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ABSTRACT. In this paper we construct all symmetric (27,13,6)
designs with a fixed-point-free automorphism of order 3. There

are 22 such designs.

1 Introduction

The only primes dividing the order of a non-trivial automorphism of a sym-
metric (27,13,6) design are 2, 3 or 13. Seven such designs were constructed
by Tonchev [7] by assuming an automorphism of order 13. Those seven are
the only (27,13,6) designs cited in [5]. This paper investigates the “order 3”
problem, describing an exhaustive search which found twenty-two (27,13,6)
designs with a fixed-point-free automorphism o of order 3. One of these de-
signs has an automorphism of order 13 and so this search reveals twenty-one
designs not covered by [5]. These designs are given in Appendix I.

The search began by assuming an automorphism o of order 3 which fixes
no point (or block), finding all possible contracted incidence matrices corre-
sponding with the action of o, and finally using the software GAP to finish
the problem with a computer search. The output of the search included sets
of isomorphic designs; these were pared down by using a variety of tech-
niques, including using GAP to construct isomorphisms between various
designs.

2 The contracted incidence matrix

The semiregular automorphism, called o throughout this paper, has 9 orbits
of size 3 on points and similarly on blocks. Call the orbits on points P; =
{p1,p2 = 0(p1),p3 = 0%(p1)}, P2 = {p4,ps = o(ps),pe = 0*(ps)}, ..., Po =
{p2s, P26, p27} and the nine orbits on blocks are By = {b;,b2 = a(b1),b3 =
02(b1)}, B2 = {bs,bs, b6}, ..., Bo = {bss, bag, bor}. The automorphism o is
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identified with the permutation

(1,2,3)(4,5,6)(7,8,9)(10,11,12)(13, 14, 15)
(16,17,18)(19, 20, 21)(22, 23, 24)(25, 26, 27)

on points and on blocks.
An incidence matrix A of blocks against points satisfies

AAt =TI +6J, (1)

AJ =JA=13J. )

Its rows and columns may be arranged according to the orbits of o. Let
A;; be the 3 x 3 incidence matrix of the ith block class with the jth point
class. View A as partitioned into the submatrices A;;.

This partitioning of the 27 x 27 matrix A into blocks of size 3 is the key
to our solution to this problem. The strategy is this: view A as a 9 x 9
matrix in various ways and find suitable solutions to equations (1) and (2)
and piece these together to find (0,1) solutions to the equations.

1 00
in particular, they are members of the ring Z(P) and we may view A as
belonging to either Mata7(Z) or Matg(Z(P)). The transpose map acts on
the ring Z(P) as an automorphism sending P to P~!. We distinguish this
map from the transpose map on the 27 x 27 matrix by calling the map
7: P — P~1 the “conjugate” map. The transpose map on Matz7(2) has
the following interpretation on Matg(Z(P)): A* is obtained by transposing
the 9 x 9 matrix and then conjugating (transposing) each (3 x 3) entry;
that is, the transpose map on Mat7(Z) is the conjugate transpose map on
Matg(Z(P)).

The matrix P has 3 eigenvalues: 1, w and w? where w = €2"/3, These
eigenvalues correspond to the right eigenvectors mo=(1, 1,1)%, 7y = (1, w, w?)*
and 7 = (1,w?,w)t, respectively, and these form an orthogonal basis for
the column space C3. The maps f;: P/ — w¥ (i =0,1,2) extend by lin-
earity to Z-module homomorphisms from Z(P) into the complex numbers
C; for any matrix X, f;(X) is merely the first coordinate of X#;. The
function fo maps a member of Z(P) to its row sum, and the maps f; and
f2 map Z(P) into the algebraic number field Z(w). The maps f; and fo
have kernel equal to the multiples of J3 = I + P+ P2 since 1 + w+w? = 0.
The “conjugate” map 7 on Z(P) now corresponds to the conjugate map in
Z(w), as f;(X7) is the conjugate of f;(X).

