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ABSTRACT. A Latin square (S, ) is said to be (3,2,1)-conjugate-
orthogonal if z +y = 2 * w, T *321 ¥ = Z *321 w imply = z and
y = w, for all ,y,2,w € S, where z3 *321 T2 = z, if and only
if z; *22 = za. Such a Latin square is said to be holey ((3,2,1)-
HCOLS for short) if it has disjoint and spanning holes corre-
sponding to missing sub-Latin squares. Let (3,2,1)-HCOLS(h™)
denote a (3,2,1)-HCOLS of order An with n holes of equal size
h. We show that, for any h > 1, a (3,2,1)-HCOLS(h™) exists
if and only if n > 4, except (n,h) = (6,1) and except possibly
(n,h) = (6,13). In addition, we show that a (3,2,1)-HCOLS
with n holes of size 2 and one hole of size 3, exists if and only
if n > 4, except for n = 4 and except possibly n =17, 18, 19,
21, 22 and 23. Let (3,2,1)-ICOILS(v, k) denote an idempotent
(3,2,1)-COLS of order v with a hole of size k. We provide 15
new (3,2,1)-ICOILS(v, k), where k= 2, 3 or 5.
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1 Introduction

Let (S, *) be a quasigroup where the multiplication table of * forms a Latin
square indexed by S. The (%, 4, k)-conjugate of (S, x) is (S, *i;x), where
(4,4, k) is a permutation of (1,2,3) and z; *;jxz; = =i if and only if z; ¥z, =
z3. Following the convention (see [2]), we call (S,*) a Latin square. A
Latin square is said to be (i, , k)- conjugate-orthogonal ((i, 5, k)-COLS for
short) if %y = 2w and z *;jk y = 2 *ijx w imply z = 2 and y = w,
where z * y denotes the entry in the cell (z,y) of the square. We will use
(4,5, k)-HCOLS(hT" ... hL*) to denote the type of holey (i, 7, k)-COLS of
order Zf=1 hin;, that have n; holes of size h;, 1 < i <k, and all the holes
are assumed to be mutually disjoint, and each of them corresponds to a
missing sub-Latin square. It is well-known that there does not exist any
(1,2,3)-HCOLS(h™) for n > 1; a (1,3,2)-HCOLS(h") exists if and only if
a (3,2,1)-HCOLS(h™) exists; a (2,3,1)-HCOLS(h") exists if and only if a
(3,1,2)-HCOLS(h™) exists.

The existence of (2,1,3)-HCOLS(h") has been completely settled [2, 5].
In this paper, using a similar approach, we provide an alomost conclusive
result to the existence of (3,2,1)-HCOLS. Note that an idempotent (3,2,1)-
COLS of order v can be written as a (3,2,1)-HCOLS(1"). An incomplete
idempotent (3,2,1)-COLS of order v with a hole of size k, denoted by (3,2,1)-
ICOILS(v, k), exists if and only if a (3,2,1)-HCOLS(1¥~*k!) exists.

The previous results concerning the existence of (3,2,1)-HCOLS(k") are
summarized in the following theorem:

Theorem 1.1. ([1,2]) There exists a (3,2,1)-HCOLS(k™) if and only if
h 2>1 and n > 4, except (n,h) = (6,1), and except possibly when (n, k) =
(12,1), when n € {8,9,12} and h =2, and when n =6 and h € {5,7,13}.
In this paper, we remove all but (n, k) = (6, 13) from the possible excep-
tions in the above theorem and thus obtain the following:
Theorem 1.2. There exists a (3,2,1)-HCOLS(h™) if and only if h > 1 and
n 2 4, except (n,h) = (6,1) and possibly excepting (n, h) = (6,13).
In addition, we provide an almost conclusive result regarding the exis-
tence of (3,2,1)-HCOLS with n holes of size 2 and one hole of size 3:

Theorem 1.8. There exists a (3,2,1)-HCOLS(2"3!) if and only if n > 4,
except for n =4 and except possibly n =17, 18, 19, 21, 22 and 23.

