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ABSTRACT. We present a new construction to obtain frames
with block size four using certain skew Room frames. The ex-
istence results of Rees and Stinson for frames with block size
four are improved, especially for hole sizes divisible by 6. As a
by-product of the skew Room frames we construct, we are also
able to show that a resolvable (K4 — e)-design with 60t + 16
points exists if t > 0 and ¢ # 8,12. Additionally, we give a new
construction for holey self-orthogonal Latin squares with sym-
metric orthogonal mates (HSOLSSOMs) from frames: if there
is a 4-frame of type h*, then there is a HSOLSSOM of type h*.
We use this to construct some new HSOLSSOMs of types 3*
and 6%.

1 Introduction

A group divisible design (or GDD), is a triple (X, G, B) which satisfies the
following properties:

(1) G is a partition of a set X (of points) into subsets called groups,

(2) B is a set of subsets of X (called blocks) such that a group and a
block contain at most one common point,
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(3) every pair of points from distinct groups occurs in a unique block.

The group type of the GDD is the multiset {|G|: G € G}. A GDD
(X, G,B) will be referred to as a K-GDD if |B| € K for every block B
in B.

A frame is a group divisible design (X, G,B) whose block set admits
a partition into holey parallel classes, each holey parallel class being a
partition of X\ G for some G € G. The groups of a frame are usually
referred to as holes. The type of the frame is defined to be the group type
of the GDD. A frame of block size k is denoted by k-frame. A frame of
type h* has u holes of size h and is called uniform.

It is known [10] that if there is a k-frame of type A* (with u > 1), then
u>k+1, h =0mod (k—1) and h(u — 1) = 0 mod k. The necessary
conditions for the existence of a uniform k-frame have been proved to be
sufficient for k = 3 [13]. A partial solution for & = 4 has been provided in
[10].

Theorem 1.1. [10] There is a 4-frame of type h* if and only if u > 5,
h =0 mod 3 and h(u — 1) = 0 mod 4, except possibly where

(i) h=9 and u € {13,17,29, 33,93,113,133, 153,173,193},

(ii) h =0 mod 12 and u € {8,12},
h =36 and u € {7,18,23,28, 33, 38,43,48},
h =24 or 120 and u € {7},
h=72and u€2Z*tU{n: n=23 mod 4 and n < 527} U {663}, or

(iii) A= 6 mod 12 and v € {17,29,33,563}U{n: n= 3 or 11 mod 12 and
n < 527}U{n: n =7 mod 12 and n < 259},
h=18.

In this paper, we present a new construction for 4-frames using certain
skew Room frames. Then we improve Theorem 1.1, especially for hole
sizes h = 6, 18 and 72, so that for any h there are finitely many possible
exceptions of u. More specifically, we shall show the existence of 4-frames
of type A* when

h =9 and v € {33,133},

h=24 and u =8,

h =36 and u = 33,

h=72and u 2 5, .

h =6 and u € {17,29, 33,563} U {n: n =3, or 11 mod 12 and n > 275},
h=18andue {n:n=1mod 4,n # 17} U {n: n=3 mod 4 and n > 271}.



As a by-product of the skew Room frames we construct, we show that a
resolvable (K — e)-design with 60¢ + 16 points exists if £ > 0 and ¢ # 8,
12. Additionally, we give a new construction for holey self-orthogonal Latin
squares with symmetric orthogonal mates (HSOLSSOMs) from frames: if
there is a 4-frame of type h*, then there is a HSOLSSOM of type h*. We
use this to construct some new HSOLSSOMs of types 3% and 6.

We use [1] as our standard design theory reference. We also follow [10]
for notation of pairwise balanced designs (PBDs), group divisible designs
(GDDs), transversal designs (TDs) and other types of designs. We shall
use the following basic constructions [10].

Lemma 1.2 (Inflation). If there exists a 4-frame of type h* and a re-
solvable T D(4, m), then there exists a 4-frame of type (mh)*.

Lemma 1.3 (Weighting). Let (X,G,B) be a GDD, and let w: X —
Z* U {0} be a weight function on X. Suppose that for every block B € B
there exists a 4-frame of type {w(z): z € B}. Then there exists a 4-frame

of type {3 _.ccw(z): G € G}.

Lemma 1.4 (Filling in holes). Let d =0 or 1. If there exist a 4-frame
of type (s1,82,...,5,) and a 4-frame of type hd+t%/ for 1 < j < n, then
there exists a 4-frame of type h**+*/*, where s = ¥, <, .. 55-

Lemma 1.5 (PBD closure). For any fixed hole size h, the set {u: 3
4-frame of type h*} is PBD-closed.

