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Abstract

This paper addresses the following questions. In any graph G
with at least a(};) edges, how large of an induced subgraph H can we
guarantee the existence of with minimum degree 6(H) > |o|V(H)|]?
In any graph G with at least a(';) — f(n) edges, where f(n) is an
increasing function of n, how large of an induced sub%raph H can we
guarantee the existence of containing at least a('v(2H ) ) edges? In any
graph G with at least an® edges, how large of an induced subgraph
| H can we guarantee the existence of with at least a|V(H)|* + Q(n)
! edges? For @ =1 —1/r for r = 2,3,..., the answer is zero since if
G is a complete r-partite graph, no subgraph H of G has more than
o|V(H)|? edges. However, we show that for all admissible o except
these, the answer is Q(n). In any graph G with minimum degree
5(G) > an — f(n), where f(n) = o(n), how large of an induced
subgraph H can we guarantee the existence of with minimum degree

§(H) > alV(H)I?

1 Introduction

Let G be an arbitrary graph without loops or multiple edges. As usual,
V(G), E(G), §(G), and n denote the vertex set, the edge set, the minimum
degree of the vertices in G, and the number of vertices in G. For § C
V(G), let G[S] denote the subgraph of G induced by S. In this paper the
expression “subgraph of G” will always refer to one induced by a set of
vertices. If H is a subgraph of G then [H| will denote its order (the number
of vertices).

For positive integer n and functions f(n) and g(n) we say that f = O(g)
if, for some positive constants ¢ and no, f(n) < cg(n) for all n > no. We
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say that f = o(g) if lim,— f(n)/g(n) = 0. We say that f = Q(g) if
9=0(f) and f = O(yg) if f = O(g) and g = O().

This paper addresses the following questions. How large a subgraph of

a graph (' can we find so that its density is sufficiently higher than that of
7?7 How large a subgraph of a graph (¢ can we find so that its minimum
degree is sufficiently large?

We address the second question first. The following theorem is obtained
by an elementary generalization of the lower bound results and proof of
Erdés, Luczak, and Spencer {2] (Theorem 5.2). We think that this general
version provides some additional useful information, therefore we include
it here. We include the proof in full, to make the paper self-contained and
clear.

Theorem 1 Let a(n) and B(n) be functions of n such that 0 < a(n) < 1
and 0 < B(n) < Bo < 1 for some constant By. Furthermore, let H be
@ subgraph of mazimum order such that §(H) > |B(n)|H|| in a graph G
containing at least m edges, and let f(n) be a nonnegalive nondecreasing
function of n.

1. Afm = a(n)(,) + f(n) then

() for B(n) = a(n) we have |H| = Q(\/f(n)) + Q(/7),

(b) for B(n) = a(n) — 1/g(n), where g(n) is a positive constant or
increases with n,

|Hl=Q(n/Vg(n)) + AUV f(n)) + QVn).
2. Ifm=a(n)(}) — f(n) then
(a) for B(n) = a(n) and f(n) = o(n) we have |H| = Q(\/n),

(b) for B(n) = a(n) — 1/g(n), where g(n) is a positive constant or
increases with n and f(n) = o(n*/g(n)) + o(n), we have |H| =

Qn/\/g(n)) + Q/n).

The case when o = 3 = 1/2 was studied in detail in [2], where, in
particular, the results identical with (1a) and (2a) were shown. In fact the
version of (2a) for « = # = 1/2 in [2] is more general as it does not require
that f(n) = o(n). However, we may also remove this restriction by first
using Theorem 2, which appears later, to find a “large” subgraph H of G
containing at least a(lf,”) edges, and then using case (2a) of Theorem 1 to
find a “large” subgraph I of H with &(I) > 8]I]]. More importantly, in (2,
upper bound results for the above questions are also obtained. For one
important case, f(n) = 0 in (la), it is shown that |[H| = O(n?/3). Whereas
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this is much better than O(n), a significant gap still remains between the
upper and lower bound, which deserves exploration.

To picture how the minimum size of H, given by Theorem 1, depends
on the difference a(n) — B(n) let us look more closely at the case when
f(n) = 0. If B(n) is bounded from above by a constant smaller than a(n)
then H is of the order of n. When S(n) approaches a(n) as n increases, the
minimum size of H drops down (and depends on the rate of convergence
B(n) — a(n)), and, finally, for a(n) = B(n) the lower bound on |H| is of
the order of \/n. For constant a, 3 and a < 8 our proof breaks down as it
relies on the greedy method (see the proof). In this case, by the probabilistic
method it may be shown that |H| = O(logn) (see (2], Theorem 5.1* case
(1) and set € = —0.01, 3 = 1/2 for example).