We may extend the functions f; to Z-module homomorphisms from Matg
(Z(P)) to Matg(C) by letting the functions act on each entry of the 9 x 9

010
More precisely, each matrix A;; is a sum of powers of P = [0 0 1] ;
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matrix. Consider the equations (1) and (2) under the map fo, that is, the
“row sum” map. Since fo(J27) = 3 Jy we have that

fo(A) - fo(A)* =71 +18J;, (1o)

Jo(A) - Jo = Jg - fo(A) =13J;. (20)

Any solution to equations (1) and (2) must also solve equations (1p) and
(20)-
The map f; sends P to w and J to zero. So

f1(A)- 1(A)* =TI (11)

where * represents the conjugate transpose. (Equation (2) becomes, here,
fi(A) -0 = 0 f1(A) = 0, which is useless.) Any solution to equations
(1) and (2) must also solve (1p), (20), and (1,) since the functions f; are
homomorphisms.

If we find a solution to equations (1o) and (2) and (1), will we have a

design? The answer is yes. The set of solutions to equations (1) and (2),
under the assumption that there is an automorphism of order three which
fixes no point, is exactly the set of solutions to equations (1) and (2) and
(11).
Theorem. Let A be a 27 x 27 (0,1)-matrix with the property that it may
be partitioned into blocks which form 3 x 3 circulants. A satisfies equations
(10), (20) and (1y) if and only if it is the incidence matrix of a (27,13,6)
design.

Proof: One direction is immediate from the fact that the functions f; are
Z-module homomorphisms. We need to show that if A satisfies equations
(1o), (20) and (1;) then it is the incidence matrix of a design.

Replace each entry in f;(A) by its conjugate and thus create the matrix
f2(A). Conjugation is a field automorphism which fixes the real numbers
(and most particularly, the integers) and so the equation

f2(A)- f2(A)* =TIy (12)
is satisfied.

A 27 x 27 matrix over the complex numbers is uniquely determined by its
action on a basis of C27. We will choose a special basis for C?7 as follows.
Let ej, ( =1,2,3,...,9) be the vector in C® with a 1 in the jth entry and
zeros elsewhere. Since the vectors mp, 7 and w2 are an orthogonal basis
for C3, the vectors vjx = e; ® m form an orthogonal basis for C?7. So
it suffices to prove that the matrix A satisfies equations (1) and (2) when
applied to the vectors v;, that is, it suffices to show that for all j,k,

(AAYYvji = (71 + 6J)vj, (1)
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(AT)vse = (J A)vsk = (13J)vjx. (2)

(1’) and (2') are clearly true for k = 0. The equation (2’) is trivial if k =1
or 2.

If k = 1 then (1') becomes (AA*)vj; = (71 + 6J)v;;. Consider the lth
partition of these 27 x 1 vectors, | = 1,2,...,9. Since Jv;; = 0, the ith
partition of (71 + 6J)v;; is 76,57, where § is the Kronecker delta. Now

(A*)vj1 is the vector Y;_, f1(A!;)vix and the Ith partition of A(A%)v;; is
the vector

9 9 9
D Au(fi(Afvan =Y fi(AL) Awvi = Y Fi(A5)f (Au)m
=1 i=1 =1

Now 3¢, f1(A5)f(Au)my is the (1, 5) entry of f1(A)f1(A)*, which, by (1)
is 76,;. So (1) is satisfied if k = 1.

If k = 2 then by a similar argument, (1’) is true. Therefore, A is the
incidence matrix of a design.

This suggests the following attack. First, find all solutions to the equa-
tions (1o) and (2o), that is, find all possibilities for the matrix fo(A) up to
row and column permutations. Then replace the entries 0, 1, 2, or 3 in fp(A)
with an appropriate matrix (1 —» I, P, or P2,2 - J—-1,J—P, or J - P?)
so that equation (1) is also satisfied. This second step will presumably
result in a large list of designs. The third step will then be to separate the
list into isomorphism classes and retain one representative from each class.

3 Solving the equations (1p) and (2p)

Our first step is to find possibilities for the matrix fo(A), where A is a (0,1)
matrix as in the theorem.

