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ABSTRACT. In this paper the Desargues Configuration in P2 (k),
where k is a char (k) # 2 field, is characterized combinatorially
en route to define Desargues Block Designs and associate them
with certain families of dihedral subgroups of S¢ through the
use of the outer automorphisms of Sg.

This ideas let us understand more of the geometry associated
to this group morphisms and, as a by-product, generalize and
show a more conceptual approach to classical (i.e. for k = R)
Veronese’s Decomposition Theorem about Pascal’s straight lines
configuration (603).

1 Introduction

Lets recall first that six cyclically ordered points in P? (R), the projective
plane over the real field R, define a hexagon in that plane. As it is well
known, Pascal [5] found (ca. 1640) the necessary and sufficient condition
for those points to lie in a conic. Namely, that the intersection points of
pairs of opposite sides of this hexagon should belong to one and the same
straight line, which is called the Pascal line associated to the mentioned
hexagon (see Fig. 1).

With this theorem, Pascal started, may be without knowing so, the con-
struction of the Hezagrammum Misticum (Mystic Hezagon) Configuration.

Next we sketch some steps of the construction of this configuration.

After G. Salmon [6]: “M. Steiner was the first who directed the attention
of geometers to the complete figure obtained by joining in every possible
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Figure 1: Inscribed hexagon (abcdef) and it’s Pascal line

»

way six points on a conic. ...”.

So, those six points, cyclically ordered in all possible ways determine 60
(= 6—6)2%) hexagons and, consequently, 60 Pascal lines. And from then on,
the figure gradually developed through more than 150 years and from the
work of J. Steiner, T.P. Kirkman, A. Cayley, G. Salmon, G. Veronese, L.
Cremona, and some other mathematicians.

Steiner (see [10]) proved at the beginning of the XIX century that the 60
Pascal lines are concurrent by triples in 20 points since then named Steiner
points after him.

Kirkman’s [3] main contribution to this construction, by the middle of
that same century, was an extension of Steiner’s results, observing that
Pascal lines meet also by triples over 60 points, which are different from the
Steiner points, called more recently Kirkman points, and so building up a
(603)-type configuration (notation on this geometric objects comes in the
next section).

Afterwards Veronese ([11], 1877) proved that this (603)-configuration
properly splits into six Desargues Configurations (103),’s. This is Veronese’s
Decomposition Theorem which we refer to in the title of this paper. The
proof given by Veronese goes much along Kirkman’s work; i.e., relying on a
clever choice of the straight lines involved and on a heavy use of Desargues
two triangle Theorem quoted as Theorem 2 in section 3 below. In this
paper we give Sg-based criteria for those choices, beginning from the very
construction of the Pascal lines and up to Veronese’s result.

Also in section 3 there will be established a combinatorial property to
characterize Desargues Configuration (103), (up to projective equivalence)
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in P2 (k). Then this property will be used to define Desargues Block Designs
(DBD), actually a class of 1-designs, which will be needed in the fourth and
last section of this paper.

In section 4 we identify a particular block design structure in a particular
family of dihedral D¢ subgroups of Ss (which is chosen with the aid of
allotropic embeddings of Ss in Sg through the outer automorphisms of Ss)
and then prove that the Pascal lines in the main configuration associated
to this family constitute also a DBD and so carry a (103),-configuration
structure, recovering in this way Veronese’s result but in an invariant way
and also in a more general context. This is the main purpose in this paper,
which appears summarized as the claim in this same section. We also give
a “semi-algorithmic” procedure to reconstruct the Veronese components
(Just called figures by G. Veronese himself) starting with any one of the
constituent lines of that component.

Generalizations of this theorem to some types of balanced incomplete
block designs will be studied in a forthcoming paper [9] and also, in a
separate communication, a natural extension of the relations presented here,
mainly through the study of the links between the subgraph lattices of Kg
and L (Ks) and the subgroups lattices of Sg and M5, to understand better
the “English” and “German” configurations, the first “Grand” configuration
(804), and Veronese’s infinite sequences of configurations [7], which are some
of the associated configurations to the Mystic Hexagon Configuration.

