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Abstract

The geodetic cover of a graph G = (V, E) is a set C C V such that
any vertex not in C is on some shortest path between two vertices of C.
A minimum geodetic cover is called a geodetic basis, and the size of a
geodetic basis is called the geodetic number. Recently Harary, Loukakis,
and Tsouros announced that finding the geodetic number of a graph is
NP-Complete. In this paper, we prove a stronger result, namely that the
problem remains NP-Complete even when restricted to chordal graphs.
We also show that the problem of computing the geodetic number for
split graphs is solvable in polynomial time.

1 Introduction

Let G = (V, E) be a simple, undirected, connected graph. If X C V, then an
X-geodesic is a shortest path between two vertices of X. The geodetic closure
of X, denoted (X), is the set of all vertices which lie on some X-geodesic. Note
that X C (X). A set X is a geodetic cover of G if (X) = V. An alternate
definition is that X is a geodetic cover if any vertex in V' — X lies on some X-
geodesic. A mininum cardinality geodetic cover is called a geodetic basis. The
size of a geodetic basis is called the geodetic number of G, and is denoted g(G).

As an example, consider the graph in Figure 1. The geodetic closure of the
set {1,3,5} is

({1,3,5})={1,2,3,4,5,8}.

The set {3,6,9} is a geodetic basis of the graph. The geodetic number of the
graph is |[{3,6,9}| = 3.

Given a vertex v € V, the (closed) neighborhood of v is the set of v and
all vertices adjacent to v. A vertex is simplicial if its neighborhood induces a
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Figure 1: The set {3,6,9} is a geodetic basis for this graph.

clique. In Figure 1, vertices 3 and 9 are simplicial. The following theorem will
be very useful in later discussion.

Theorem 1.1 Let S be the set of simplicial vertices of a graph, and let C be
any geodetic cover. Then SC C.

Proof: Assume vertex s is simplicial and that there exists a geodetic cover C
such that s ¢ C. Then there must be a C-geodesic which includes s but does
not have s as an endpoint. Let 7 be such a geodesic, and let z and y the two
vertices of = which are adjacent to s (refer to Figure 2). Since s is simplicial,

X s y

Figure 2: A path 7 containing simplicial vertex s.

z and y are adjacent, and it follows that  is not a shortest path between its
endpoints, a contradiction. O

A graph is chordal if all cycles of length greater than three in the graph
have a chord. Chordal graphs are a well known class of perfect graphs [6],
and many problems in computational graph theory which are NP-Complete for
general graphs are known to be solvable in polynomial time for chordal graphs.
Such problems include the coloring, clique, independent set, and clique covering
problems.

Chordal graphs have structural properties that make them interesting from
the standpoint of computing the geodetic basis. In particular, they are the
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intersection graphs of subtrees of a tree [3, 5, 10]. Let p(G) be the set of
maximal cliques of a chordal graph G. A tree T can be constructed so that
each vertex of T corresponds to a member of u(G), and two vertices of T are
adjacent if and only if their corresponding maximal cliques in u(G) have an
edge in common. The tree T is called the clique tree of G (See Figure 3). Every

Figure 3: A chordal graph and its corresponding clique tree.

vertex of G corresponds to a subtree of T, and two vertices of G are adjacent if
and only if the corresponding subtrees of T overlap.

Since it is clear that the geodetic basis of a tree is simply the leaves of the tree
[7], the clique-tree structure in chordal graphs suggests that their geodetic bases
should also be easily computed. This suggestion is reinforced by the following
theorem from [9].

Theorem 1.2 Let G be a chordal graph, and T the clique tree of G. If€ is a
leaf of T, then the clique of G corresponding to £ contains at least one simplicial
vertezr.

For example, in Figure 3, the vertices 1, 6, and 8 are simplicial vertices of
the chordal graph G. Equivalently, they are in exactly one maximal clique of
G. Further, the maximal cliques which they occupy correspond to the leaves of
the clique-tree T'.

A split graph is a chordal graph whose complement is also chordal. Equiva-
lently, a split graph is a graph whose vertex set can be partitioned into a clique
and an independent set [6]. An example of a split graph is shown in Figure 4.

In Section 2 we prove that, in spite of the above observations about the
structure of chordal graphs, computing geodetic bases of chordal graphs is an
NP-Complete problem. However, in Section 3, we develop and analyze an effi-
cient algorithm for finding geodetic bases of split graphs in polynomial time.
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Figure 4: A split graph, with the independent set on the left, and the clique on
the right.