Now consider a(n) = 8(n) in Theorem 1. As noted earlier in [2], with
f(n) = O(n) the lower bound on |H| is of the order of \/n, with f(n) =
Q(n?) it improves to order of n, and with n = o( f(n)) and f(n) = o(n?) it
is in between.

Theorem 1 gives also some estimates for the following extremal problem:
for constant k estimate the value of F(n, k) defined as the smallest integer
¢ so that every graph with »n vertices and e edges has a subgraph H of
order m = Q(y/n) with §(H) > k. Setting f(n) =0, a(n) = g(n) = k/m
in Theorem 1 gives F(n, k) < a(n)(3) = O(n¥?).

A k-multigraph is one in which a pair of vertices is connected by at most
k edges. With 0 < a,B(n) < k, Theorem 1 also holds for a k-multigraph
in which k is a constant. If & = k(n) is an increasing function of n then
the analog of Theorem 1 holds for a k-multigraph in which every result is
divided by k(n). See the proof.

Theorem 1 represents “extremal” cases. We may also ask the question
for “typical” cases. Specifically, we may ask, In a random graph in Gy p,
what is the expected order of the largest subgraph H with §(H) > |8]|H|].
This question is addressed in [2] for 8 = 1/2. It is shown there, for example,
that for p = 1/2 this expected order is O(n).

Another question that we may ask is of the Ramsey type. Namely, in-
stead of asking whether G has a subgraph of a certain order satisfying
certain conditions, we ask if either G or its complement G has a sub-
graph of a certain order satisfying those conditions. This question has
been investigated in [3], in which the following results are obtained. For
any graph G, let H be a maximum order subgraph of G or its comple-
ment G satisfying §(H) > a|H|. f 0 < o < 1/2, then |H| = Q(n). If
1/2 < a < 1, then |H| = O(logn). Thus the behavior changes suddenly
at @ = 1/2. Further, at & = 1/2, it is shown that |H| = Q(n/logn) and
|H| = O(nloglogn/logn).

We now address the first question. Let a(n) = a(n)/b(n) denote a

89



rational function of n such that 0 < a(n) < 1/2. Let f(n) be a nonnegative
nondecreasing function of n.

Theorem 2 In a graph G containing al least a(n)(" — f(n) edges, let H
be a subgraph of mazimum order coniaining at least a(n)(IHI) edges. Then

Q( ((,(n”(n)/")los(ﬂn)/(a(n‘)) ) l.f f(n) = Q(a( )n)
|H| =

(W if f(n) = o(a(n)n) + Q(n/b(n))
O(n) if f(n) = o(n/b(n)

With f(n) = ©(n) and a(n) a constant, Theorem 2 gives |H| = O(n).

It may be verified from the proof that Theorem 2 also holds, for 0 <
a(n) < 1/2, if G is a multigraph. In contrast to Theorem 1, no restriction
is placed on the number of edges connecting a pair of vertices.

The next question we ask is as follows. If 6(G) > [n/2| — k, where k
is a constant, can we find a large subgraph H of G with 8§(H) > ||H|/2]?
Using Theorems 1 and 2, we are able to show that [H| = Q(\/n). More
generally, the following result holds.

Proposition 1 Let o be a constant with 0 < o < 1/2 and let f(n) be a
nonnegative nondecreasing function of n. Then each graph G with §(G) >
an — f(n) contains a subgraph H with 6( H) > «|H| such that

n
= Q(\/(f(n)/n)'°"(“")/"))

We now ask the following question related to Theorem 2. The problem is
whether, roughly, in the hypothesis of Theorem 2 one can replace a “deficit”
term f(n) for the number of edges of G by a “surplus” term g(|H|, n) for
the number of edges of H, i.e. whether every graph G with at least an?
edges contains a large subgraph H with at least a|H|* + g(|H|,n) edges.
One can easily see that if G is a complete r-partite graph the answer is
negative since no subgraph H of G has more than o|H|* edges (note that
in this case @ =1 —1/r for » = 2,3,...). However, it turns out that these
graphs are the only exceptions.

Theorem 3 Let a > 0 be a constant such thata # 1—1/r forr =2,3,....
Then there exist constants 6 = 6(a) > 0, n = n(a) > 0 and N = N(«)
such that for every n > N and k = k(n), where |k| < dnlogn, every graph
G with n vertices and more than an? — k edges contains a subgraph on
n' > n— nk/logn vertices with at least a(n')? + kn'/n edges.