2 Configurations in P? (k)

We will start defining projective plane configurations and some of the clas-
sical terminology for k a field with char(k) # 2 and |k| > 0. The restriction
on the field characteristic is to avoid Fano’s configuration and also to ensure
the existence of enough and effectively distinct points on each straight line
of P2?(k).

Definition 1 A configuration in projective plane P2 (k) is a system of v
points and b straight lines arranged in such a way that

(i) through each point of the system there pass a fixed number 7 of lines
of the system, and

(ii) each line of the system contains exactly m points of the system.

Something that one notes in a Projective Geometry course, immediately
after this definition, is that the quantities v, b, r, and = are not independent,
but relate to each other through the following fundamental equation:

v = br (1)
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Furthermore, one notes that this property, being purely combinatorial,
applies also to other types of structures, like certain Block Designs, which
we will consider in following sections of this paper. Actually, v, r, and #
are the usual parameters for a regular design, where we have changed the
k in the usual notation (see e.g. Wallis[12] pp. 5 and 6) for  to be able
to reserve that symbol £ for the base field as is common in projective and
algebraic geometry. Also, in sight of (1), we will refer to the 1 — (v, m,r)
design defined by such a configuration.

It is usual to assign the Coxeter symbol

(r3) ®

to such a configuration and, if the number of points equals the number of
straight lines in the system, i.e. v = b, we have also, by (1), that » = =,
and so a symbol (v;) would be enough to refer to it. These may be called
also Symmetric Configurations, after the symmetric block designs.

Recall that the general symbol (2) does not characterize, in general, a
specific configuration; namely, it may refer to a whole scheme of configu-
rations or even to an empty one. Two very interesting examples are the
next (see Figure 2) configurations of type (103) which are not even projec-
tively related. Furthermore, even if there was a coherent way to fill up an

Figure 2: Two Non-Desarguesian (103)-type configurations

“incidence table” for a symbol (2), there is no guaranty that there would
exist even a single one corresponding configuration. This is the very inter-
esting k-realizability problem for configurations which we will not address
in this paper mainly because the configurations that will be considered in
this paper are already k-realizable.

Because it is so important in projective and algebraic geometry as well,
Desargues Configuration is distinguished among the other (103)-type con-
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figurations and usually labeled with the symbol (103);.

3 Desargues Block Designs

In this section, it will be recalled a particular construction of Desargues
Configuration which will be helpful to characterize combinatorially that
configuration. Then we define Desargues Block Designs (as a special type
of t-designs) also in a suitable way to understand combinatorially Veronese’s
Decomposition Theorem.

To start with, we quote Desargues’ two triangle Theorem which “builds
up” Desargues configuration:

Theorem 1 If two iriangles are in perspective, then the interseciions of
pairs of corresponding edges are aligned.

So, we start considering the six vertices and the edges of two triangles
in perspective, plus the center of perspective and the straight lines joining
corresponding vertices under the considered perspective as a system of seven
points and nine straight lines in P2 (k).

Observe that, by now, those elements do not satisfy the required inci-
dence conditions (i.e. (i) and (ii) in Definition 1) to constitute a configura-
tion as already defined.

So, the quoted Desargues’ Theorem provides us with the necessary el-
ements (i.e. three more points and an extra line) satisfying the necessary
incidence and concurrence conditions which, together with the former ones,
constitute a (103)-configuration: (see Fig. 3).

o

Bl

A

Figure 3: Desargues two triangle configuration
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3.1 Combinatorial Property of (103),

The following well known property of Desargues Configuration it is used
almost verbatim in classical geometry to emphasize the homogeneity of the
configuration in the sense that no point on it plays a distinguished role in
the configuration, for instance, as the center of perspective.

Property 1 If any point of the configuration is removed, along with the
three straight lines of this configuration containing it, the remaining
three points determine a straight line which also belongs to the con-
figuration.

For example, in Figure 3, the points A, C, and R are the only non-
neighbor points of B’, which also happen to be in one of the straight lines
of this configuration. Also note that both configurations in Figure 2 do not
have this property, for at least one of ils points in each case.

The next theorem proves that Property 1 also characterizes combinato-
rially the Desargues Configuration. To emphasize the only dependence of
the following proof of the theorem on the “natural” block design structure
of the involved configuration D, let’s define a block of the design to be the
complete set of points of D belonging to a line of D.

