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ABSTRACT. Suppose that a finite group G acts on two sets X,
Y and that FX, FY are the natural permutation modules for
a field . We examine conditions which imply that FX can be
embedded in FY in other words that (*): There is an injective
G-map FX — FY. For primitive groups we show that () holds
if the stabilizer of a point in Y has a ‘maximally overlapping’
orbit on X. For groups of rank three we show that () holds
unless a specific divisibility condition on the eigenvalues of an
orbital matrix of G is satisfied. Both results are obtained by
constructing suitable incidence geometries.

1 Imtroduction

Many finite groups of Lie type have natural permutation representations
which are doubly transitive or at least have low rank, and the same can
be said about sporadic simple groups [1,3]. We are interested in permu-
tation representations of such groups other than these natural ones and
in particular in the following question: When is it possible to make infer-
ence about permutational properties of such actions in terms of the natural
representation? Here is an example of what we have in mind.

Theorem. Suppose that G 'acts on two finite sets X and Y where G is
doubly transitive on X. Then precisely one of the following holds:

(i) For all y € Y the stabilizer Gy is transitive on X.

(ii) For every subgroup H < G there are at least as many H-orbits on Y
as there are H-orbits on X.
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This result is from [4] where we have discussed this problem also for
infinite groups. There are similar questions: Can we relate the permutation
ranks of subgroups? Can we compare the cycle structures of group elements
in the two representations? Some of these have been answered and a pattern
has emerged. The question about cycle structures, for instance, has been
investigated in [2]. Important for the theorem above is that a non-trivial
G,-orbit on X implies the existence of an injective G-map FX — FY.
(FX and FY denote the natural permutation modules over C). In other
words, if (i) fails, then FX is isomorphic to a G-submodule of FY, and
it is this property which allows us to answer some of the other questions
mentioned above.

The purpose of this note therefore is to investigate what kinds of intercon-
nections between (G, X) and (G, Y) are needed to guarantee an embedding
of FX in FY. This question is best approached from the view point of
incidence geometry, we explai‘n this in section 2 below.

In section 3 we investigate primitive groups in which point stabilizers have
orbits on the other set with maximal ‘overlap’ — see the first alternative in
the following

Theorem A. Suppose that G acts on two finite sets X and Y where G is
primitive on X. Then one of the following holds:

(i) For any y,y* €Y let T and I'* be unions of orbits on X of G, and
Gy respectively, with || = [I*| and T* =TY if y*9 = y. Then
C=I"or NI*| < || -1.

(ii) If F is a field whose characteristic is 0 or sufficiently large then there
is an injective G-map ¢: FX — FY.

The overlapping property is least stringent when Gy, has sufficiently many
short orbits on X and as a result such groups will generally allow an embed-
ding of the permutation modules. After Lemma 3.2 we comment how the
overlapping condition can be translated into a condition on the G -orbits
on Y. The second result is about groups of small rank.

Theorem B. Suppose that G acts on two finite sets X and Y where G
has rank 3 on X. Then one of the following holds:

(i) For z € X and any non-trivial union § # A # Y of G.-orbits on Y
the set {|[ANA?| | g € G,A # A9} consists of two values \; # Ao
where (A1 — Ag) divides (A — |A]) and (A2 — |A])/(A\1 — X2) is a
non-maximal eigenvalue of an orbital matrix of G on X.

(if) If F is a field whose characteristic is 0 or sufficiently large then there
is an injective G-map ¢: FX — FY.
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This is proved in section 4 and we show that similar considerations apply
to groups of rank up to 5.

2 Incidence Maps

For the remainder we assume G is a group acting on two finite sets X and
Y where neither action needs to be faithful. If F' denotes a field then FFX
and FY are the vector spaces with X and Y as bases. So these are the
natural permutation modules for G over F. We are interested in G-maps
¢: FX — FY which are injective. As the sets are finite every ¢: FX — FY
has a transpose ¢*: FY — F X with respect to the standard inner products.
Clearly, ¢* is a G-map if and only if ¢ is a G-map and as ranks are equal,
¢* is surjective if and only if ¢ is injective.