The previous result regarding the existence of (3,2,1)-ICOILS(v, k) is
summarized in the following:

Theorem 1.4. ([2]) For any integer v > 1, & (3,2,1)-ICOILS(v, k) exists if
v > (13/4)k+88. For 2 < k <6, a (3,2,1)-ICOILS(v, k) exists if v > 3k-+1
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except possibly when (v, k) = (30, 5) and when

k=2 wve{16,17,19,20,21,23},
k=3, ve{l1,20,21,24,25,26,28,29,30}.

We are able to solve all the open cases when 2 < k < 5 except (v,k) =
(11, 3). That is, we have the following:

Theorem 1.5. For 2 < k < 6, a (3,2,1)-ICOILS(v, k) exists if and only if
v > 3k + 1, except possibly when (v, k) = (11, 3).

The construction techniques that we used are conventional (such as the
cyclic construction, the fill-in-holes construction and the group-divisible
designs) and can be found in the survey paper [2]. The use of these tech-
niques is similar to that of [5] where the existence of (2,1,3)-HCOLS(2"3!)
is established. '

The direct constructions reported in the paper were obtained by a com-
puter program [6]. This program is a general theorem prover for proposi-
tional reasoning and has been used to solve various Latin square problems.
The heavy use of computer techniques is crucial to our success.

2 (3,2,1)-HCOLS(h")

The new designs of (3,2,1)-HCOLS(h™) were obtained by a starter-adder
type construction, called the cyclic construction, which constructs a (3,2,1)-
HCOLS of type h™k! from its first row and first column using an Abelian
group. In [2], this technique is described using the Abelian group Zj,, Below
we present the construction using an arbitrary Abelian group of order hn.
The Cyclic Construction. Let (G, +) be an Abelian group of order m
and H a subgroup of order h. In general, we assume G = {0,1,...,m -1}
and H = {i(m/h) |0 <i < h}. Let X = {zy,...,zx} = {m,..., m+k-1}
and S = GUX. Suppose that L is a (3,2,1)-HCOLS(h"k!) based on S with
a hole indexed by X x X, and m/h holes indexed by (g9 + H) x (g + H),
where g + H runs over all cosets of H in G. We will denote by (i * j)
the entry in the cell (¢,5) of L. The first row is given by the two vectors
e=(0%0,...,0x(m—1)) and f = (0*m,...,0%(m+k —1)), and the last
k elements of the first column are given by the vector g = (m x0,...,(m+
k — 1) %0). For a € H, we let (0 * a) = @, which means that the cell (0, a)
is empty. The entire L is constructed from e, f and g as follows:

1. Forse Gandte€ G,

Oxt)+s if(0xt)eC
(0xt) otherwise.

s*(3+t)={
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2. ForseG,teX,s*xt=(0xt)+s.
3. Forse X,teG, sxt=(s*0)+¢t.

Note that + is the one in the Abelian group (G, +).

There are obviously conditions that the vectors e, f and g must satisfy in
order to produce a (3,2,1)-HCOLS(h"k!) and they are given in the following
lemma.

Lemma 2.1. Let L be a holey Latin square generated by the cyclic con-
struction using the Abelian group (G,+). L is a (3,2,1)-HCOLS(h™k!) if
and only if (i) for any z & H, 0z & H; (ii) for any y € G, either Oxy € G
or y*0 € G; and (iii) the following difference conditions hold:
{(0*xz)+ —(0%3212) |0z € G,z+x0€ G,z € S,z ¢ H}

U {(z*0) + —(z #321 0) | z € X}

=G - H,
where —(z) is the inverse of z in the Abelian group (G,+).
Lemma 2.2. There exists a (3,2,1)-HCOLS(1'2), or equivalently, an idem-
potent (3,2,1)-COLS(12).

Proof: Let e = (06952731104118), f = g = 0. Using the Abelian
group Zz x Zy x Z3, we obtain a Latin square, shown in Figure 1, satisfying
Lemma 2.1. O

In the following, when we use the cyclic construction to obtain a (3,2,1)-
HCOLS(h™k!), we always use the Abelian group Zh,.