2 Geodetic Bases of Chordal Graphs

To prove the NP-Completeness of finding geodetic bases for chordal graphs, we
must first express the problem as a decision problem, the geodetic cover problem
for chordal graphs: “Given a chordal graph G = (V| E) and an integer k, with
1 € k < |V|, does G have a vertex set X C V such that |X| = k and every
vertex in V — X is on some X-geodesic?”

We mention in passing that this decision problem is solvable in polynomial
time by a non-deterministic Turing machine; once a set of vertices is “guessed,”
one need only calculate their geodetic closure in polynomial time, then compare
the closure to the vertex set V of the graph.

All that remains in the proof of NP-Completeness is to show that a known
NP-Complete problem has a polynomial transformation to the geodetic cover
problem for chordal graphs. We choose the dominating set problem for chordal
graphs: “Given a chordal graph G = (V, E) and an integer k, with 1 < k < |V,
is there a vertex set X C V such that every vertex in V — X is adjacent to some
member of X?" This problem is known to be NP-Complete [2]. We show how
this problem is polynomially transformable to the geodesic cover problem for
chordal graphs.

Let G = (V, E) be a non-trivial chordal graph, with V = {a;,a,...,a5},
and let k& be an integer, with 1 < k¥ < p. We construct a supergraph of G
as follows. Let G’ = (V', E'), with V! = VU {b;,b2,...,b,} U {c}, and E' =
Eu{aiby,azby,...,apb} U {arc,a2¢,...,85c} U{bic, bac, ..., bpc}. An example
of this construction is shown in Figure 5. Clearly, the construction can be
performed in polynomial time.

Note that G is the subgraph of G’ induced by the set {a;,a2,...a,}. Also,
c is adjacent to every vertex in G’ and each b; is adjacent to only a; and ¢, for
all i.

First we show that G’ is a chordal graph. If it is not, it will have a chordless
N-cycle vyva...unv, with N > 3. If every vertex of this cycle is in the set V,
then the subgraph G will not be chordal, a contradiction. Therefore the cycle

70



ad as a6

bl
b2 b

G G

Figure 5: Transformation from the dominating set problem to the geodetic cover
problem.

must have at least one vertex v € {b1,b2,...,8,} U {c}. If v € {by,b2,...,0p},
then the cycle must also include ¢; and if v ¢ {b1,b2,...,8,}, then v = c.
Hence, the cycle must include ¢. But since ¢ is adjacent to every vertex in G’,
it must be adjacent to every vertex in the cycle, and so the cycle has a chord,
a contradiction. Therefore G’ is a chordal graph.

Next we show that if G has a dominating set of size k, with 1 < k < p, then
G’ has a geodetic cover of size p+ k. Suppose D C V is a dominating set of
G, with |[D| = k. Let D' = DU {b1,b2,...,8,} so that |D'| = k + p. Let v
be any vertex from V/ — D’. Either v=corv € V. If v = ¢, then v lies on
a geodesic between any pair of distinct vertices b;,b;. If v € V, then v = a;
for some 1 < ¢ < p. Since D is a dominating set of V, there is some a; € D/
which is adjacent to v = a;. Further, ; € I, and a;b; ¢ E’, so that the path
ajasb; is a D'-geodesic containing v = a;. Since any vertex not in D' is on some
D'-geodesic, it follows that D’ is a geodetic cover of G’ of size k + p.

It remains to show that if G’ has a geodetic cover of size k£ + p, then G has
a dominating set of size &, with 1 < & < p. We first prove some lemmas.

Lemma 2.1 Let D’ be any geodetic cover of G'. Then {by,b2,...,0,} C D'.

Proof: By the constiruction of G', any b; is adjacent to only its corresponding
a; and c. Since a; and ¢ are adjacent, b; is simplicial. Hence, by Theorem 1.1
b; must be in any geodetic cover. O

Lemma 2.2 The diameter of G’ is 2.

Proof: Let z,y be any two non-adjacent vertices in G. Then zcy is a geodesic
between them. O

Lemma 2.3 Let D' be any geodetic cover of G', and let z € V! — D'. There
must ezist two vertices y,z € D' such thatzy € E', 2z € E', and yz ¢ E'.
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Proof: Since D' is a geodetic cover, z must lie on a D’'-geodesic. Any D’-
geodesic which contains z must have length 2, by the previous lemma. Let zyz
be a D'-geodesic containing z. If yz € E’, then zyz is not a geodesic. Therefore
yz,zz€ E' andyz ¢ E’. O

We are now ready to show that if G’ has a geodetic cover D’ of size p + &,
then G has a dominating set D of size k. Let D =D' NV, and let

G €V-D=v-DcV' -D.

