Complexity of Scheduling Problems
With Generalized Due Dates

C.S. Wong* and Monique Yan

Department of Computer Science
San Francisco State University
San Francisco, CA 94132

Gilbert H. Young

Department of Computer Science
Chinese University of Hong Kong
Shatin, New Territories, Hong Kong

ABSTRACT. We censider the problem of scheduling n indepen-
dent tasks on a single processor with generalized due dates. The
due dates are given according to positions at which jobs are
completed, rather than specified by the jobs. We show that the
following problems are NP-Complete, 1|prec,p; = 1|3 w;Uj,
1|chain, p; = 1| 3" w;Uj, 1|prec, p; = 1| w;T; and 1|chain, p; =
1 z w;T;. With the removal of precedence constraints,we prove
that the two problems, 1|p; = 1| 3~ w;U; and 1|p; = 1|) w;Tj,
are polynomial solvable.

1 Introduction

The Generalized Due Dates (gdd) scheduling model, proposed by Hall [3],
is a new class of scheduling problems. In this model, due dates are spec-
ified in terms of the position in which a job is completed, rather than
specified by the job itself. The generalized due dates did not come out
of imagination. Hall [3] and Stecke & Solberg [7] described a number of
applications in which the generalized due dates definition is appropriate.
These applications include public utility planning problems, survey design,
and scheduling problems in some flexible manufacturing system (FMS) en-

*Tel: (415) 338-2858, Fax: (415) 338-6136 and Email: jwongQ@cs.sfsu.eu

JCMCC 22 (1996), pp. 51-63

vironments. The fundamental point of all problems is that the definition
of due dates is independent of particular jobs.

In general, we study the following scheduling problems in this paper:
Given a set of n jobs and a set of n generalized due dates, we are to schedule
jobs on single processor so as to minimize the total weighted tardiness
or total weighted number of late jobs subject to precedence constraints,
for example, tree precedence constraint and chain precedence constraint.
Under the assumption of generalized due dates (each due date is specific
according to the position in which a job is completed), let djy), diz)s - -+ i)
be the generalized due dates, where djy) < djg) < -+ < dj,}. The scheduling
objective is to complete at least i jobs by dj;, 1 < i < n. Asto which job to
be finished at a specific time is irrelevant under the generalized due dates
definition.

The outline of the paper is as follows. In the next section, we intro-
duce the notation and show an example of generalized due dates scheduling
problems. Section 3 deals with the total weighted number of late jobs prob-
lem. The complexity of this problem subject to the arbitrary precedence
was asked in [4]. We answer this question by showing that the problem
subject to the precedence constraint is NP-Complete, even when the prece-
dence relation is chain. In Section 4, we investigate the total weighted
tardiness problem. The complexity of this problem subject to the arbitrary
precedence was also asked in [4]. We show that the problem under the
precedence constraint is NP-Complete, even when the precedence relation
is chain. Finally, we draw some conclusions in the last section.

2 Notation

The terminology used in this paper follows the classification a|8|y of schedul-
ing problems suggested by Graham et al. (1979) [2], where a indicates the
machine environment (e.g. a = 1), 8 denotes the job characteristics or
restrictive requirements (e.g., chain precedence constraint), and, « is the
optimality criterion (e.g., finish time, mean flowtime. maximum lateness,
etc.). We also make use of the following notation:

pj = Processing time of job j
w; = Weight (value) of job j
wij) = Weight (value) of the jth job to be completed
r; = Ready time of job j
C; = Completion time of job j

Cl;) = Completion time of the jth job to be completed

52

dj) = Due date of the jth job to be completed for the gdd version
Ujj) = max{0,Cy;; — dj;j}, the tardiness of the jth job to be completed

Uy = 1 Gy > s , the unit penalty of the jth job to be completed
0 otherwise

We define the optimality criterion as the minimization of: (a) the total
weighted number of late jobs, 3°7_; wi;U; and (b) the total weighted
tardiness Y7, wy;T};). For simplifying the writing of formulas, we will use
2_w;Uj and 35 w;T; for 377, wy;) Upy) and 377, wyy Ty from here onwards.

There are no assumptions made in this paper about the due dates d(j),
1 < j < n, of generalized due dates, except the very natural assumption
djy) < djg) < -++ < dj). That is, the due date of the ith job to be completed
is no greater than that of the jth job to be completed, for 1 <i <j < n.