(a) (b)
* | 0123456789ab +]10123456789ab
0/]06952731a4bs8 010123456789ab
1]/ a17830b426509 1]/]120453786ab9
21 8b2164095a73 21201534867b9%a
3/125a39618b047 313450129ab678
4| b0374a926815 4]453120ab9786
51491b857a0362 5§1534201b9a867
6| 974a52603b81 61 6789ab012345
715a80b3471296 71 786abb9120453
81 63b41925870a 81 867b9a201534
9| 7256a18b4930 9| 9ab678345012
al]38027b5691a4 alab9786453120
bl 146908a3752hb bl b9a867534201

Figure 1.
(a) An idempotent (3,2,1)-COLS(12);
(b) The Abelian group used to obtain (a)
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Lemma 2.8. There exists a (3,2,1)-HCOLS(h™) for (n,h) = (8,2), (9,2),
(12,2), (6,5) and (6,7).

Proof: It is sufficient to give the vectors e, f and g, as shown in Figure 2,
which satisfy Lemma 2.1. (]

type e f, g

2% 1 (01110462z, 01211393 x3), (58),(913)

2° | (01512711316130165141048172),0,0

212 1 (p234117163171518150692120131981021422),0,9

55 | (02321z,22018142,12073169307142013z, 24 25),
(68111719),(13262324)
7 | (02216130171922310241613018334260121429x, 034 x5 1123
P zg 2 z7z1), (78923272832),(34292817 31 3233)

2°3! [ (026zx22:0394x3),(178),(389)

263! | (0x,23532,081429),(71011),(389)

273" | (0584132910, 6z2 3z3), (11112),(81213)

283! | (0z15732223101164102912),(131415),(167)

293! | (0251416111015130x, 748317 z273), (1612),(151617)
2193! | (082,1541215113013723726921416),(171819),(4912)
2'13' | (#131671021814141991595201736x, x2x3),(21218),(192021)
223! | (§6171110z,23931821014719151358z241620), (212223),
(31022)
2133! | (0620524112229, 1923150181072524811316z23),
(141721), (2324 25)
2143! | (013620723193 238729515021172217,11216101241824),
(252627),(81023)
253! | (p252016812719132241396014262118221017411523x, z3x3),
(272829),(6168)

Figure 2.
Vectors for some (3,2,1)-HCOLS(A™) and (3,2,1)-HCOLS(2"3!).

Remark. Combining Lemmas 2.2 and 2.3 with Theorem 1.1, we have
essentially proved Theorem 1.2.

3 (8,2,1)-HCOLS(2"31)

Because a necessary condition for the existence of a (3,2,1)-COLS(h™k!)
is that n > 1 + 2(k/h), there is no (3,2,1)-HCOLS(2"3!) for n < 3. A
(3,2,1)-HCOLS(2%3!) does not exist by exhaustive computer search.

Lemma 38.1. There exists a (3,2,1)-HCOLS(2"3!) for 5 < n < 15.

Proof: We give the vectors e, f and g, as shown in Figure 2, which satisfy
Lemma 2.1. ]

The use of recursive techniques is similar to that of [5].
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Lemma 3.2. (Filling in holes)

(1) If there exist a (3,2,1)-HCOLS(2™h!) and a (3,2,1)-HCOLS(2"u!)
where h = 2n + u, then there exists a (3,2,1)-HCOLS(2™"u!).

(2) If there exists a (3,2,1)-HCOLS((2m,)!(2m2)! ---(2mi)'h!) and a
(3,2,1)-HCOLS(2™u!) for 1 < i < k, then there exists a (3,2,1)-
HCOLS(2"v!) where n=m; +my+---+m; and v = h +u.

The weighting construction uses group-divisible designs [4, 5]. A group-
divisible design (GDD) is a triple (X, G, B), which satisfies the following
properties:

1. G is a partition of X into subsets called groups.

2. Bis a set of subsets of X (called blocks) such that a group and a block
contain at most one common point.

3. Every pair of points from distinet groups occurs in a unique block.

The following construction is used in [4]; see also [2, 5].

Lemma 8.3. (Weighting) Let (X,G,B) be a GDD and let w: X —
Z* U {0} be a weighing. Suppose that there exists a (3,2,1)-HCOLS of
type w(B) for every B € B. Then there exists a (3,2,1)-HCOLS of type
{3 ecw(z): Ge G}

For most of our recursive constructions, we will make use of transversal
designs. A transversal design TD(k,n) is a GDD with kn points, k groups
of size n, and n? blocks of size k. It is well known that a TD(k,n) is
equivalent to k — 2 MOLS of order n.