Set c;; equal to the row sum of A;j, that is, c;; is the (4, 5) entry of fo(A).
Then, for a fixed i, 0 < ¢;; <3 and

3
Y ;=13
i=1

3
D =7+18=125
j=1

3
Z:cijc\'k = Tbjx + 18
j=1

Fix a row i and let my = |{cij: ;5 = k,1 < j < 9}|. Then
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3 3 3
ka =9, kak =13 and Zkzmk = 25.
k=0

k=0 k=0
The possible values for the set (mg, m1, ma, mg3) are
(2,1,6,0),(1,4,3,1) and (0,7,0,2).

The last can be ruled out by a parity argument: suppose the first row of
the 9 x 9 matrix fo(A) is
111111133
and the second row is z;,z2,23,...,%9. Let z =z + 22 + 23+ ...27 and
let y=28 + 9. Thenz+y=13and 43y =18, s0 2y = 5. But y is an
integer and so this is impossible.
Therefore we may now assume the first row of fo(A) is one of

001222222 (type 1)

011112223 (type 2)

We now use inner-product and symmetry arguments to find the solutions
to (1o) and (2). The details are given in [1}. We suppose two cases. Case
1: there is some row of type 1; Case 2: all rows are of type 2.

Case 1 leads to three matrices fo(A) (up to equivalence):

1002 22 2 2 2]
022012222

022321111

203122111

212200222

221203111

221121013
22112113@P0
2 2112130 1]

This matrix has automorphism group of order 9, generated by (1,5,2)(3,4,6)
(7,8,9). Call this Matrix 1.

1 0 0 2 2 2 2 2 2]
013111222
031222111
212023111
212230111
212302111
22111102 3
221111230
2 2111130 2

=



This matrix, which we will call Matrix 2, has an automorphism group of
order 18, generated by (1,2)(4,7)(5,8)(6,9),(7,8,9), and (4,5,6).

[1 0 0 2 2 2 2 2 2
013111222
031222111
212311012
212131201
212113120
221201311
221120131
2 2101211 3

This is Matrix 3, which has an automorphism group of order 6 generated
by (2,3)(4,9,6,8,5,7).

For case 2 we assume row 1 (and column 1) is 031111222 and that all
rows (and columns) are type 2. We obtain the following two matrices.

NWN=KFHEN=O
WHENHEFNHEHON~
NGO =)= O N
DN O = B = D N =
N OWN = =N -
O O N e N
=N O =N W
N == NOWMN
AN = O N W

1

Call this Matrix 4. It has an automorphism group of order 3 generated
by the permutation (1,2,3)(4,5,6)(7,8,9) acting on columns.

0311112 2 2]
310111222
103111222
111222031
111222310
111222103
222031111
222310111
2 2210311 1j

We will call this Matrix 5. Matrix 5 has an automorphism group of order
81 generated by (4,5,6),(7,8,9) and (1,4,7)(2,5,8)(3,6,9).

We have five possible images for an incidence matrix under the map fo,
and now go on to the second stage of the project, which is solving equation

(11).
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4 Solving the equation (1)

Given one of the five matrices satisfying (1) and (2) we constructed two
or three possible rows of a corresponding matrix which also satisfied the
inner product conditions implied by (11). For example, Matrix 1 has rows
1, 2 and 5 equal to

001222222

220012222
122200222

after a permutation of columns. We may assume the rows and columns of
the incidence matrix of the design have been permuted by the permutation
(Bi+1,3i +2,3i+3),i=0,1,...,8, if needed, so that the the image of
these three rows of A under f is:

0 0 1 -1 -1 -1 -1 -1 -1
-1 -1 o0 0 1 —-w —wb —w —ut
1 —w® —wl —w 0 0 —wh —t

where {e,b,..., 5} are integers in {0, 1,2}. The inner product of rows 1 and
2 is —14w®+w®+w®+w? which must be zero. The minimal polynomial for
w is z2+z+1 and so the only way four positive terms and one negative could
sum to zero is if three of the positive terms sum to zero and one positive
term cancels the negative. In other words, this inner product could be zero
only if {a, b, ¢, d} is the multi-set {0,0,1,2}
We may assume, after permuting the last three places, if needed, that

row 2 of fi(A) is one of

-1 -1 001 -1 -1 —w? -uw,

-1 -1 001 —w -1 -1 -—w?