Now suppose that I C X xY is some relation. We regard I as an incidence
relation and define incidence maps ¢r: FX — FY and ¢}: FY — FX by
¢1(z) = (2 yyer ¥ and 87(y) = 3oz ,)er & The incidence matriz M(I) of
I is the matrix of ¢; with respect to X and Y. Its rows are indexed by X,
its columns by Y so that the (z,y)-entry is 1 if (z,y) € I and 0 otherwise.
It is clear that ¢} is the transpose of ¢; and both maps have the same rank.

Furthermore, ¢ and ¢} are G-maps if and only if G preserves the relation.
Therefore one approach to finding injective G-maps ¢: FX — FY is to
examine the G-relations on (X,Y) and proving that at least one of the
corresponding incidence maps have maximal rank.

To make this idea quite clear let I be any relationon X x Y. Forz € X
and y € Y denote zI := {y | (z,y) € I} and Iy := {z | (z,y) € I}. The
following is easy to establish.

Lemma 2.1. Let G act on X and Y and suppose that I is some relation
on X xY. If I is G-invariant, then zI is a union of Gz-orbitsonY and Iy
is a union of Gy-orbits on X. Conversely, if A is a union of Gz-orbits on
Y, then there is a G-invariant relation I such that zI = A and I is unique
if (G, X) is transitive. Similarly, if T" is a union of G,-orbits on X, then
there is a G-invariant relation I with Iy = I’ which is unique if (G,Y) is
transitive.

We denote a relation with zI = A or Iy =T by Ia and rI respectively.
Note that Ia and I are unique if G acts transitively on the sets. In fact,
the lemma implies the following: If G acts transitively on both sets and
ifzr € X and y € Y, then Ipn = 1l defines a2 one-to-one correspondence
between unions of G;-orbits on Y and unions of Gy-orbits on X. Therefore
conditions on Gz-orbits on Y can be translated into conditions on G-orbits
on X and vice versa. We will make use of this later.

To give an example consider again the doubly transitive group from the
theorem in the introduction. So G acts doubly transitively on X and ar-
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bitrarily on Y. Regard the elements of Y as blocks and if y is a block let
' C X be some non-trivial union of Gy-orbits. Regarding X as points,
the definition I = I declares that I is the set of points incident with y.
Duality then says that for any £ € X there is some union A of G:-orbits
on blocks for which Io = I. Obviously, A is the pencil of blocks through
z. But notice, as G is doubly transitive on X, there is a constant number
of blocks through any pair of distinct points. So the relation we have just
defined is a 2-design, and the conclusion of the theorem is the well-known
lemma of Block.

Finiteness is important for these arguments. In infinite designs Block’s
Lemma does not hold and in [4] we have given counter examples. We also
show that some form of Block’s Lemma does remain valid if block sizes are
finite and if FX is an almost irreducible G-module. For the full details see
the paper.

8 Primitivity

Let X, Y be sets and I an incidence relation on X x Y. Elements of X are
called points and elements of Y blocks. If y is a block, then Iy is the set of
points incident with y and so it makes sense to call |Iy| =: |y| the size of
y. Similarly, zI is the collection of all blocks through z, and |z| := |zI| is
the degree of z. Double counting shows that 3= x |z| =3, cy lyl-

For the remainder assume that |z| and |y| are constant, in particular
|z|.]1X| = |y]-]Y]- We are interested in the situation when |y| is small, or
equivalently, when |z| is small with regards to |Y'|/|X]|. For |y| = 1 the map
¢1: FX — FY is injective trivially, regardless of the field. For |y| = 2 we
can think of I as an undirected graph, possibly with repeated edges, but
without loops. The following is well-known:

Lemma 3.1. Let I be a graph with vertex set X and edge set Y. Suppose
that the number of connected components is ¢ and that b of them are
bipartite. Then the rank of ¢;: FX — FY is|X|—c if F has characteristic
2 and | X| — b otherwise.