2 A skew Room frame construction

Recently a very useful construction of BIBDs and GDDs with block size four
has been found by making use of skew Room frames [11]. This construction
has been employed in solving the existence problem for weakly 3-chromatic
BIBDs with block size four [12]. We shall now adapt it to construct frames
of block size four.

For 1 € i € n define H; = {Zj4ni-1): 0 < j < h-1} and let H =
{H:: 1 < i < n}; H; is called a hole. A Room frame of type h™ with hole
set H is a hn x hn array F, indexed by X = {zg,z1,...,Zan—1}, in which

(a) for 1 < i <m, the cells (s,t) € H; x H; are empty.

(b) each 2-element subset of X that is not a 2-element subset of H; occurs
in exactly one cell of F, and each cell of F either contains a pair of
symbols from X or is empty.

(c) each row and each column of F that intersects H; contains each ele-
ment from X \ H; exactly once.



A skew Room frame is a Room frame in which cell (3, j) is occupied if
and only if cell (4, ?) is empty.

From a skew Room frame of type h™ one can get a 4-GDD of type (6k)"
[11]. The 4-GDD is based on X x Zg with groups H; x Zg, 1 < @ < n.
The block set B contains all blocks {(a, 5), (4,7), (¢,1+37), (r,4+3)}, where
j € Zg, {a,b} € F, {a, b} occurs in column c and row r.

If all the quadruples (a, b, ¢, 7) can be partitioned into sets such that each
set forms a partition of X \ H; for some i, and each H; corresponds to 2h of
the sets, we call the skew Room frame partitionable. It is clear that from a
partitionable skew Room frame, each set which partitions X \ H; will result
in a holey parallel class in the resulting 4-GDD. We state this fact in the
following lemma.

Lemma 2.1. If there is a partitionable skew Room frame of type h™, then
there exists a 4-frame of type (6h)™.

Room frames of type h™ arg often constructed using an abelian group of
order h™. Let G be an abelian group, written additively, and let H be a
subgroup of G. Denote g = |G|, h = |H| and suppose that g — h is even.
A frame starter in G\ H is a set of unordered pairs S = {{s;,#:}: 1 <i <
(g — h)/2} satisfying

(1) Urci<(g-ny/2({si} U {t:}) = G\ H, and
(2) Urcig(g—ny2{£(si —t:)} =G\ H.
An adder for S is an injection A: S — G\ H, such that
Uicic(g-ny2({si + ai} U {ti + ai}) = G\ H,
where a; = A(s;, 1), 1 <4 < (g — h)/2. An adder A is skew if, further,
Uici<(g-ny2({ai} U {—a:}) = G\ H.

From a starter S and a skew adder A, we can construct a skew Room
frame F in which the cell (4, —a; + j) is occupied by {s; + j,¢ + j} for
1<i<(g—-h)/2 and any 7 € G. To obtain a 4-frame, it suffices to
partition the quadruples: (s; + 4,¢; + 4, —ai + J,3)-

Lemma 2.2. There exists a partitionable skew Room frame of type 3° and
a 4-frame of type 185.

Proof: From [5] we have a starter S and a skew adder A of type 3° as
follows.
G= Z15 and H = {0, 5, 10}

S = {{lr 7}: {2: 3}’ {4’ 8}’ {6, 14}a {9, 12}) {11’ 13}}
A=1{12,14,4,8,9,13}.



We can partition all the quadruples (s; + j,¢; + j, —a; + 7, 7) as follows.
First, translate the initial quadruples:

, 7, 3 0 ---addl--- 2, 8 4, 1
2, 3 1, 0 ---addl1--- 3, 4, 2 1
4, 8 11, 0 ---add3--- 7, 11, 14, 3
6, 14, 7, 0 ---add2--- 8 1, 9, 2
9, 12, 6, 0 ---add2--- 11, 14, 8, 2
11, 13, 2, 0 ---addl--- 12, 14, 3, 1

It is easily seen that each quadruple (u, v, w, z) on the right covers the four
non-zero residues modulo 5, and hence will give one partition of G\ H: {(u+
Jhv+i,w+j,2+73):j € H}. Altogether we get six partitions of G\ H.
Under the action of group G, we get further partitions so that F is parti-
tionable. Hence, there exists a 4-frame of type 185. a

Lemma 2.3. There exists a partitionable skew Room frame of type 3° and
a 4-frame of type 189.

