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ABSTRACT. From any projective plane II of even order n with
an oval ((n +2)-arc), a Hadamard 3-design on n? points can be
defined using a well-known construction. If IT is desarguesian
with n = 2™ and the oval is regular (a conic plus nucleus) then
it is shown that the binary code of the Hadamard 3-design

j contains a copy of the first-order Reed-Muller code of length
‘ 2%,

1 Introduction

Given any projective plane IT of even order n with a hyperoval ({n + 2)-
arc) O, a Steiner 2-design with parameters 2-((3), ,1) can be defined with
point set the exterior lines tg O, block set the points off O, and incidence
as in I1. This is called an oval design, and we denote it by W (II, O).

Using the block graphs of oval designs, Hadamard 3-designs on n? points
can be obtained. If n = 2™, the parameters of the Hadamard design will
be that of the design of points and hyperplanes of the affine geometry
AGaum(F>) but is only equal to this design if m = 2, by a result of Maschietti
[8]. The binary code of the affine-geometry design is the first-order Reed-
Muller code R(1,2m). We give a short proof of a result of L. Carpenter
that if II is desarguesian and O is regular, then the binary code of the
Hadamard design contains a copy of R(1,2m).
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2 Background and Terminology

Notation and terminology will be as in Assmus and Key [2]. An incidence
structure D = (P, B) with point set P and block set B is a t-(v, k, \) design
if every block is incident with precisely k points and any set of ¢ distinct
points are together incident with precisely A blocks. It follows (see [2,
Chapter 1]) that D is an s-design for any s < ¢; we denote the number of
blocks incident with s points by A, The order of a t-design, where t > 2, is
7 = A1 — A2. A Steiner design is one in which A = 1.

An oval in a projective plane of even order n is a set of n + 2 points
that meets each line of the plane in 0 or 2 points; ovals of n + 2 points are
generally called hyperovals in the literature. Oval designs form a class of
Steiner 2-designs first described by Bose and Shrikhande in [3]. They are
defined as follows: let IT be a projective plane of order n = 2k and let ®
be an oval of II. The oval design W(II, O) is the incidence structure with
points the lines of IT exterior to O and blocks the points of IT not on the
oval O; incidence is given by the incidence in II. That this is a Steiner
system with parameters 2-(2k? — k,k,1) and of order n = 2k, is easy to
show: see [2, Chapter 8].

Any oval O in a projective plane II of even order n can be used to define
a Hadamard 2-design £ in the following way: for the points of £ take the
n? — 1 exterior points to O; for each point X of £ define a block Bx to be
the set of points

Bx = {Y | Y is an exterior point and XY is a secant to O} U {X}. (1)

This gives a 2-(n? — 1, 3n% — 1, 4n% — 1) Hadamard design that extends
uniquely to a 3-(n?, in? 1n? — 1) Hadamard design which, since all the
Hadamard designs obtained in this way are isomorphic, we may denote by
H(I1,0). An alternative, more general, way to construct the Hadamard
designs is described in [2, Section 7.12]; another alternative is to describe
the Hadamard 2-design as the block graph of the Steiner 2-design. See also
Maschietti [8] for further descriptions.

For any field F, F? is the vector space of functions from P to F with
basis given by the characteristic functions of the singleton subsets of P. If
D = (P, B) is an incidence structure, the code Cr(D) of D over F is the
subspace of FP spanned by the characteristic functions of the blocks of D.
If F = F,, we write also Cp(D) or C(D) and its dimension is referred to as
the p-rank of D. It is a well-known result, stated and proved in [2, Theorem
2.4.1), that the prime p must divide the order n of a 2-design for the p-ary
code of the design to be of any use or interest in any characterization.

A result of Hamada and Ohmori [6] shows that the binary code of a
Hadamard 3-(2™,2™~!,2™-2 1) design has dimension at least m+1 with
equality if and only if the design is that of points and hyperplanes in the
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affine geometry AGn(F3), in which case the code is the [2m,m +1,2™"!]
first-order Reed-Muller code, R(1,m). A further rigidity theorem was in
mind with the following question raised by Assmus and Key [2, Section
7.11, page 284]:

Question 1. Does the binary code of a 3-(2™,2™~1,2™~2 — 1) design
always contain a copy of R(1,m)?