Proof: It is sufficient to consider connected graphs. So let 8: FY — FX
be the transpose of ¢; and fix a vertex v*. If v is some other vertex
then there is a path {v*, v} = e;, {v1,v2} = ea,...,{vs—1,v} = €, and
d(e; —ea+---+(—1)*"le,) = v*+(—1)*"1v. Hence 8 hasrank > |X|-1. If
X = X1U X is a bipartition, then ¢;(X,cx, V) = Lyey ¥ = ¢1(Xpex, ¥)
and this shows that rank(¢;) = rank(9) = | X| - 1.

If the graph is not bipartite then v* is on some odd cycle. Hence we can
take v = v* and 2 < s—1 above so that d(e; —ez+- - -+ (—1)°"le;) = 20*.
If the characteristic of F is # 2 then 8 is a surjection and ¢ has rank |X|.
If F has characteristic 2, then ¢7(3_,cxv) =23, cy ¥ = 0 from which it

26



follows that ¢; has rank | X| —1. a

This proof is given because some of the argument can be extended to
incidence structures with |y| > 2 if they admit a point-primitive automor-
phism group. Notice, if a graph admits such a group then it is necessarily
connected and non-bipartite, since components, or parts of a bipartition,
are blocks of imprimitivity.

Lemma 3.2. Let G act primitively on X and arbitrarily on Y. Further,
let I be a relation on X x Y which is preserved by G. Then (i) implies (ii):

(i) There are y,y* in Y with |y| — 1= |IyNIy*| = |y*| - 1.

(i) ¢7: FX — FY has rank at least |X|—1, and equal to | X| if |Iy| #0
in F.

Proof: Let v be the point in Iy \ Iy* and let v* be the point in Iy* \ Iy. If
8: FY — FX is the transpose of ¢7: FX — FY then 8(y —y*) = v —v*.
Now we define a relation on X by z~z* if and only if z —z* € 9(FY). It is
easy to see that this is an equivalence relation. As G is primitive on X we
conclude that ~ is the ‘all’ relation. Therefore, if z, z* are any two points
in X, then z — z* belongs to 9(FY).

Hence & and ¢; have rank 'at least |[X| — 1. Now fix some ¥ € Y and let

Iy = {v,v1,v2,...,vk—1}. Then there are elements wy,ws, ..., wk—1in FY
for which 8(w;) = v—v;. From this we see that d(y+wi+wa+... .+we_1) =
kv and so 9 is surjective unless k=0 in F. O

Remarks: 1). It may be worth to write down the dual of the overlap
condition (i), at least when block sizes are constant:

(8)% There exist points zg,Z,...,zx € X for which ),_ 10,... k-1 Til and
MNiz1,... x Til are non-empty, where k is the maximal mteger for which
there exist points 3,3, ..., 2z} With Ni=1,... x =i I non-empty.

To see the duality take y in [N,y  px—1 Tl and y* in =y, x%il. Then
ly| = k = |y*| by definition and |Iyn Iy*|=k-1. :

2). For [y| = 1 the overlap condition is trmal and it also holds auto-
matically when |y| = 2. For if |Iy N Iy*| is always either 0 or 2, then Iy is
a block of imprimitivity for the G-action on X. In terms of condition (i)
we see therefore that if |y| is constant and |z| < 3|Y|/|X]| then condition
(i) holds. In other words, (ii) holds whenever the degree of a point is less
than 3|Y|/|X|]. In this form the graph nature of condition (i) is not quite
so immediate.

8). When k& = 3, we can think of I as a triple system, and for condition
(i) to fail any two (distinct) points must be on at most one block. So I is
either a Steiner triple systenr (any two points are on a unique block) and
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(ii) holds nevertheless by Fisher’s inequality. Or otherwise I is a partial
Steiner triple system (some pairs of points fail to be on a common block)
and here conclusion (ii) is quite open.

The proof of theorem A is now immediate. If (i) fails then there is an
incidence relation I, defined consistently by rI = p.I for which T = Iy
and I'* = Jy* satisfy the overlap condition of Lemma 3.2.

4 Groups of small rank

Now we suppose that G has rank at most 5 in the action on X. Throughout
we fix the field F and suppose that its characteristic is 0 or sufficiently large.
Again we are interested in whether injective G-maps FX — FY exist. The
first result is well known and deals with the question we have raised at the
beginning of the introduction. We give a proof because it illustrates the
arguments later.