Theorem 2 A (103) type configuration with the Property 1 above is a
(103), -configuration.

Let D be a configuration as in the hypothesis. Let N be any one of the
points of D and let I, IT, and ly be the blocks to which N belongs; say

Is={N,P,P'},Ir = {N,Q,Q'}, and Iy = {N, R, R'}.

Then, we have to prove that the three points PQ - P'Q’', QR-Q'R’, and
RP - R'P’ constitute the block Iy determined by the element N through
the mentioned property.

Let’s say that Iy = {S,T,U} and also that U belongs to the blocks {4
and lg, besides Iy.

First of all, we have that, at most one of the elements of each couple
of points {P, P'}, {Q,Q’'}, and {R, R'} belongs to I4 (resp. Ig). So, let’s
suppose that P, @Q € l4. Then P’ and @’ should belong to Ip: if R € Ip,
then R', N, and P’ (or Q') would belong to the block lyy , which contradicts
Property 1. Also we have that R’ ¢ g, and so we may suppose further that

la(=1r)={U,P,Q} and Ip(= Ig) = {U, P',Q'}

(see Figure 4).
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Figure 4:

Likewise, being S an element of the block {S,Q, R} implies that also
the block {S,Q’, R’} belongs to D and then we have that

lpo={S,Q,R} and lp = {S,Q', R'}.

Now that we have the triangles APQR and AP’'Q’'R’ in perspective from
the point N, we just have to identify the rest of a Desargues Configuration
to end the proof.

So, if the block {P, R', T} would belong to D (see Fig. 5), then property
1 applied to point P would imply that @', R, and S constitute a block of
D. So, the only possibility for the not yet identified blocks in D are:

lgo ={P,R,T} and lg = {P', R, T}.

The following lemma will be used in the next section in the search of
the Pascal lines that constitute, together with a given one, a Desargues
configuration, accordingly to Veronese’s result.

Lemma 1 For a (103), configuration in P%(k),
~ Aut ((103),) = Ss. 3)

Just note that the incidence graph of such a configuration is L(Ks), the
edge graph of a complete graph on five vertices, for which it is well known
that Aut(L(Ks)) = Ss.
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Figure 5:

Definition 2 A Desargues Block Design (DBD) D is a (103)-type sym-
metric design such that
For each point P;, its non-neighbor points; i.c., the point set

D - (), Uly, Uls,) (4)
constitute a block lp, of D.

The points in the set {;,U I5,U I3, plus those same blocks constitute a
block design Sp, D that may be called the Star of P; in D and also the point
set (4) with the only block Ip; defined by Property 1 above will be Rp,D,
the residual design to P; in D.

In general, for a Block Design D, we define Sp D, the Star of a point P
of D, as the set of neighbor points of P in D with blocks: {I block of D |
P €1} and RpD, the residual block design of D respect to P, as the set
of non-neighbor points of P in D with blocks: {I block of D | Q € I, for
a Q € RpD}. This is the treatment followed in San Agustin [9] to study
triangular double association schemes.

Warning: Those definitions are not the usual ones in Design Theory!
(compare with [12] for instance).
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4 Relationship with the outer
automorphisms of Sj

We will use the following notation:

1. (Py Py P3Py P5Ps) := hexagon obtained by joining the P2 (k) points Py,
P,, ..., and Ps in that cyclic order.

2. 12...6 := Pascal line for the inscribed (in a conic) hexagon
(P1P2P3P4P5P6).

3. Also we will use cyclic notation for elements in S,,.

Recall that any G(= S5) < Sg belongs to one and only one of the two
following types:

1. Stab(n), for n € {1,2,3,4,5,6}, and

2. w(Stab(n)), for an outer automorphism of Sg:

w: Sg — Sg. (5)

Also recall that two outer automorphisms of Se differ (under operation
in Aut(Ss)) by an inner automorphism, which do not change the group type
of G as described above and that classes (1) and (2) above are stable under
Se inner automorphism action.

Proposition 1 For each 6 — cycle a € Sg, there is a unique S5 < Sg such
that @ € Ss.