Many infinite classes of Hadamard designs have been shown to give an
affirmative answer to this question (see [2]) and until very recently no
counter-example had been found to negate it. However, a construction
of a Hadamard 3-(64,32,15) design using the hermitian unital on 28 points
has now been shown, through a computer search by G. Royle, to have a
binary code that does not contain R(1,6): see [1]. Recently Carpenter [5]
proved that the designs H(II, O) where II is desarguesian of even order and
O is regular do satisfy the question. The proof uses a result of Jackson [7]
and an idea of Norwood [9]. We give an alternative proof here (see Theorem
2 below ) .

3 The Theorem

Theorem 2. Let II be the desarguesian projective plane of order ¢ = 2™
where m > 2, and let O be a regular oval (conic plus nucleus) in II. Let
H(II,0) be the Hadamard 3-design constructed from the block graph of
the oval design W (I1, ©). Then the binary code of H(II, O) contains a copy
of the Reed-Muller code R(1,2m).

Proof: Without loss of generality we may take the conic C with equation
z? = yz; then the nucleus N = (1,0,0). Consider the points P = (0,0,1)
and Q@ = (0, 1,0) on the conic. Then NP =[0,1,0] and N@ = [0,0, 1] (us-
ing the square brackets to denote column vectors, i.e. lines). An arbitrary
exterior point on NP will be A = (1,0, a) (where a # 0) and an arbitrary
point on the conic, but not P, @ or N, will be D = (1, d,d"!) where d # 0.
We arrange our incidence matrix for the Hadamard 2-design D defined with
the blocks Bx as in Equation (1) by taking successively all the points X
on the secants through the nucleus N, starting with NP, say. This will
produce a symmetric incidence matrix M made up of (g+ 1)? submatrices
of size ¢ — 1 x ¢ — 1. We want to examine how the parts of the rows of M
in these submatrices intersect one another. Of course, down the diagonal
there will be blocks of the g — 1 x ¢ — 1 all-ones matrix J.

With points defined as described, we have
AD=[l,a7'd2+d},a™)
AQ=1,0,a7]
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and

ad?
ADNNQ = (1,'i+—ad,0)
d 1+4ad
ADNC=1D,(L 75— )}

AQNC={Q,(1,a7},a)}
We will show that for a # b and a, b # 0, the sets

{liiadldeF",adaél}
and b2
{mmepx,b«z#}

meet in { —1 points.
This is equivalent to looking at the sets

S, ={az’+z|z € F}

for all a # 0 and showing that they intersect in £ points. Since each is seen
to be an additive subgroup of F, + of order Z and thus a subspace of the
vector space F = V,,(F,) of dimension m — 1, each is a hyperplane and
thus they meet in an (m — 2)-dimensional space or are equal.

So we need only show that if @ # b then S, # S,. Suppose on the
contrary that S, = S = S; thenaz? +r € Sand bz’ +z € Sforallz € F
implies that (a + b)z2 € S for all z € F, and thus y € S for all y (since
a+b #0), and thus S = F, a contradiction.

Since we have PGLs(Fy) fixing the conic and acting three-transitively
on the points of C, what we have proved for the two secants NP and NQ
will hold for any pair of secants, due to double-transitivity.

Now what we have is that each of the submatrices is either J, the all-ones
(g—1) x (¢— 1) matrix, or it is an incidence matrix for the design of points
and hyperplanes of the projective geometry PG,,—1(F2). Thus each section
of rows of M corresponding to a secant through N will generate over F; a
code of dimension m + 1 that contains the all-one vector 3.