Lemma 4.1. (2-Designs) Let G act doubly transitively on the set X and
arbitrarily on Y, and let F be a field with characteristic O or sufficiently
large. Then the following are equivalent:

(i) For z € X there is a set A CY fixed setwise by G, but not by G.
(i)' For somey €Y there is aset T C X fixed setwise by G, but not by
G.

(i) Thereisarelation] on XxY,I = I or I = I, for which¢;: FX —
FY is injective.

Proof: Conditions (i) and (i)* are dual to each other, following the discus-
sion after lemma 2.1. Supposé therefore that (i) holds and define a relation
by I = Ia. Let M = M(I) be its incidence matrix and put N := M.M7T
where M7 denotes the transpose of M. Clearly, if g € G is written as
a permutation matrix, then gNg=! = N as I is G-invariant. Further,
as G is doubly transitive, all off-diagonal entries are equal to ), say, and
all diagonal entries are equal to r = |A|. Now compute the determinant
d=(r—A)""1(r+ (]X| - 1)A) of N and note that d # 0 iff r # . But
A is the cardinality of AN A9 for any g with v # v9. Therefore d # 0
and ¢r: FX — FY has rank |X|. Conversely, if A is a G-orbit, then
o1(v) = ¢1(v9) for all g € G, and so ¢; is not injective. g

Remarks: 1). Statements (i) and (i) can of course be replaced by saying
that I is G-invariant and non-trivial. The simple but significant observa-
tion is that then I is a 2-design on X, and this has motivated the analysis
of incidence maps in a more general setting. The lemma gives also a simple
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verification of the theorem at the beginning of the introduction. For alter-
native (ii) in the theorem is just Block’s Lemma which holds in any finite
2-design.

2). If we replace condition (ii) by a weakening, namely that there exists
an injection ¢: FX — FY (for instance when F are the complex num-
bers) then it is unclear if this already implies the existence of an injective
incidence map. This might be an interesting problem.

Now suppose that G acts on X as a group of rank m. Then there are m
G-orbits D (the diagonal orbit), 01,02,...,0m—1 on X x X. We represent
each by an |X| x | X| matrix whose (z, z*)-entry is 1 if (x,z*) belongs to
the orbit, and zero otherwise. These are the orbital matrices of the action
and they span an m-dimensional algebra A which is called the centralizer
algebra of the action. A contains all matrices C for which g~'Cg = C
whenever g € G is written as a permutation matrix. As we have seen
in the proof of Lemma 4.1, if I is a G-invariant relation with matrix M,
then M.MT belongs to A. Our strategy is to determine the rank of M by
knowing enough about A.

From centralizer theory (see chapter V of Wielandt’s book [5]) it is known
that m = 3~ n? when the permutation character m = 3, n;x; is written as a
sum of irreducible characters x; and furthermore that A is commutative if
and only if all multiplicities are at most 1. This is the case automatically if
m < 5. It is sufficient to rule out 5 = 14 22, that is m = 1+ 2x: Note that
G must contain a fixed point free element g for which 0 = m(g) = 1+ 2x(9),
contradicting the fact that x(g) is an algebraic integer.

We first deal with the case of rank 3 groups where one can say a little
more:

Lemma 4.2. (Rank 3 Groups): Let G act as a rank three group on and
arbitrarily on Y. Suppose that § # I # X x Y is a G-invariant relation
and that F is a field of characteristic O or sufficiently large. Then one of
the following holds

(@) {|zInz*I||z,z* € X and zI # =*I} = {A1, A2} with A1 # Ao where
(A1 = X2) divides (A1 — |z|) and (A2 —[z])/(A1 — A2) is a non-maximal
eigenvalue for one of the orbital matrices of (G, X).

(ii) ¢1: FX — FY is an injective G-map.

Proof: As G has rank three on X we have three orbital matrices Id, A and
J — Id — A (where J is the all 1-matrix) and A = (Id, A, J) has dimension
3. Let M = M(I) be the matrix of I and N := M.M7T. Clearly, N belongs
to A and we are going to show that N is non-singular unless (i) holds.