Lemma 3.4. ([3]) There exists a TD(5,m) if m >4 and m # 6, 10 and a
TD(6,m) exists for all odd m > 5 and m = 8.

Lemma 3.5. Suppose a TD(6,m) exists, 0 <r <m, and 0 < s < m.
Then there exists a (3,2,1)-HCOLS of type (2m)*(2r)!(2s).

Proof: In a TD(6,m) we give weight two to each point in the first four
groups. In the fifth group, we give weight two to r points and weight zero
to the other points. In the last group, we give weight two to s points
and weight zero to the remaining points. We use the fact that there exist
(3,2,1)-HCOLS of types 2%, 25 and 2° to get the result from Lemma 3.3. O

Lemma 3.8. There exists a (3,2,1)-HCOLS(2"3!) for n = 20, 25, 28, 30
and 32 <n < 90.

Proof: We first apply Lemmas 3.4 and 3.5 with m € {5,7,8,9, 11,15},
and suitable choices of r and s as indicated in Table 1. Note that there
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exist (3,2,1)-HCOLS of types 2™3!, 273! and 2°3!, so Table 1 guarantees
the existence of (3,2,1)-HCOLS(2"3'), where n = 4m + r + s, by applying

Lemma 3.2 (2). 0
m r 8 n=4m+r+s
5 0,5 0,5 20,25,30
7105-7| 056-7 28,33 - 42
8 0 0 32
91| 5-9 05-9 41 - 59
11)15-11 ]10,5-11 49 - 66
15| 5-15]0,5-15 65 - 90

Table 1, Some (3,2,1)-HCOLS(2"3!)

Lemma 8.7. There exists a (3,2,1)-HCOLS(22°3!).

Proof: From a TD(5,12) we delete two points from one group so as to form
a {4,5}-GDD of type 12*10!. .Giving each point of this GDD weight one, we
get a (3,2,1)-HCOLS(12410!). We then adjoin three infinite points to this
design, using (3,2,1)-HCOLS of types 263! and 253! to get a (3,2,1)-HCOLS
of type 223! by Lemma 3.2. O

Lemma 3.8. There exists a (3,2,1)-HCOLS(2"3!) for n = 16 and 24.

Proof: For n = 16, we start with a TD(5,8) and delete 5 points from one
group to get a {4,5}-GDD of type 83l. Giving each point of this GDD
weight one, we get a (3,2,1)-HCOLS(83!). Filling in the holes of size 8 with
(3,2,1)-HCOLS(2*), we get a (3,2,1)-HCOLS(2!63!). Similarly, for n = 24,
we start with a TD(5,12) and delete 9 points from one group so as to form a
{4,5}-GDD of type 1243!. From this GDD, we get a (3,2,1)-HCOLS(1243!)
and then a (3,2,1)-HCOLS(2243!), by filling in the holes of size 12 with a
(3,2,1)-HCOLS(2°). O

Lemma 3.9. There exists a (3,2,1)-HCOLS(2"3!) for n = 26 and 27.

Proof: We start with a TD(7,7) and adjoin an infinite point, say z, to the
groups. From the resulting design, we delete one point different from z so as
to form a {7,8}-GDD of type 677'. For the case n = 26, we give each point
in the groups of size 6 weight one. In the group of size 7, we give = weight
zero, five other points weight two and the remaining point weight one. We
need (3,2,1)-HCOLS of types 17 and 182!, which exist from Theorem 1.4,
to get a (3,2,1)-HCOLS(6711!). Using (3,2,1)-HCOLS(2?), we can fill in
the holes by adding two new points to get a (3,2,1)-HCOLS(22!13!) from
Lemma 3.2. We then fill in the hole of size 13 with a (3,2,1)-HCOLS(2%3!)
to get the (3,2,1)-HCOLS(2263!). Similarly, for the case n = 27, we use the
{7,8}-GDD(677!) again, except we give = weight one and the six remaining
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points of the group of size 7 each get weight two, so as to form a (3,2,1)-
HCOLS(6713'). Adding two new points and filling in the holes, we get a
(3,2,1)-HCOLS(22'15!). This produces a (3,2,1)-HCOLS(2273!) by further
filling in the hole of size 15 with the type 2631, (]

Lemma 3.10. There exists a (3,2,1)-HCOLS(2313!).