We will now show that if we take any two sections, corresponding to two
secants, then the binary row span of those two sections will be a (2m + 1)-
dimensional space with minimum weight 323 —1 and ¢2 — 1 vectors of this
weight that form a (¢ — 1, ‘—'.} -1, 54: —1) design. This design must then
necessarily be the design of points and hyperplanes of PGa,,_1(F2) Thus
take a block in one section and form its binary sum with each of the blocks
in the other. This means choosing a point on one secant and allowing the
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points on another to range over its secant, and then picking an arbitrary
third secant. By triple-transitivity, what we find for this third secant will
be true for any of the other secants. Thus take three secants through N,
and due to the triple-transitivity, we can take P and Q as before, and the
third point R = (1,1,1) on C. Now we take a general point A = (1,0,a)
on NP, as before, a general point B = (1,b,0) on NQ, D as before, and
E = (1,e,e!) on C. The line NR has homogeneous coordinates [0,1,1],
and
ADNNR=(a"'d2+d1+a"1,1,1)

BE = [b,1,e(b+e)]

and
BENNR=(b"te? +e+b71,1,1).

If b = a then the secants from A and B will meet on NR and so the
corresponding sections of the matrix will have € — 1 points in common. If
a # b we need to examine how the sets

{a='d2+d ' +a ' |de F*}

and
{p7l+e+bt|ee F*}

meet. This is equivalent to looking at the sets

St = {a+a(l+az) |z € F}
=a+Sa-

These are simply cosets of the hyperplanes S, and intersect in -1 points.
As the point B varies over NQ we will obtain all the ¢ — 1 hyperplanes
from the sum of the vectors, as before. Now allow A to vary over NP and
by taking all these sums, along with our original two sections, we have a
(g2 —1) x (g% —1) incidence matrix of a Hadamard 2-design with dimension
(2m+1). The Hadamard 2-designs extend uniquely to Hadamard 3-designs,
and the code of the extended design is the extended code (see [2, Theorem
7.4.1]) so the proof is now complete. O
Remarks:

(1) Norwood [9] has shown that the 2-rank of the Hadamard 3-design
is m2™~1 4+ 1, thus confirming a conjecture in [2, Chapter 7]. His proof
involves a division of the incidence matrix into subsections that give the
Reed-Muller code R(1,m), and the use of Jackson’s construction of the
incidence matrix as given in [7]. Our proof is thus a geometric version of
his construction.

(2) The argument works for any two secants through the nucleus, and
for each choice the construction gives the Hadamard 2-design of points and
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hyperplanes of PGy, (F2) with at least 2(q — 1) blocks in common with
our Hadamard 2-design from the oval. The extended design, i.e. the affine
design of points and hyperplanes, will thus have 4(¢ — 1) blocks in common
with the 3-design H(II, O) (where, as always, g = 2™). The given argument
does not hold for secants through a point other than the nucleus; we have
used the triple-transitivity on the points of the conic in the argument.
However, only one equivalence class of Hadamard matrices is obtained, and
the codes from the isomorphic 3-designs are all equivalent, so the first-order
Reed-Muller code will always be present.

(3) This type of proof will not work for non-regular ovals in general, since
the point D on the oval will have general form (1, z,p(z)) where p(z) will
not be a quadratic for a non-regular oval. In fact we can take the same
points N, P and @ to be on the oval, and the remaining points (1, z, p(z))
for  # 0, and compare the sections corresponding to the rows of the
incidence matrix given by the points A and B on NP, as in the first part of
the proof, for the section given by the secant NQ. The sets corresponding
to S, will have the form

{azp(z™!) + x|z € F*},

which will not give hyperplanes. Thus the matrix blocked in this way
will not give sections of the smaller Reed-Muller code, and in fact will be
quite non-homogeneous, except that it will of course still give a Hadamard
matrix. Computations with Magma [4] in the case of the Lunelli-Sce-Hall
non-regular oval H in the desarguesian plane of order 16 verified the non-
uniformity of the sections of the incidence matrix constructed in this way.

That the binary code of the design arising from an oval design in the
general case contains the Reed-Muller code R(1, 2m) is still highly plausible,
but it will not be found quite as easily as in the case of the regular oval
above. In fact, even if it is inside this code, the design itself might have
very few blocks in common with the design H(II,0). Computationally it
will be hard to locate R(1,2m) inside Co(H(II, O)) in the general case.
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