A precedence constraint is given in the problem. A precedence relation
Ji — Ji between two jobs means job J; is required to be completed before
job Ji can start. A feasible schedule is a sequence that satisfies the prece-
dence constraint. An optimal schedule is a feasible schedule such that the
value of optimality criteria is minimized.

2.1 Example

In order to illustrate the use of notation, let us consider the following simple
example. Given five jobs (J;, r;, wi,pi), gdd set {dj;} and a chain prece-
dence constraint as shown in Figure 1, we give two feasible schedules &
and S* in Figure 2(a) and 2(b). The total weighted late jobs (}_ w;U;) are
100 and 30 for S and S*, respectively. In this example, S* is an optimal
schedule.

i 1 2 3 4 5
(Ji: rivwinpi) (11:07401 2) (J2: 2,10, 2) (J3! 2,30, 3) (J‘h 0, 50, 1) (JS’ 1,20, 2)
d[.'] 1 3 3 8 9

chain precedence constraint: J; — J3 — J3 and Jg — Jg

Figure 1. Example illustrating the use of notation

dy; 0 1 3 3 8 9
S: (J1,0,40,2)[(J3, 2, 10,2)i(Js, 2, 30, 3){(Js, 0,50, 1)(Js, 1,20, 2)
Time 0 2 4 7 8 0
Us) 1 1 1 0 1
wiUp4) 40 10 30 0 20

Figure 2(a). Feasible schedule S with ¥~ w;U; = 100

53

di; 0 1 3 3 8 9
5*: [Ji,0,50,1)]1,0,40,2)| 13,2, 10,2) Js, 2, 30, 3)| Js, 1, 20, 2)

Time 0] 8 0
U5 0 0 1 0 1
wi;1U14 0 0 10 0 20

Figure 2(b). Optimal schedule S* with) w;U; =30

3 Weighted Number of Late Jobs

The problem of minimizing the totq‘.l weighted number of late jobs under
the generalized due date definition differs from the classical version in that
the due dates are specified according to the number of jobs to be completed
at a certain moment in time, in: of being specified by particular jobs.
The generalized due date definition i 1s less restrictive than the classical due
date definition, and the resulting problems can be easier or more difficult to
solve than their classical counterparts, and in some cases, the complexity
of the problem under the generalized due date definition remains the same.
For example, 1|prec,p; = 1|3 Uj [3], [5] is generally NP-Hard under the
classical due date definition, but becomes polynomial solvable under the
generalized due date definition.

Given a set of n tasks, a set of n generalized due dates and a precedence
constraint, the problem of scheduling n jobs on a single machine to minimize
the total weighted number of late jobs (WU) can be stated formally as
follows. Let WU, denote the total welghted number of late jobs of schedule
S. Our goal is to find a feasible non-preemptive schedule S such that WU,

is minimized. Such a schedule will be called an optimal schedule.

In the next section, we will prow}re that 1|chain,p; = 1|3 w;U; and

1|prec,p; = 1| w;U; are NP—Comp%:lte. Then, in section 3.2, we will show

that by removing precedence constraints, the problem 1|p; = 1| 3" w;U; is
solvable in O(nlogn).

8.1 Jobs with Precedence Constraints

In this section, we will show that the problem 1|chain,p; = 1|3 w;Uj is
NP-Complete. The proof is given by transforming the problem from a
known NP-Complete problem, 3-Partition [1).

3-Partition. Given posmve integers n, B and a set of integers A =
{a1,a2,...,a3,} with 2‘_164—71 and% <a¢<-§for15i$3n,
does there exist a partition of A into three element sets {A;, Az, ..., An}
such that quA,q=B, ISanZ

Theorem 1. 1|chain,p; = 1| ¥ w;U; is NP-Complete.

54

Proof: We restate the optimization problem 1|chain, p; = 1| 3_ w;Uj as the
following decision problem (PWU): given a set of jobs J = {J; | 1 <i < N}
to be processed on a single machine, each job J; having unit processing time,
weight w;, and the set of generalized due dates D = {djy,djz), ..., d[n}, i8
there a schedule S for J whose total weighted late jobs WU, is not more
than a given value WU, i.e. WUs < WUp?