Proof: Using a computer program we found a starter S and a skew adder
A of type 3° as follows.
G = Zy7 and H = {0,9,18}.
S = {{1,2},{3,5},{4, 7}, {8,12}, {14, 19}, {15, 21}, {13, 20},
{17,25}, {16, 26}, {22, 6}, {11, 23}, {24, 10}}.
A={1,14,3,12,21,11,2,8, 22,17, 20, 4}.

First, translate the initial quadruples:

1, 2, 2, 0 ---add2--- 3, 4, 1, 2
3, 5 13, 0 ---addl--- 4, 6, 14, 1
4, 7, 24, 0 ---add4--- 8 11, 1, 4
8 12, 15, 0 ---add4--- 12, 16, 19, 4
4, 19, 6, 0 ---add2--- 16, 21, 8, 2
15, 21, 16, O ---add8--- 23, 2, 24, 8
13, 20, 25, 0 ---add3--- 16, 23, 1, 3
17, 25, 19, 0 ---add7--- 24, &, 26, 7
16, 26, 5 0 ---add7--- 23, 6, 12, 7
22, 6, 10, 0 ---add4--- 26, 10, 14, 4
11, 23, 7, 0 ---2dd6--- 17, 2, 13, 6
24, 10, 23, 0 ---add6--- 3, 16, 2, 6



We pair the quadruples on the right as follows:

(314:1 :2)! (2415!26!7);
(4,6,14,1), (16,21,8,2);
(8,11,14), (23,6,12,7);

(12,16,19,4), (23,2,24,8);
(16,23,1,3), (17,2,13,6);
(26,10,14,4),  (3,16,2,6).

It is easily seen that each pair P of quadruples covers the eight non-zero
residues modulo 9, and hence gives one partition of G\ H: {(u + j,v +
jw+3j,z+3): j € H,(u,v,w,z) € P}. Altogether we get six partitions of
G\ H. Under the action of group G, we get further partitions so that F is
partitionable. Hence, there exists a 4-frame of type 189. m|

Lemma 2.4. There exists a partitionable skew Room frame of type 117
and a 4-frame of type 6'7.

Proof: Let G = Z;7 and H = {0}. From a starter and a skew adder of
type 117 we translate the initial quadruples as follows:

1, 4, 5 0 ---add6--- 7, 10, 11, 6
11, 10, 4, 0 ---add15--- 9, 8, 2, 15
6, 7, 6 0 ---addl4--- 13, 4, 3, 14
13, 6, 2, 0 ---add16--- 12, 5 1, 16
2, 8 10, 0 ---add12--- 14, 3, 5, 12
12, 14, 9, 0 ---add4--- 16, 1, 13, 4
15, 3 1, 0 ---add8--- 6 11, 9, 8
9, 5 14, 0 ---add10--- 2 15, 7, 10

It is easily seen that each of the first and the last four quadruples gives one
partition of G\ H. Under the action of group G, we get other partitions so
that F is partitionable. Hence, there exists a 4-frame of type 617. 0

Lemma 2.5. There exists a partitionable skew Room frame of type 1*
and a 4-frame of type 6%, where u = 13,29.

Proof: Let G = GF(u) and H = {0}. Let Cp be the multiplicative
subgroup of order G having index 4. Denote the other cosets by Ci, Ca,
Cj, such that C; U C3 consists of all the quadratic non-residues. Take an
element a = 4 in Cy. Let ¢ =4 or 6 for u = 13 or 29, respectively. It is
readily checked that 1+ ¢, a+ ¢, a +1+ ¢, and c are in distinct cosets.
Then we have a starter S = {{z,az}: z € Co U C}} and a skew adder A,
where A({z, az}) = —(a+ 1)z for z € Co UC;. Use cz to get the translate
of the quadruple (z, az, (a + 1)z,0). We get two partitions of G\ H:

(A + o)z, (a+ )z, (a + 1+ )z, cz),z € Co;
(A + )z, (a+ )z, (a+ 1+ )z, cz),z € C1.



Under the action of group G, we get further partitions so that F is parti-
tionable. Hence, there exists a 4-frame of type 6*. a

Lemma 2.6. There exist 4-frames of types 248 and 633.

Proof: Using a computer program we found a starter S and a skew adder
A of type 48 as follows.

G = Zs; and H = {0, 8,16, 24}.