If w is any outer automorphism of Sg, w (a) is the product of a 3-cycle,
say (a,b,c), and a transposition, say (d,e), disjoint to each other, which
involve therefore only five of the elements of the set {1,2,3,4,5,6};i.e. the
subgroup Stab(n), for the only element n € {1,2,3,4,5,6} — {a,b,¢c,d,e} is
the only subgroup of Sg isomorphic to S5 and containing w(c).

Then, the S5 we are looking for is the pull back under w of that stabilizer
subgroup of Sg, Stab(n). ‘

Finally, by the bijectivity of w shows the uniqueness of this group:

Suppose that there is another such subgroup T of Ss containing a.
Again, it must be of type 2 and so w(T') = Stab(m), for m € {1,2,3,4,5,6}.

For what it was said before, m = n and so T = w™!(Stab(n)).

By the same argument, this construction does not depend on the outer
automorphism w employed in it.
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For a 6 — cycle o in Sg, we will call S’ this special Ss.

Let’s consider now Ng:(a), the normalizer of a 6 — cycle & in S’, which
is isomorphic to Dg, the dihedral group of 12 elements. It is easy to see that
Nss(Ns:/(a)) = Ns:/(a) and so the definition of this group, call it simply
N(«), does not depend on §'.

So, for six cyclically ordered points a, b, ¢, d, ¢, and f in a conic in
P2(k), we may associate to the Pascal line abcde f of the hexagon (abedef)
the normalizer group N («) corresponding to the 6—cycle a = (a, b, ¢, d, ¢, f):

abcdef — N () (6)

This map is defined from the set of 60 Pascal lines determined by those
six points (as explained at paragraph no.l of this paper) to the lattice of
subgroups of Sg.

Now, from the above comments and for a fixed 6 — cycle «, we natu-
rally consider the 10 conjugate subgroups of N () in the S’ detected by
Proposition 1. Call them N; := N (a), Na, ...Nyo. Let I}, ls, ...l10 be the
pullbacks of Ny, Ny, ... Ny, respectively, under the map (6).

Claim The set of Pascal lines Iy, ly,...l10 above constitute ¢ Desargues
configuration.

Despite the proof of the following Proposition is a straightforward one,
we will give it because the counting involved in it strongly relates Veronese’s
decomposition theorem and Desargues Block Designs, which is the tool we
use to prove the just stated claim, our ultimate goal in this paper.

Proposition 2 There are exactly 10 triples of this dihedral subgroups of S’
that intersect exactly over a Z,.

Again, this fact is very easy to see by using an outer automorphism w
of Ss:

Knowing that also w(N(a)) = D¢, w(a) is of the form (a, b, c)(d, e) and
so N(w(a)) may be generated by w(a) and (b, ¢) for instance. Then the di-
hedral subgroups N’ := ((d,b,c)(a, ), (b,¢)) and N” := {(e, b, c)(a, d), (b, ¢))
of w(S’) intersect along the subgroup (2 Z,) generated by (b, c).

Considering the choice of (b,¢) just made (see the item no. 2 in the
list below), these are the only triples with that property: being w(a)? a
transposition, if it belongs to N(8), another such dihedral subgroup of S,
w(a)® # B3 (or N(a) = N(B)). But in such a case, the transpositions
product w(e)38® € N(B), enlarging then the intersection.

Now, to count them, note that
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1. There are 20 order six elements in S, being 10 of them the inverses
of the other ones.

2. Any one of the 3 order two generators' of w(N(a)) will be one of the
mentioned permutations .

3. Each order six element appears in 3 of these triples (this might be
checked even by inspection).

So we have 3210 = 10 triples as mentioned. O

Remark Without using the outer automorphisms (and also without loss
of generality) we may take N(a) = ((a,d,c,d, ¢, f), (a, f)(b, e)(c, d)). Then,
the other two of those dihedral subgroups mentioned at the Proposition 2
are

N(a') = ((a,c,b,e,d, f),(a, f)(b, €)(c,d)) and
N(a”) = ((a’ be, f,d, C)’ (a’ f)(b: e)(c, d))’

which are precisely the conjugates of N(a) by, for example, (¢, d)(e, f) and
(cedf).

Finally, the corresponding Pascal lines abede f, acbde f, and abe fdc (pro-
jective geometry exercise, see Kirkman [3] or Salmon [6]) are concurrent in a
point. This is the typical Kirkman point as mentioned at the introduction.