We begin by describing a reduction from the 8-Partition problem to

the problem PWU. Let n, B and A = {ay,ay,...,a3,} be an arbitrary
instance of the 3-Partition problem define above, construct an instance of

the PWU problem as follows:

a set of N = 2nB jobs:
J={ji;|1<Jj<2a:,1<i<3n}

the processing time of jobs:
Pij=11<j<2eand1<i<3n

the weight of jobs:

wes = 1 1<j<a
Y710 4 +1<5 <2y

the precedence constraints (3n chains):
Jig o Jig oo o Jigg 2 diaer1 = or = Ji20, 1 <8< 30

generalized due dates set:

D={db-] Idb-]=2KB+BfOI‘K= |r2iB-.l —1land1<j<2nB},

where [z] is the smallest integer greater than or equal to z.

In other words,

D = {d11,d12,---,01,28, -+, 45,1, &2, -+ -, 4 2B, - - - O, 1,02, - - -, En 2B}
where d; ;= (2 —1)B,1<i<n,1<j<2B,

and WU, =0.

That is, for each integer a; € A (1 < i < 3n), there is a chain J;; —
Jig = -+ = Jia; = Jiag+1 = +-+ — J5,2q; of jobs with unit processing
time, weight w;;j =1for1 <j<eand w;; =0 fora; +1<j < 20;.

55

It is easy to see that the decision problem PWU is in NP, since a non-
deterministic Turing machine can guess an order of all jobs in S and verify
in polynomial time that WU, is not more than WU,.

We claim that 3-Partition problem has solution if and only if there
exists a feasnble schedule S for the Job set J with value WU, < WU,
where WUy =

Suppose that a partition exists, that is, we can re-label the integers
a1,a2,...,a3n using a3, 1 < k < 3,1 < ¢ < n, such that Ek_ al = B,
1<i _<_n. We also re-label the job set J = {Jf ; |1 < j < 2a},1 <k <
3,1 < i £ n}. Let us consider the following sequence of all tasks of J in
schedule S:

,a8 7 ,ad? J:,a‘i+1

""’J:,%{’J;.a;-i-l"”"];ﬂof‘J;,a§+1"""];,2¢§ |i=1,2,...,n]

First, a feasible schedule S with value WUg = 0 is obtained as shown in Fig-
ure 3. Note that, in every time interval [2B(i— 1), 2Bi](1 <i<mn)of sched-
ule S, the first B unit weight jobs {Jl " J1 2 Jl'u,‘,J2 1 J2 20---1J5 ai?
N/ I P 3 o } are completed on ‘or before the duedate d; ; = (21 1)B
(1<j< 2B) On the other hand, the remaining B jobs with weight zero
{Jl c‘+l’Jl al+20° Jl 25"']2 ¢‘+1'J‘2 af+2° 220""3 a‘+1"].'§ a3+27 ¢

Js, 34‘} are late, they are scheduled in the tune mterval [ZBz - B, 2Bi] for
any ¢, 1 £ i £ n. Therefore, the weighted number of late jobs of the
schedule S, WUs = WUy =0. ‘

Conversely, suppose there exists a feasible schedule Sp in which WUs, =
0, in other words, all jobs with unit weight in Sy must be scheduled on-time.
Due to our choice of due dates, it is easnly seen that all on-time jobs must
be scheduled in time intervals [ZB(: 1),2Bi — B] for 1 < ¢ < n. This, in
turn, implies that (n — 1) B late]obsl(zero weight jobs) must be scheduled
in time intervals [2Bi — B, 2Bi], for 1 < i < n—1 and the remaining B late
jobs must be scheduled at or after time 2nB — B. Without affecting the
value of WUyg,, we assume that the last B late jobs are scheduled in time
interval [2nB — B, 2nB]. Hence the Jci)bs have to be processed continuously
without any idle time on machine m order to have WUs, = 0. For the
simplicity, we call n chains of unit 1ght jobs Ji1 = Jia = --- = Jig, as
a Ja;-type jobs for 1 < ¢ < n. Each Ja; job has total of a; processing time,
for 1 < i < n. The key idea of the jproof here is that each time interval
[2B(i — 1),2Bi), for 1 < ¢ < n, must contain exactly 3 Ja;-type jobs and
the chains that follow them. It can be seen later that it is sufficient to prove
this for the first time interval [0,2B]. Suppose only two Ja;-type jobs (say
Jay, Jay) finish by the time 2B. Then the number of unit processing time
Jjobs with weight 1 which finish on or ‘before 2B is equal to (a; +az), which

56

/14 g-ugg (1-0g7
I‘ 4 I i ' n
l v I v I v

.‘al':/~ see l'ﬁﬂ'fl’ fv;':l- cee lo.'"'lf _'cz;.l- cee "-"‘_'l' :rfl' ces| vir ‘.":l' e v ."3[‘ e or | o