In particular, for every o as above, every graph G with n vertices and
more than an® — O(n) edges contains a subgraph on n' > n — O(n/logn)
vertices with at least a(n')? + Q(n') edges.
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One is tempted to conjecture that the above result is sharp in a very
strong sense, i.e. that for every constant o there exists a constant B = B(«)
and a graph G with an® edges such that G contains no subgraphs on m
vertices, 1 < m < n, with more than am® + Bmlogn edges. Although the
existence of such a graph would be rather surprising at the present moment
we are not able to exclude such a possibility.

2 Proof of Theorem 1

The proof employs the greedy method, as in [2], and works for a k-multigraph
(k =1 gives a graph).

while 8(G) < [B|V(G)|) do
Delete a minimum degree vertex from G

First assume that G has at least a(n)(3) edges. Let |V(G)| = n at the
start of a non-terminating step of the algorithm. Then the deleted vertex
has degree < B(n)n—1. After termination, let |V (G)| = t. We want largest
t such that

a(n) <3) —[(B)n=D)+B(n)(n=1)-1)+...+(B(n)(t+1)-1)] > k(;)

which may be simplified to

ﬁ(n) 2

k- k
= o) () + 11 = pln 2 S+ 1 £4 A

— )t (1)

Addition or subtraction of f(n) from the left hand side of (1) and a straight-
forward examination of the cases listed in Theorem 1 completes the proof.
O

3 Proof of Theorem 2

The proof employs an interesting variant of the greedy method.
for k — f(n)/n + a(n)/2; k> a(n)/2;k —k/2do
while |E(G)| < a(n)/2 [V(G)|* — k/2 |V(G)| do

Delete a minimum degree vertex from G

At the start of any iteration of the for loop,

26 > 2 o - kv
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This is also true when the algorithm begins, since

Tn) - (f(m)/n + a(n)/2)n = a(n)( ) - f(n)

At the end of any one iteration of the for loop

26 2 24

k
VIGF - 3 V(G

Thus when the algorithm terminates,
(n V(G
iz P v - S e = am(!)

Let |V(G)| = m at the start of iteration k = kg of the for loop and let
[V(G)| =t at the end of that iteration. In the step when |V(G)| = s, the
deleted vertex has degree smaller than a(n)s — kg. It turns out that we
need to bound it better. Recall that a(n) = a(n)/b(n) < 1/2. Let Ay(z,y)
denote the sum Y7 y @(n)i minus the sum of the degrees of the deleted
vertices in the sequence of steps in which |[V(G)| equals z, 2 —1,...,y.
Then for any positive integer ¢,

b(n)—1
Adlgb(n) + b(n) = Lgb(m)) 21 + 3 ’——“("’gz‘;’)d bn)
j=t

Note that a(n)/b(n) < 1/2. Suppose that
ka(n) mod b(n) < a(n).
It is easy to check that
(k + 1)a(n) mod b(n) > a(n).
Hence
Adlgb(n) +b(n) — 1,qb(n)) 2 a(n)/2 + (b(n) — a(n))/b(n)
= b(n)a(n)/2+ (1 - a(n)) (2)
We want largest ¢ such that

Ld

u(n)mz/?—kgm—( 3 (a(n)i—ko) - Ad(m,t+l)) > a(n)t?/2 — kot/2
i=t+1
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which may be simplified to

—a(n)m/24 Ag(m.t+ 1) > —a(n)/2 + kot /2 )
Using (2).

Substituting in (3) gives

(1 — a(n))m l—a(n) ko
b(n) 2 ( b(n) +?)t

from which

(1 = a(n))/b(n) m > m/2
(1 =a(m)/b(n) + ko/2 = 1/2 + b(n)f(m)/m

t =

which is '
{ Oyt if f(m) = Q(m/b(n))
O(m) if f(m) = o(m/b(n))

Since we start with & = f(n)/n + «(n)/2 and stop when k < a(n)/2,
the number of iterations of the forloop is i = log,(f(n)/n+a(n)/2)/a(n)/2
which equals

if f(n) = o(na(n))

Noting that a(n)n = Q(n/b(n)). we finally get, after the algorithm
terminates

{ O(log f(n)/(a(n)n)) if f(n) = Q(na(n))
1

Q( ([,(")j(n)/n)’os(l(")/(“(")"n ) lr f(ﬂ) = Q(G n)")
V(G =9 Ugmrerms) if f(n) = o(a(n)n) + Qn/b(n))
O(n) if f(n) = o(n/b(n))

a

Finally, we may observe that the above proof works also if G is replaced
by a multigraph. Indeed the governing inequality remains (3) and the
Ag4(m,t + 1) calculation remains unchanged.