By Lemma 2.3, a; is adjacent to two non-adjacent vertices of D', call them y
and z. At least one of y or = must be in V (and therefore in VN D' = D);
since the only vertices not in V that are adjacent to a; are b; and ¢, if neither
y nor z were in V, we would have {y,z} = {6;,c}, implying that y and z are
adjacent. Therefore any vertex of V — D is adjacent to some vertex of D, and
D is a dominating set of G.

Now, if ¢ € D', then

|ID'|=|Dl+p+1=k+p,

and
|Dl=k-1.

On the other hand, if ¢ ¢ D’, we have
|D'=|D|+p=k+p,

and

|D| = k.

In either case, there is a dominating set of size k in G.

‘We have given a polynomial transformation of the dominating set problem
for a chordal graph G = (V, E) to the geodetic cover problem for a chordal
graph G', and have proved that G has a dominating set of size k if and only if
G’ has a geodetic cover of size k + |V].

Theorem 2.4 The geodetic cover problem for chordal graphs is NP-Complete.
a

3 Geodetic Bases of Split Graphs

In this section, let G = (V, E) be a split graph, with V partitioned into a
maximal clique K and an independent set I. Also, let S be the set of simplicial

vertices of G.

Lemma 3.1 No vertez of I is adjacent to every vertez of K.
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Proof: Assume some i € I was adjacent to every vertex of K. Then K U {i}
would be a clique, contradicting the maximality of K. O

Lemma 3.2 FEvery vertez of I is simplicial.

Proof: Let i be any vertex in I, and let z,y be any two vertices adjacent to
i. Since I is an independent set, z,y ¢ I. Therefore z,y € K, and z and y are

adjacent. O

Lemma 3.3 A vertez of K is simplicial if and only if it is not adjacent to any
vertez of I.

Proof: Let k € K be adjacent to some i € I. By Lemma 3.1, there must be
some k' € K not adjacent to i. Since K is a clique, k is adjacent to k', and
since we have assumed k is adjacent to 7, it must be that k is not simplicial.
Conversely, assume k € K is not adjacent to any vertex of I. Then k is adjacent
only to the members of the clique K, and is therefore simplicial. O

Figure 6 shows a split graph with two simplicial vertices in its clique parti-
tion.

I K

Figure 6: A split graph with simplicial vertices in K.

Lemma 3.4 If K contains a simplicial vertez, then S is the geodetic basis of
G.

Proof: Let k be any simplicial vertex of X, and let ¥’ be any non-simplicial
vertex of G. Since k' is non-simplicial, ¥’ € K by Lemma 3.2, and by Lemma
3.3 there is some i € I adjacent to k'. Furthermore, since k is simplicial, & is
not adjacent to i, and so kk'i is an S-geodesic containing k’. Since S forms a
geodetic cover of G, it follows from Theorem 1.1 that S is the geodetic basis of

G.O
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By the above lemma, if (S) # V, then K contains no simplicial vertices, and
so S = I. Furthermore, by Lemma 3.2 and the fact that every set is a subset of
its own closure, V — (S) C K. We assume that

(S)#V

and let
K' =V -(S)

in the remaining lemmas of this section.

Lemma 3.5 Every k' € K’ is adjacent to exactly one vertez in I.

Proof: Assume there is some k' € K’ adjacent to two members of I, call them
i and j. Since 7 and j are not adjacent, ik'j is an S-geodesic, contradicting the
fact that ¥’ ¢ (S). O

For the remaining lemmas, let I’ = {i | { € I and i is adjacent to some &' €
K'}, and define conditions 1 and 2 as follows.

Condition 1 There is some k € K which is adjacent to no verter in I'.
Condition 2 There is some i’ € I’ adjacent to ezactly one vertez k' € K'.
Lemma 3.6 If Condition I holds, then SU {k} is a geodetic basis.

Proof: Let &k’ be any vertex in K’, and let i’ be the vertex of I’ adjacent to k’.
Since k is adjacent to k' and not adjacent to ¢/, it follows that kk'#’ is a geodesic
between two vertices of the set S U {k}. Any vertex not in K’ is by definition
on an S-geodesic. Since S is not a geodetic cover and SU {k} is, it must be the
case that SU {k} is a geodetic basis. O

Figure 7 illustrates Lemma 3.6. The single vertex from K that is in the
geodetic basis is enlarged.

Lemma 3.7 If Condition 2 holds, then SU {k'} is a geodetic basis.