(quzs fsar-auy) a-gue=\'p

e -tz (1-nac
| V) | W L w |
l ! l] l) l
S8 Il IRALY ey I d IR (e i IRRAS IR N IEd I N IR B Bt R I AL
! ' '
(wes fsar-@) 40 -10=Vp
—gp—— 8W}
qt a 0
| w | w w .
| ! I ']
oo }"z'rf see l*'.a’:[' ivplz[oo I'?":l' :‘l':f ece ":n‘:l‘ :":[‘ TS l-'t[‘ ?":1‘ coe |'lzr ;—‘:r cos ,-I,’.

ejeq on
(gtsfs a=p —-— 0jBQq ong

Figure 3. A feasible schedule S with value WUg = 0 for problem PWU
57

is clearly less than B (since % <a < %). Consequently, WU, > 0.
Hence no less than three Ja;-type jobs finish before 2B in Sy. Moreover if
four Ja;-type jobs (say Ja;, Jaz, Jag, Jag) complete on or before the time
2B, then the number of unit processing time jobs with weight 1 is equal
to (a1 + a2 + a3 + a4) which is more than B. Now it is clear that exactly
three jobs of Jas-type (say Jay, Jaz, Jag) finish on or before the time 2B.
If a; + a2 + ag # B, this implies that the total number of jobs with weight
1 finished on or before B is less than B. Thus WUg, > 0. Therefore, the
three Ja;-type jobs scheduled in the time interval [0, 2B] have the property
that a1 + a2 + a3 = B. Note that only three Ja;-type jobs and the chains
that follow them are scheduled in this interval (and the total processing
time of these jobs is equal to 2B). Now it is evident that the above proof
holds for each time interval [2B(¢i — 1)2Bi], for 1 < ¢ < n. Hence there
exists a 3-Partition. This completes the proof of Theorem 1. a

The complexity of the problem 1|prec,p; = 1| Y- w;U; was asked in [4].
We provide the answer as follows.

Corollary 1. 1|prec,p; = 1|3 w;U; is NP-Complete.

Proof: The problem 1|chain, p; = 1|} w;Uj;, which was proved in The-
orem 1 to be NP-Complete, is a special case of the problem 1|prec,p; =
13" w;U;. Therefore, 1|prec,p; = 1|3 w;U; is also NP-Complete. a

3.2 Jobs without Precedence Constraints

We have shown that the generalized due dates scheduling problem involving
(chain) precedence constraints between unit processing time jobs so as to
minimize weighted number of late jobs is NP-complete. We will show that
removal of precedence constraints from this NP-complete problem results
in a problem that is solvable within polynomial time O(nlogn).

For simplicity, assume the first job begin at time ¢ = 0, then any given se-
quence induces a well defined completion time Cj; = j, since the processing
time of each job is one unit. Also, jobs are executed without interruption
and without idle time between them. The idea of constructing the optimal
schedule S is as follows:

Algorithm X:

Input: A set of tasks and a set of generalized due dates
Output: An optimal schedule

Method:

(1) i1

(2) T « {J; | Ji has not been scheduled}

(3) IfI' =@, then stop.

(4) T’ « Jg, such that ws = min{w; | J; €T};

58

T" — J, such that wy, = max{w; | J; € T}.
(5) Ifi>dy, then /* if thisis alate job */
Schedule T’
else
Schedule T
(6) i+ i+ 1. Return to Step (2).

Example: Consider the following five tasks (J;, rs, ws, p:): (J1,0,2,1), (J2,0,
5,1), (Js,0,1,1), (Js,0,3,1) and (Js,0,4, 1) and gdd set {d};} = {1,1,2,4,4}.
The optimal schedule S obtamed from Algorithm X is shown in Figure 4
with Z'w_in =6.

i I 1 2 3 4 5

djg 1 1 2 4 4

Ciy) 1 2 3 4 5

Uy 01101

wgUy |0 1 2 0 3
dy — 1 1 2 4 4
S: J2 J3 J1 Js Ja
Time —» 0 1 2 3 4 5

Figure 4. Example illustrating Algorithm X

Theorem 2. Algorithm X always give an optimal schedule S for the
problem 1[p; = 1|3 w;Uj.