4 Proof of Proposition 1

First, it may be seen that Theorem 2 also holds if we start with G containing
at least a(n)n?/2 — g(n) edges, 0 < a(n) < 1/2, and we want a subgraph
H of G containing at least a(n)|H|*/2 edges.
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Consider G with §(G) > an— f(n). Then |E(G)| > an®/2 — nf(n)/2.
By the above observations on Theorem 2, G contains a subgraph H with
|E(H)| > o|H|*/2 and |H| > Q(n/((f(n)/n)°8U (/)y} By Theorem 1,
case (1 a), H contains a subgraph I with (1) > |a|I]] and |I| = ( \/|_I-Ti).
The result follows. D

5 Proof of Theorem 3

Our simple argument is based on the following result of Bollobas, Erdés
and Simonovits (see, for example, [1, Thm.VL3.1i]).

Theorem 4 There exists an absolule constant n > 0 such that if 0 < ¢ <
1/(r—1) and
M>(=1/(r=1)+¢)n*/2

then every graph with n vertices and M edges contains a complete r-partite
graph K,.(t), such that each set of the r-partition has

[ = nlogn
- lrlog(l/e)J

We shall show the following result.

vertices.

Lemma 1 Leta =(1—1/(r—1)+¢€)/2, where 0 < e < 1/(r(r — 1)) and
M = an® + cnlogn, with

el = letm)l € 4 = gt ey~

(Here 1) is the constant which appears in lhe theorem above.) Then, there
exists a constant N such thal every graph G with n > N verlices and M
edges contains a set S of s vertices,

50Ar(r - 1)

<§ < —m—n"r
Alogn <s < A= =19

logn ,

such that a graph obtaining from G by removing vertices from S has n' =
n — s vertices and at least a(n')* + cn'logn + sAlogn edges.

Remark. We have made no effort to make constants in the above statement
best possible.

Proof of Lemma 1.
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Case 1. G contains at least en/4 vertices of degree at least d = 2an +
2clogn + (20A/€)logn.

In this case, it is enough to remove from the graph s = [Alogn] vertices
of smallest degree. Indeed, let d; < ... < d, be a degree sequence of G,
and let d,_r 41 > d for some k > en/4. Then

n Ld < 2an® + cenlogn — k(2an + clogn + (20A/¢) logn)
g
< (n = k)(2an + 2clogn — A 24 Jog n)
< (n—k)(2an+2clogn — J4logn)

Hence, s vertices of the smallest degree are incident to at most s(2an +
2clogn — 5Alogn) edges. Thus, deleting these vertices from G results in a
graph with n’ = n — s vertices and at least

an® —2asn + cnlogn — 2eslogn + 5sAlogn
=a(n—5)> +c(n—s)logn+ s(54logn — clogn — as)
> a(n')? + cn’logn + sAlogn
edges.
Case 2. G contains less than en/4 vertices of degree at least dy = 2an +
2clogn + (204/¢) logn.
Note that the number of edges of G incident to vertices of degree at

least dy is less than en®/4, so the graph G, obtained from G by removing
all such vertices, has # > 0.8n vertices and at least

1 e\ n 1 €\ n®
- 1— _) n-
(1 1-1+z)2 (1-7=1+3)3
edges. Thus, according to Theorem 4, G contains a complete r-partite
graph K, (1) with

f= |7 log > 0.99logn
"7 rlog(2/€)] T rlog(2/e)

Now delete all vertices of this r-partite subgraph from G. The resulting
graph has n’ = n — rt vertices and at least

an®  —2rtan + cnlogn — 2crtlogn — (20Art /) logn + (5)¢°
= a(n — rt)? + c(n — rt)logn + rt(i((r — 1)/2 — ar) — (20A/€) logn
—clogn)
> a(n’)? +cn'logn + rt(t(1/(r — 1) — er)/2 — (21 A/€) logn)
> a(n')? +cn'logn + ri(A/e)logn
> a(n’)? + cn'logn + riAlogn .

This completes the proof of Lemma 1. Theorem 3 follows easily as a corol-
lary. O
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