Proof: Asin Lemma 3.6, any vertex in V — K’ is on some S-geodesic. Let k"
be any vertex in K’. If k¥ = k', it is of course covered by the set SU {¥'}. If
k" # k', then let i” be the one vertex of I adjacent to k". Since ¥ # %', and
by Lemma 3.5, k' is not adjacent to i”, it must be that k'k"i" is a geodesic
between members of SU {k’}. We have then that SU {¥'} is a geodetic cover,
and so, again, a geodetic basis, since S alone is not a cover. O

Figure 8 shows a split graph where Condition 2 holds.

Lemma 3.8 If neither Condition 1 nor Condition 2 hold, then there is no z €
V such that SU {z} is a geodetic cover.
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Figure 7: A split graph with one vertex of its geodetic basis in K — K.

I K

Figure 8: A split graph with one vertex of its geodetic basis in K.

Figure 9: A split graph which requires two vertices from K"’ in its geodetic basis.
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Proof: Suppose neither condition holds but there is some z such that SuU {z}
is a geodetic cover. Since we are assuming that (S) # V, it must be that
z¢ S=1,and so z € K. Since Condition 1 doesn’t hold, there must be some
i € I’ adjacent to z, and since Condition 2 doesn’t hold, there must be some
z' € K’ adjacent to ', with z # z’. Since z' € K’, z' cannot lie on any S-
geodesic. Since z is adjacent to ¢/, zz'i is not a geodesic. Therefore there must
be some " € S such that z’ lies on an {z, i"}-geodesic. Now, z’ is not adjacent
to i’ by Lemma 3.5, so any {z,i"}-geodesic which contains z’ is of length at
least three. On the other hand, let z” be some member of K adjacent to i’ (z
exists, because G is connected). The path zz"#" is a geodesic of length two, a
contradiction.

Lemma 3.9 If Condition 1 does not hold, then there are at least two members
of I', and therefore at least two members of K'.

Proof: Assume Condition 1 does not hold, and that I’ = {i'}. By the negation
of Condition 1, every k& € K is adjacent to . This contradicts Lemma 3.1.

Lemma 3.10 If neither Condition I nor Condition 2 hold, then let i and i
be two distinct members of I', and let k', k" € K be such that k' is adjacent to
i, and k" is adjacent to i". Then SU {k',k"} is a geodetic basis of G.

First, the existence of ¥’ and £ is from Lemma 3.9. From Lemma 3.8, if
SU{K,k"} is a cover then it is a basis. We show that it is, in fact, a cover. Let
k be any member of K'. If k£ € {k,k"} it is trivially covered by SU {¥', k"}.
If k is adjacent to 7/, then k”ki’ is a geodesic which covers k. If k is adjacent
to ¢, then k’ki” is such a geodesic. Finally, if k is adjacent to neither i’ nor
", then it must be adjacent to some i € I = S, and so both k'k? and k"ki are
covering geodesics. O

Figure 9 shows a graph illustrating Lemma 3.10. The lemmas of this section
prove the following theorem.

Theorem 3.11 Let G = (V, E) be a split grapk, and let S C V be the simplicial
vertices of G. Then the geodetic number of G is bound so that

151 < 9(G) < IS1.+ 2.

By using these lemmas, a polynomial time algorithm for finding a geodetic
basis of a split graph can be developed as shown in Figure 10. The correctness of
this algorithm follows from the above discussion and is omitted. The algorithm’s
first two steps take O(|V[®) to run, and the rest runs in O(|V]), for a total
running time of O(|V|3).
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Given G = (V, E), a split graph.

Return a geodetic basis of G.

. Compute S, the simplicial vertices of G

. Compute (S), the geodetic closure of S.

. If (S) =V, then return S. Stop.

. Compute K’ = V—(S), and I’ = {# € § | # is adjacent to some k' € K'}.

S B W N

. Partition K’ according to which single member of I’ each &' € K’ is
adjacent.

. If there is a k € K adjacent to no member of I’, return SU {k}. Stop.

(=]

7. If there is an #* € I’ adjacent to only one &’ € K’, return SU {&'}. Stop.

8. Let #,i” € I’ be two distinct vertices, and let k' be some element of K’
adjacent to ¢/, and k” € K’ adjacent to i”. Return SU {k', £"}.

Figure 10: Algorithm for Geodetic Basis of a Split Graph

4 Conclusion

We have shown that, while the geodetic cover problem is NP-Complete for the
class of chordal graphs, it becomes solvable in polynomial time when further
restricted to the class of split graphs.

It is interesting to note that while chordal graphs may be the intersection
graphs of subtrees of any tree, split graphs are the intersection graphs of subtrees
of the star graph K, . [8].

While we have shown that the geodetic cover problem for split graphs is
in P, the dominating set problem for split graphs is NP-Complete[l]. Open
questions include how hard it is to compute the geodetic basis for other classes
of graphs.
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