-1 -1 0 01 —w? -1 -1 -w

The third case is the conjugate of the first and so to simplify our search we
will conjugate the solution, if needed, and assume that the third case does
not occur.
Matrix 1, Case 1.
The image of rows 1, 2 and 5 under f; are respectively:

0 0 1 -1 -1 -1 -1 -1 -1

-1 -1 0 0 1 -1 -1 —w? —w

1 —w® —wf —w? 0 0 —wht - —u
The inner products of row 5 with rows 1 and 2 are

—wf ot ot o
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These are required to be zero. The first expression forces {g — f,h — f,i —
f,3—f} to be the multi-set {0, 0, 1,2} and the last expression forces {e, h, i—
2,7 —1} to be the multi-set {0,0,1,2}. If g = f then A, ¢, j are all different
and this forces (e, h, ¢, j) to be (0,0,1,2), (0,1,2,0) or (0,2,0,1). This gives
nine possibilities for (e, f, g, k,%,5). If g # f then two of A, i, and j are
equal, and in fact equal to f and we find that (e, f, g, h,1,5) = (2,0, 2,0,0,1)
or (1,0,1,0,2,0). '
Now we examine case 2 where the image under f; is:

0 0 1. -1 -1 -1 -1 -1 -1
-1 -1 0 0 1 —w -1 -1 =
1 —w® —wl —w9 0 0 —wh —uf —ui

Again we obtain a list of requirements on ¢, f, g, h, i, and j. They are

el A R
-1+ +uwtr i+ 2=0

and so {g —fah —fvi "'fsJ - f} = {e)h’iaj _2} = {0,0,1,2}. Ifg = f
then h, i, j are distinct and we are forced to have (e, A, 1,5) = (2,0,1,2) or
(2,1,0,2). However, the seventh and eighth columns of the matrix agree
on the first two rows and so we may permute those columns if necessary
and assume the solution is (e, h,%,5) = (2,0,1,2). The other case (g #
f) leads to (C, fa 9, hy ia j) = (l: 0: 2’ 01 0, 1)’ (0: 0, 11 0) 21 0)) (0) 1: 2: 0: 1’ 1),
1,2,1,0,2,2), (0,2,0,1,2,2), after permuting columns 7 and 8, if needed.
This situation has 8 possibilities. (In addition there are 8 possibilities if
the second row is the conjugate

-1 -1 00 1 —-w? -1 -1 —w

but we will not consider that possibility until the end of the search.)

So there are 19 possible starter sets of three rows arising from Matrix 1.
At this point GAP was used Lo exhaustively search for the remaining rows.
In the case of Matrix 1, no solutions were found.

Similar computations were made with each of the five matrices. Solutions
for the first two or three rows were found and then an exhaustive search
was made using GAP. (The starter rows for matrices 1 through 5 may be
obtained by writing to the authors.)

5 Construction

Each design is stored as a 9 x 9 array, in which each of the entries is an
ordered pair. The first entry of the ordered pair is the corresponding entry
from the Matrix 1, 2, 3, 4 or 5. The second entry in the ordered pair
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indicates the power, or sum of powers of P being used. Specifically, [0,0]
is the 3 by 3 zero matrix, [1,0] is P® = I3, [1,1] is P, [1,2] is P2, [2,0] is
P+ P2? [2,1]is P2+ P°, [2,2] is P+ P9, and [3,0] is J3.

For example, the first of the 19 sets of starter rows for Matrix 1 is

0 0 1 -1 -1 -1 -1 -1 -1
-1 -1 0 0 1 -1 -1 —w? -w
1 -1 -1 -1 0 0 -1 —w -w?

which we encode as

[0,0] [00] [1,0] [20] [20] [20 ([20] [20] [20]
(2,00 [2,0] [00] [0,0] [10] [20] [20] [22] [21]
[,0] [20] [20] [20] [0.0] [0,0] [20] [21] [22]

in GAP.