Proof: We will prove the theorem by contradiction. Assume S is the
schedule produced by Algorithm X which is not an optimal schedule, then
there must exist a schedule S’ such that WUg: < WUg. First, it is easy to
see that:

(1) For any arbitrary schedule S*, the completion time of the Jth job in
schedule S*, C;(S*), is always equal to completion time of the jth
job in schedule S Cp(S), for1<j<n.

(2) For any arbitrary schedule S*, the number of late jobs under S* must
be exactly equal to the number of late jobs under S.

Without loss of generality we can assume that jobs are numbered in such
a way that J; and J; (i < j) implies w; < wj, i.e,, we assume that the
jobs are indexed according to their weights wy < w < .-+ < wa. We
also assume that there are z late jobs in both schedule S and S, then the

weighted number of late jobs in schedule S will simply be

WUs_zw,U,_z:w,H z w;.0 = Zw,

j=1 J==z+1 Jj=1

59

On the other hand, the objective value of schedules S’ is

n z
J=1 Jj=1 J==z+1 j=1

Consequently, WUs < WUg since Y_;_, w; is the sum of the z small-
est weights in job set. It is obviously contradicting our assumption that
WUs: < WUs. This completes the proof of theorem 2. a

4 Total Weighted Tardiness

In this section, we shall explore the complexity status of the total weighted
tardiness open problems under the generalized due dates definition pro-
posed by Hall [4]. Given a set of n tasks, a set of n generalized due dates
and a precedence constraint, the problem of scheduling all n jobs on a single
machine to minimize the total weighted tardiness (WT) can be stated for-
mally as follows. Let WTs denote the total weighted tardiness in a feasible
schedule S. Our goal is to find a feasible non-preemptive schedule S such
that WTs is minimized. Such a schedule will be called an optimal schedule.

In the generalized due dates definition, several single machine total weight-

ed tardiness scheduling problems under this new definition of due dates
have been investigated. The problem 1|rj|3"T; was shown to be NP-
Complete while 1|| 3" T; was shown to be polynomial solvable by Hall [3].
NP-Completeness for the 1|| 3" w;T; has been established by Sriskandara-
jah [6]; the case in which there are arbitrary precedence constraints and
equal weights, 1|prec| 3_ Tj, is still NP-Complete. But the case of unit pro-
cessing time, 1lprec,p; = 1|3°Tj, is polynomial solvable (Hall et al. [4])
even though the classical version of this problem is NP-Complete.

In the next section, we will prove that 1|prec, p; = 1|3 w;T; and 1|chain,
Pi = 1| 2_ w;T; are NP-Complete. However, if the precedence constraints
are removed, the problem 1|p; = 1| 3" w;T; can be solved by means of an
O(nlogn) algorithm given in section 4.2.

4.1 Jobs with Precedence Constraints
The complexity of the problem 1|prec, p; = 1| }_ w;T; was asked in [4]. We
provide the answer as follows.

Corollary 2. 1|prec,p; = 1|3 w;T; and 1|chain,p; = 1| T w;T; are NP-
Complete.

Proof: By using the same reduction as in Theorem 1 with WT, = 0. we can
easily show that 1|chain, p; = 3~ w;T; is NP-Complete. By using Corollary
1, we can conclude that 1|prec,p; = 1|} w;T; is NP-Complete. O

60

4.2 Jobs without Precedence Constraints

We next consider the total weighted tardiness problem without the prece-
dence constraint. The specific due date version of this problem is easily seen
to be a linear assignment problem and thereby solvable in O(n3) steps, as
pointed out by Lenstra and Rinnooy Kan [5]. The generalized due date
version of this problem can be solved by ordering the jobs according to the
schedule given by Algorithm Y below. The basic idea is to schedule the job
with ith largest weight into the time slot with the ith smallest tardiness
(for this problem, the tardiness of each job can be calculated by using the
given due date only).

Algorithm Y

Input: A set of n jobs and a set of n generalized due dates

Output: An optimal schedule S

Method:
(1) Compute the tardiness of all jobs, T};) = max{0, j—dj; } for 1 < j <=.

(2) Sort tardiness T}; in non-decreasing order of their values. We have
the sequence Ty, < -+ < Ty, < -+ £ T,,, where z; is the position of
the job with the sth smallest tardiness in S.

(3) Sort jobs a non-increasing order of their weights. We have the se-
quence wg, > -+ > wq > -+ 2 Wq,, Where g; is the job with the ith
largest weight.

(4) To obtain the final schedule S, schedule job Jy, in position z; in S for
1<i1<n.

