the Nordic Olymp-
iad to motivate a discussion of f(r,d) and fo(r, ), and point to interesting
problems and results concerning these two functions. However, since we
have used results due to de Bruijn, Erdds, Fiiredi and Lovész to obtain the
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solution, this may leave the reader wondering how a high school student
from Sweden (for example) is supposed to solve the problem.

The solution given below is one which a student might have given. Our
hypothetical student finds a proof along the lines of the one already given,
but discovers the relevance of the projective plane of order two “from
scratch” and needs nothing more than the pigeonhole principle, good in-
stincts and a little patience to carry out the proof.

The student’s proof. Assume that no language is spoken by five or more
journalists. Then we have the following sequence of conclusions.

(i) Each journalist must speak exactly three languages.

Proof: Suppose one of the journalists speaks at most two languages. Then
since each of the remaining eight journalists must speak a language in com-
mon with the one who is at most bilingual, the pigeonhole principle yields
a language spoken by at least [8/2] + 1 = 5 journalists, a contradiction.

Fori=1,2,...,9, let S; denote the set of languages spoken by journalist
i, and let Hy, H,, ..., H,, denote the distinct sets among the S;. We shall
refer to the H; as lines.

(ii) No two of the S; share precisely two elements.

Proof: Suppose that {1,2,3} and {1,2,4} are two of the S; and let p, q, 1, s
denote the following cardinalities:

p={i|1€S;,2€8:}, q=|{i|1€85;2¢ S},
T=|{‘i|1¢3‘-,2es.-}|, 8=|{i|1¢S,,2¢S‘}|.

Then p > 2 and p+ g+ r + s = 9. Since no language is spoken by five
or more journalists, p+ ¢ < 4 and p +r < 4. Suppose {1,2,¢£} is one
of the S; where ¢ # 3,4. Then either p = 3 and ¢, 7 < 1 or p = 4 and
g=r =0; in each case p+ ¢+ < 550 s > 4. It follows that {1,2,£} and
at least four other S; contain ¢, a contradiction. Hence each of the p sets
containing both 1 and 2 must contain either 3 or 4, and each of the s sets
containing neither 1 nor 2 must contain both 3 and 4 since each such set
must intersect both {1, 2,3} and {1,2,4}. We thus conclude that either 3
or 4 must be contained in at least s + p/2 of the S; and thus s + p/2 < 4.
Addingp+q<4,p+r<4ands+p/2<4,andusingp+q+r+s=09,
we obtain 3p/2 < 3 and thus p=2. Nowqg<2andr < 2so0 s > 3. But
s > 3 is impossible since then {1,2, 3} and four other sets would contain 3.
Hence we are left with p =¢=1r =2 and s = 3 and we may assume

51={1,23}, S2={1,2,4}, S3= {1,-,-}
Sy = {11 '} —}) S5 = {2: ] _'}r S = {2$ ) _}1
S7 = {3v 4, —}’ SS = {3’4: _}’ S9 = {3’4: _}'
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Without loss of generality, S7 = {3,4,5}. Since each of S, Sy, Ss, Se in-
tersects S, one of them intersects {3,4} or else each contains 5. In either
case, there is a language spoken by five journalists, a contradiction.

Thus we have shown that any two distinct lines H;, H; have exactly one
common element.

(iii) Each language belongs to precisely three lines.

Proof: Suppose language 1 belongs to one, two, or more than three lines.
If {1,2,3} is the only line containing 1, then each of the nine journalists
speaks either language 2 or language 3 so there is a language spoken by five
journalists, a contradiction. If {1,2,3} and {1,4,5} are the only two lines
containing 1, and these occur with multiplicity p and g, respectively, among
S1,52,...,S9, then p+ g < 4, either language 2 or language 3 is spoken by
at least p+ (9 — (p + ¢))/2 journalists, and either language 4 or language 5
is spoken by at least ¢ + (9 — (p + ¢))/2 journalists. Thus language 2, 3, 4
or 5 is spoken by at least [9/2] = 5 journalists, a contradiction. Clearly, 1
doesn’t belong to four of the lines since these four sets must be otherwise
pairwise disjoint, and an S; not containing 1 cannot intersect each of them.

(iv) Among the nine sets of languages spoken by the journalists, there are
seven distinct ones, and these may be taken to be

Hy ={1,2,3}, Hy={1,4,5}, Hs={1,6,7}, Hy={2,4,6}, (2)

Hs = {2,5,7}, He = {3,4, 7}, H, = {3,5,6}. 3)

Proof: Without loss of generality, we may assume that the lines containing
1 are

{1,2,3}, {1,4,5}, {1,6,7},
and the two additional lines containing 2 are

{2,4,6}, {2,5,7}.

Since the pairs {1,7}, {2,7}, {5, 7} and {6, 7} occur in the above lines and
any line must intersect {1,2,3} and {1,4, 5}, the unique choice for the third
line containing 7 is {3,4,7}. Similarly, the unique choice for the third line
containing 5 is {3, 5,6}. Clearly, there can be no more lines.

Completion of the proof: Each of the seven lines occur as language sets
of the journalists, and no other language set is possible. Since there are
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nine language sets S; and only seven lines Hj, some line must occur at least
twice, and we may assume that the langnage sets of our nine journalists are

{1,2,3}, {1,2,3}, {1,4,5}, {1,6, 7}, {2,4,6},
{2,5,7}, {3,4,7}, {3,5,6}, {a,b,c},
where {a, b, c} is one of the seven lines in (2)-(3) so {a,b,c} N {1,2,3} #

@. This implies one of languages 1, 2, 3 is spoken by five journalists, a
contradiction. a
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