Proof: We start with a TD(5,7) and delete four points from one block so
as to form a {4,5}-GDD of type 647!. We give each point of this GDD
weight two to get a (3,2,1)-HCOLS(1214!). We then introduce three new
points and apply Lemma 3.2, using (3,2,1)-HCOLS of types 283! and 273!
to get a (3,2,1)-HCOLS(2%131). O

Lemma 8.11. If m > 5 and a TD(6, m) exists, then there exists a (3,2,1)-
HCOLS(25™u!) for 2 < u < 3m.

Proof: In a TD(6,m) we give a weight of zero, two or three to each point
in the last group so that the sum of the weights of all points in this group
is u. In the first five groups, we give each point weight two. The input
designs of types 2™, 25, 26, 253! all exist, and the result follows. O

Lemma 3.12. For any integer n > 80, there exists a (3,2,1)-HCOLS(2"3!).

Proof: If n > 80, then we may write n = 5m + k where m > 15 is odd
and 5 < k < 14. Let u = 2k 4 3. Then from Lemma 3.11 we know
that a (3,2,1)-HCOLS(25™u!) exists where 2 < u < 31. Since a (3,2,1)-

HCOLS(Z"SI) exists for 5 < k < 14 by Lemma 3.1, we can fill in the hole
of size u with (3,2,1)-HCOLS(2*3!) to get a (3,2,1)- HCOLS(25™t*31) and
hence the result. O

Remark. Combining Lemmas 3.1, 3.6 — 3.10 and 3.12, we have essentially
established the result in Theorem 1.3.

4 (8,2,1)-ICOILS

Recall that (3,2,1)-ICOILS(v, k) denotes an idempotent (3,2,1)-COLS of
order v with a hole of size k and is equivalent to a (3,2,1)-HCOLS(1v—*k1).
Using the cyclic construction, we are able to prove the following lemma.

Lemma 4.1. There exists a (3,2,1)-ICOILS(v, k), where (v, k) = (30,5)
and

k=2, ve{16,17,19,20,21,23},
k=3, ve{20,21,24,25,26,28,29,30}.

We list below the vectors e, f and g for these cases, except the cases
of (28,3) and (30,5) which are solved by the fill-in-hole construction. We
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assume X = {z,z2} for the cases of (v,2), X = {z1,z2,z3} for the cases
of (v,3). :

(v,n) | e f g
(16,2) [ (049128z,313105112z,7) 16) (1213)
(17,2) | (061410z21118z,12413593) 27 (1314)
(19,2) | (014161187122223154135x,16) (910) (1516)
(20,2) | (0141761113158105x,42272139) (1216) (1617)
(21,2) | (0161885127,13111142631710x297) (415) (1718)
(23,2) | (018201352,19912147,6154813211710) | (1617) (1920)
(20,3) | (0121416710132, 9212,7315643) (5811) (141516)
(21,3) | (0514171123151322101262,37219) (4816) (151617)
(24,3) | (0161820238121117192135144 2,31

21, 106) (7915) (181920)
(25,3) | (0171921181091312314220152; 163

2274811) (5612) (192021)
(26,3) | (01820229138x,1215112119461z35

72210142) (31617) | (202122)
(29,3) | (04159221914121721376824z; 2318

20105251113 x3 z3) (1216) (2324 25)
(30,3) | (018156241916820221261453112123

127, 2251723497) (101322) | (242526)

The case of (28,3) is solved by obtaining a (3,2,1)-HCOLS(5%3!) first
and then using the fill-in-hole construction. That is, we fill the holes of size
5 in (3,2,1)-HCOLS(5°3!) with a (3,2,1)-COILS(5). Similarly, the case of
(30,5) is solved by obtaining a (3,2,1)-HCOLS(58). The related vectors for
(3,2,1)-HCOLS(5°3!) are:

e=(04132,603817z,02231918012111701492116)
f=(222324)
g=(71424)

Remark: Combining Lemma 5.1 with Theorem 1.4, we have established
Theorem 1.5.
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