Example: We illustrate Algorithm Y with a numerical example. Figure 5
shows all four steps of Algorithm Y for five jobs with weight (J;,w;) and
generalized due date dj;, 1 <1 <5.

Theorem 3. Algorithm Y always gives an optimal schedule S for the
problem 1|p; = 1|3 w;T;.

Proof: The problem can be proved by contradiction. Assume S is the
schedule produced by Algorithm Y which is not an optimal schedule, then
there must exist an optimal schedule S’. Since S’ is not identical S, there
must exist at least a pair jobs, J}, and Jg,,, in S’ such that wy, < wg,,,
and T;, < T, . Now construct a new sequence S*, in which jobs Jg, and
J?. . are interchanged and the sequence for the other (r — 2) jobs remain

q
the same as in S'. It is obvious that S’ and S* differ only in the weighted

61

tardiness of jobs Jg, and J;

dis1 . Hence

WTse — WTs = [T’ wq‘+1 + Ttli-l-l 9‘] [Tl wq‘ + T;““wq‘*‘]

= (% - qm) (Tl’i+l T;c)
<0

This means that the interchange of jobs Jg, and J’ does not increase
the value of total weighted tardiness of schedule S” *We can repeat the
same procedure until we cannot find a pair of two jobs such that the above
condition holds. The final schedule is exactly the schedule S. Therefore

WTs < WTs, S is also an optimal schedule. O
i | 1 2 3 4 5
(JI" w‘) (Jla 5) ']2: 8) (JS: 2) (J4) 3) (J57 6)
d[,—] 0 1 1 1 5
C[q 1 2 3 4 5
Ty 1 1 2 3 0

T ST SToy ST SToy =Tjs) < Tjyy < Tjpy < Tig) < Ty)

Wy 2 Wy, 2 Woy 2 Wo 2 Wey = W2 2 W5 2 W) 2 W4 > W3

(a) After step 1, 2 and 3.

dj) — 0 1 1 1 5
S: J5 J1 Jq J3 JQ
Time —» 0 1 2 3 4 5

(b) After step 4. The optimal schedule is S.

Figure 5. Example illustrating Algorithm Y

5 Conclusion

In this paper we have investigated several single machine scheduling prob-
lems under the generalized due dates definition. We now summarize the
results and discuss some possible directions for future research for each
problem.

In section 3 we have considered the problem of minimizing the weighted
number of late jobs. Several versions of this problem were studied. We
showed that the problems 1|prec, pj=1|3_ w;U; and 1|chain, pj=1|}" w;U;
are NP-Complete. This answers the question that was posted in [4]. When

62

the precedence constraint is removed, we presented an O(n log n) algorithm
to solve the problem 1|p; = 1|3 w;Uj.

In section 4, we investigated the problem of minimizing the total weighted
tardiness. We showed that the problems 1|prec, p; = 1| 3 w;T; and 1|chain,
p; = 1|3 w;T; are NP-Complete. This answers the question that was
asked in [4]. When the precedence constraint is removed, we presented an
O(nlog n) algorithm to solve the problem 1|p; = 1|3 w;T;.

For future directions, it will be beneficial to consider heuristic algorithms
for problems proved to be NP-Complete

References

[1] M.R. Garey and D.S. Johnson , Computers and Intractability: A Guide
to the Theory of NP-Completeness, W.H. Freeman & Company, 1979.

[2] R.L. Graham, E.L. Lawler, J.K. Lenstra, and A.H.G. Rinnooy Kan, Op-
timization and approximation in Deterministic Sequencing and Schedul-
ing: A Survey, Annals of Discrete Mathematics 5 (1979), 287-326.

[3] N.G. Hall, Scheduling Problems with Generalized Due Dates, IIE Trans-
actions 18 (1986), 220-222.

[4] N.G. Hall, S.P. Sethi and C. Sriskandarajah, On the Complexity of
generalized Due Date Scheduling Problems. Furopean Journal of Oper-
ational Research 51, N1 (1991), 100-109.

[5] 3K, Lenstra and A.H.G. Rinnooy Kan, Complexity of Scheduling under
Precedence Constraints, Operations Research 26 (1978), 22-35.

[6] C. Sriskandarajah, A Note on the Generalized Due Dates Scheduling
Problem, Naval Research Logistics 37, N4 (1990), 587-597.

(7] K.E. Stecke and J.J. Solbert, Loading and control Policies for a Flexible
Manufacturing System, International of Production Research 19 (1981),
481-490.

63