So if N = rld + A\ A + Ao(J — Id — A), then r = |X] is the number
of blocks through a point and the other two coefficients count how many
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blocks pass through a pair (z,z*). This number is |xI N z*I| and it only
depends on the orbital to which (z,z*) belongs. We can assume A; # Ag
for otherwise I is a non-trivial 2-design and Lemma 4.1 applies.

If G is primitive on X, then Sims’ theorem implies that A, viewed as
the adjacency matrix of a graph, is connected. So A = {Id,A) as J is a
polynomial in A, and A has precisely three eigenvalues ag > a; > ag where
ag, the row sum of A, has multiplicity 1. If G is imprimitive on X then A
represents disconnected copies of complete graphs. In this case, however,
the other orbital is connected and so J — Id— A has three eigenvalues which
satisfy the above condition. So, after interchanging 0; and 02 if necessary,
we can assume that A has three eigenvalues ag > a; > as where ap has
multiplicity 1.

As A is commutative, the eigenvalues 19 > vy, 1o of N = rld+ A\1A +
A2(J—1Id—- A) are easily computed. Clearly 1y = r+Ajap+A2(|X|-1—ap) >
0 is the row sum of N and the remaining values are v; = r+Aja; +A2(—1—
;). So if N is singular then o = Ag —7/(A; — Ag), fori=1o0r i =2, and
(A1 — Ae) divides A2 — 7 as ¢ is an algebraic integer. O
Remark. The Lemma is best possible in the sense that (i) occasionally
does occur. For instance, there are generalized quadrangles which have
rank 3 automorphism groups Tor which the incidence maps are singular and
where the point module can not be embedded in the line module. The
smallest one has Ag as automorphism group, and the characters on X and
Y are genuinely different.

The proof of Theorem B follows directly from the Lemma. We are going
to extend it to groups of rank 4 and 5. The result is not as concise simply
because there are many more possibilities.

Lemma 4.3. (Groups of Rank 4 or 5): Let G act on X as a rank m group
with 4 < m <5, and arbitrarily on Y. Suppose that 0 # I # X xY isa
G-invariant relation and that F is a field of characteristic 0 or sufficiently

large. Then ¢;: FX — FY is an injective G-map unless the following
holds:

() {leInz*l|| z,2* € X,zI # z*I} = {A1,...,Am—1} and 0 = (|z| —
Xa) + ()\1 - )\3)a+ ()\2 - /\3)ﬁ ifm=4,o0r0= (l:rl - )\4) + (Al —
Aa+ (A2 —A)B+ (A3 — Ag)y if m = 5 where o, B3, v are eigenvalues
of distinct orbital matrices for the G-action on X.

Proof: Again the centralizer algebra is generated by orbital matrices, A =
(Id,A,B,J—Id—A-B)or A= (Id,A,B,C,J—Id— A— B—C) depending
on whether G has rank 4 or 5 on X. Denote the eigenvalues of A by
Qp,Q1,...,0m-1, those of B by ﬂoa ﬁlr ree :ﬂm—l etc.

Let M = M(I) be the incidence matrix of I. Then as before N := M.MT
belongs to A. Expressing N by the generators gives N = rld + \{A +
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MB+X3(J—Id—A—B)or N=rld+MA+XB+A3C + Ay(J - Id—~
A~ B —C). We have r = |z| and A; = |zI N z*I| counts the number
of blocks through a pair (z,z*). As A is commutative the eigenvalues
of N are sums of eigenvalues of the orbital matrices. In particular, the
non-maximal eigenvalues are v; = 7 + Aoy + AoB; + A3(—1 — a; — Bi)
and v; = 7+ Ma; + Ao + Aavi + M(—1 — a; — B; — ) respectively.
So if N is singular, then 0 = (r — A3) + (A — A3)a)i + (A2 — Ag)B; or
0 = (r— X))+ (A1 — M)as + (A2 — A)Bi + (A3 — Ag)y: for some ¢ and
eigenvalues a;, 8;, v; of distinct orbital matrices. This proves the lemma. O
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