Also note that we may associate, for a fixed outer automorphism w and
by the proof of Proposition 2, to each Pascal line [ a 3 — cycle, say (a,b,c),
and also to a Kirkman point K a transposition (I, m) in such a way that

Kel< {l,m} C{a,b,c} )

On the other hand we observe by the last remark that three Pascal lines
are concurrent if?

(i) A set of three alternate edges (i.e., non adjacent by pairs) of one of the
corresponding hexagons also belong, and also as an alternate set of
edges, to another one of them, and

(ii)The remaining edges in both hexagons constitute, in like manner, the
edges of the last of the three considered hexagons.

1w(N(a)) may be generated as well with w(a) = (a,b,c)(d, €) and any one of the two
transpositions (a,b) and (¢, a).

The only other transposition in w(N(c)) not to be considered is (w(a))3, because it
does not generate, together with w(c), the group w(N(e)).

2There are another triads of concurrent Pascal lines, which determine the so called
Steiner points of the Mystic Hexagon Configuration [6). We won’t discuss them in this
paper.
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So, in this case, the edges of the three hexagons determine just 9 different
straight lines (instead of the 18 expected for the general case) in P2 (k),
which, together with the three Pascal’s first considered, meet by triples in

16 points, which, in turn, belong by four’s to this 12 straight lines and so

constitute a ( 146 132 ) type configuration.

Now, given a Pascal line abcdef, we use the last observation to give a
simple construction of the other Pascal lines meeting by pairs on it:

1. First we represent diagrammatically the hexagon (abedef) as in
Figure 6.

2. Then we substitute the following scheme of diagonals (there are
three possibilities) for triples of alternate edges on the hexagon
(abede f) in such a way that the new hexagons formed this manner
exhaust all six vertices Py, Py, ..., and Ps (there are also two
possibilities)3:

In a moderner language we are treating each of this “H” shaped diagonal
schemes and the two triples of alternate sides as 1-factors of the K¢ graph
determined by the points P;, P, ..., and Ps which constitute, by couples,
the three hexagons (including the original one) who’s Pascal lines are meant
to concur, according to Kirkman’s result.

Explicitly, this construction produces the following sets of straight Pascal

lines:

abcdef
abdcfe, abefdc, abfecd,
afcbde afdebe afbced.
Figure 7:

3This construction is essentially due to Steiner, who used a similar scheme to grasp
the triples of Pascal lines concurrent over the now called Steiner points, using only main
diagonals in the schematic representation of Figure 6 for that purpose. Then Kirkman
modified that scheme of diagonals to get the one we just described. Nor Steiner, nor
Kirkman posed their schemes in any explicit form. They and all other authors, in any
source available to us, described at most typographically their methods (which proved to
be enough for them).
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Figure 6:

Applying this process once more to this “second generation” Pascal lines
set we get only 3 new lines among all the “third generation” lines. The rest
of them are just repetitions of the “older”ones.

There are no new elements at the “fourth generation”.

The reason of this is just that the given construction corresponds, via the
map (6), to conjugation of a = (a,b,¢c,d, e, f) by (c,d)(e, f) and (becd) as
explained in the preceding remark, respectively, and none of those elements
belongs 1o N(a). So N(a) # N’ and N(a) # N".

Finally, to prove the claim, the counting process used to prove Proposi-
tion 2 gives us (item by item) that:

1. Each Pascal line contains three Kirkman points.
2. There are 10 Pascal lines in this set.

3. Through each Kirkman point there pass three Pascal lines.

And, by the very statement of Proposition 2,

4. There are 10 Kirkman points.

That is, putting together both the Kirkman points and the Pascal lines
so far considered, we have a (103) type configuration in P2 (k).

To see that this is a Desargues configuration (using Proposition 1) we
rely again in an outer automorphism w of Se:

We have that the residual points to the Kirkman point associated to the
transposition (a, b) in our configuration are precisely the ones asscciated to
the transpositions (I, m) where {a,b} N {I,m} = @, the empty set. That is,

{l,m} € {c,d, e}
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and so, regarding (7), those residual points belong to the Pascal line associ-
ated to the 3 — cycle (c,d, e) and, by Property 1, this residual set of points
and line satisfies Definition 2, proving our claim.
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