The next step is to find solutions to equation (1;) given one of the five
solutions to (1o) and (2). We will illustrate the method using Matrix 1.
Any design arising from Matrix 1 has one of 19 possible first three rows in
its array. Each of the rows 4 to 9 of the array have 37 possibilities since
each row contains the entries [0,0] and [3,0]. For each row, each of the 37
possibilities was checked using GAP to see if it had intersection size 6 with
all of the first three rows of the array, and only those with the appropriate
intersection size were retained. Further, given any two possibilities for the
ith row (where ¢ is fixed and 4 < i < 9), which differ only in that all
second entries of the ordered pairs in one of them are a fixed multiple of
all second entries in the ordered pairs of the other, it is only necessary to
consider one such row, since the multiple is simply a block permutation
in the resulting design. An exhaustive search through the remaining rows
yielded no (27,13,6) designs.

The same procedure was used on each of the matrices. Matrix 2 had 17
possible first two rows for its arrays. Matrix 3 also had 17 possible first
two rows for its arrays. Matrix 4 had 12 possible first two rows and Matrix
5 had 27 possible first three rows. Obviously, for matrices 2, 3 and 4 one
would also have to consider the 37 possible third rows of the array, and all
possible rows 3 to 9 would be checked against the given first two rows.

Matrix 1 did not produce any designs; Matrix 2 gave 108 (possibly non-
isomorphic) designs; Matrix 3 gave 99 (possibly distinct) designs; Matrix 4
gave 36 (possibly non-isomorphic) designs and Matrix 5 gave 24 (possibly
non-isomorphic) designs.

6 Isomorphism Testing

Isomorphism testing consisted of a number of different stages and ap-
proaches. Initial isomorphism testing consisted of converting the arrays
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to designs with point set P = {1,2,...,27} and block set {b3, b, ...,b27}
and then calculating the intefsection pattern for each design. (This idea is
effectively used in [7).) We define the intersection pattern for a block of a
design to be a 6-tuple whose ith entry corresponds to the number of pairs of
blocks of the design having mutual intersection size (i — 1) with the given
block. The intersection pattern for a point is a 6-tuple whose ith entry
corresponds to the number of pairs of points of the design which appear
together with the fixed point on (i — 1) blocks of the design. The intersec-
tion pattern for the design consists of the collection of intersection patterns
over all blocks and points of the design. Two designs are non-isomorphic if
either one has at least one block or point intersection pattern which is not
present in the other design, or if the two designs have identical block and
point intersection patterns that occur with different multiplicities.

For those designs having identical intersection patterns the next stage
of isomorphism testing consisted of searching for isomorphisms on points
amongst the group ((3i+41,3i+2,3i+3): i =0,1,...,8). Each block of the
design was viewed as a set and the collection of blocks were also taken to be
a set — thus alleviating the need to consider individual block permutations.

Using this group, the number of possibly non-isomorphic designs was
reduced from 108 to 18 for Matrix 2, from 99 to 19 for Matrix 3, from 36
to 17 for Matrix 4 and from 24 to 8 for Matrix 5.

At this stage, using intersection patterns, it was possible to identify at
least six isomorphism classes amongst the designs arising from Matrix 2. In
fact, there are exactly six non-isomorphic designs, these being A, B, C, D,
E and F (see Appendix I). There are seven designs from Matrix 3, these
being J, J2, K, L, M, N and O. Matrix 4 yields a further six designs,
namely, P, Q, R, S, T and U. Finally, Matrix 5 gives three designs, G, H
and I (I being the design found by Tonchev in [7]). For the designs A to
U, see Appendix 1. Therefore the original collection of 267 designs found at
the end of stage 2 has been reduced to 22 isomorphism classes. We make
several remarks:

1. There are four pairs of non-isomorphic dual designs, namely, K and
L, Pand Q, Rand S,and T and U.

2. Design I corresponds to D(5&25) found by Tonchev [7]; this is the
only design having a transitive automorphism group.

3. Designs J2 and J are non-isomorphic even though they have the same
intersection patterns. This pair of designs are the only non-isomorphic
pair with the same intersection pattern.
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7 Conclusion

There are 487 Hadamard matrices of order 28 (see [2], [3], [4] and [6]),
and apparently there are 208310 non-isomorphic (27,13,6) designs [6]. It
is remarked in [8] that a (27,13,6) design with an automorphism of order
3 fixing no points gives rise to a code over GF(7) as follows: a matrix
fo(A) which satisfies equations (1) and (29) has the property that X :=
3Js — fo(A) satisfies XJ = 14J, XX* = 7I + 21J. X is the generator
matrix for a (9,4) self-orthogonal code over GF(7).
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Appendix I

This appendix lists the 21 arrays for the new designs, together with design
1. Each design is stored as a nine by nine matrix, in which each of the entries
is an integer between 0 and 7. This integer is the decimal equivalent of the
first row of each 3 x 3 matrix viewed as a binary number. For example,
J — P2, which has first row 110 is encoded as 6.
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[[014273623]]
[173624203]
[430521173]
[453442730]

[341107523]
[542733440]
[207512253)
(333033034]

[441273650]
[106731213]
[267052113]
[470661123]
[735644210]
[612140673]
[521126703]
[311217063]
 [033303334]

[ [264445037]]
[605234471]
[452746430]
[427504646]
[434043751]
[546437201]
[044672546]
[676130112]

[722250513] | ;

| [740344343)

[[152572103]]
[515227013]
[267120433]
[621702343]
[474543230)
[745434320]
[432015723]
[340251273)

| [003333334]

J2:

| [250272513]

472345430
(743254340
(157134023
[511743203]
[263401723]
[624310273]

[522027153]
 [003333334],

[[474123560]]
[743564120]
[450572213]
[165701223]
[237052123]
[542210573)
[611225703]
[322127053]
 [003333334] |

[[015426743]]
[430231257]
(301611572
[443743043)
[451137430)
[312571601]
{746025446]
[437450464]
[371302644] |

[[452347160]]
(316474520
(167225103
[612731013)
(711026263
(170151623
[204346713)
[023452173]

(333300334]

252

[011634723]]
[105443273]
[234745430]
[647431610]
[342371023]
[436117203]
[722602513]
[275120153]

| [330033334] |

[[474123560] ]
[743564120]
(130671123]
[256702113]
[467061213]
(311120673
[522116703]
[641217063]

 [003333334]

[[470444333]]
[704421365]
[047412563]
[414353170]
[441335701]
[422533017]
[333170121]
[365701112]

| [356017211] |

[[431620713]]
[345402173]
[454743230]
[317461640]
[102372253] | ;
[016127523]
[724515203)
[273251023]

[330033334]



432310723
[346101273]
[234745160]
[647431520]

[202672153] | ;

[025127513]
[711625203]
[175452023]
(330033334

[[435614207]]
[571202534
(327150234
(612725034
[150271233)
[225027133
(402512733
[033333340]
| [744433304] |

[[443710332]]
[332012572)
[723424603]
[416454057)
[437463120]
[044433743]
[304647232)
[350574121]
| [474306423]

[[173534044]]
[462522703)
[616507124]
[113063227)
[647220664]
[201764163)
[344473340]
[750111463)]

[[125251073]
[247325103]
[571026223)

[344547230]
[235474340]
[012415733]
[702152343]
(333300334

[[620234743]
[152705341]
(203446372
(343137402

[744344033]
[046652447]
[271045455]
[132674430]

[437443034]]
[431230467]
[313574404]
[704445463]
[221654370]
[014437345)
[365021724]
[370613411]

(230762413

[367210314) | ;

[712016543]]
271601343
127160643]
[304712233]
[430271433]
043127133
356421470
[444333740]
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