S = {{1,4},{2,7}, {9, 23}, {12,31}, {14, 25}, {15, 17}, {18, 30},
{5,20}, {10, 3}, {13, 19}, {28, 27}, {6, 29}, {11, 21}, {26, 22} }.

A=1{1,7,13,26,4,11,17,22,9,20,3,14,2,27}.

Translate the initial quadruples:

1, 4, -1, 0 ---add3--- 4, 7, 2, 3
2, 7, -7, 0 ---add19--- 21, 26, 12, 19
14, 25, -4, 0 ---add13--- 27, 6, 9, 13
18, 30, -17, 0 ---add3l1--- 17, 29, 14, 31
5, 20, 22, 0 ---add5--- 10, 25 15, 5
10, 3, -9, 0 ---add20--- 30, 23, 11, 20
2, 22, -27, 0 ---add28--- 22, 18, 1, 28
9, 23, -13, 0 ---add3--- 12, 26, 22, 3
12, 31, -26, 0 ---add1l1--- 23, 10, 17, 11
15, 17, -11, 0 ---add4--- 19, 21, 25 4
13, 19, -20, 0 ---addl--- 14, 20, 13, 1
28, 27, -3, 0 ---add2--- 30, 25 31, 2
6, 29, -14, 0 ---add9--- 15 6, 27, 9
1, 21, -2, 0 ---add7--- 18, 28, 5 7

It is easily seen that the first 7 quadruples on the right forms a partition
of G\ H, so do the last 7 quadruples. From the partitionable skew Room
frame of type 4% we get a 4-frame of type 24%. Adding 6 new points and
ﬁlslgng in holes with a 4-frame of type 6% gives the desired 4-frame of type
653, (]

3 Some new 4-frames

First, we show that for any « > 5 there exists a 4-frame of type 72%. To do
this, we mainly use the weighting construction. Since a 4-frame of type 12"
exists for all n € K = {k: k > 5 and k # 8,12}, we start with a K-GDD of
type 6%.

Lemma 3.1. There exists a K-GDD of type 6* for u > 5 and u # 5,33,
where K = {k: k > 5,k # 8,12}.



Proof: If there are 4 idempotent MOLS(k), then we have a {k,6}-GDD of
type 6*. Deleting one group from the GDD gives a {k—1,5,6}-GDD of type
6%~1 From Tables 2.58 and 2.59 in [3], we get the required 4 MOLS and
hence a K-GDD of type 6* exists for u > 5 and u # 5, 8,12, 14, 33, 34, 38, 44.

It is known [7] that there exists a resolvable {9}-GDD of type 333 and a
{9,10}-GDD of type 3%4.

If there is a TD(7,t), we may delete ¢ — 6 points in one group to get a
{t,6,7}-GDD of type 6*1. This takes care of the remaining cases. (]

Lemma 3.2. There exists a 4-frame of type 72" for all u > 5.

Proof: For v = 5 and u = 33, a 4-frame of type 72* is known from
Theorem 1.1. For other u, start with a K-GDD of type 6* from Lemma 3.1
and apply the weighting construction giving weight 12 to each point. Since
from Theorem 1.1 (ii) a 4-frame of type 12" exists forall n € K = {k: k >
5,k # 8,12}, we get the desired 4-frames of type 72. O

Lemma 3.3. There exists a 4-frame of type 18* for u € {n:n =1
mod 4,7 # 17} U {n: n= 3 mod 4,n > 271}.

Proof: Apply Lemma 1.4 with s; = 72, h = 18 and d = 1. Since a 4-frame
of type 185 exists from Lemma 2.2, we get a 4-frame of type 18% for all
» > 21, u=1mod 4. A 4-frame of type 18° exists from Lemma 2.3. From
[1, Proposition 9.17), there exists a {g?}-GDD of type (g — g)™ for every
prime power q > 2, where m = ¢ + ¢+ 1. Taking ¢ = 3 gives a {9}-GDD
of type 613, Give weight 3 to each point and apply Lemma 1.3. Since a
4-frame of type 3 exists from Theorem 1.1, we get a 4-frame of type 1813,
This takes care of the case « = 1 mod 4.

We now deal with the case u = 3 mod 4. Start with a TD(7, 6¢), ¢ > 11,
which exists from Tables 2.58 and 2.59 in [3]. Delete 6t — 6s points in
a group, s = 5,6,7,8,9. Delete 6t — 45 points in another group. We
get a {5,6,7}-GDD of type (6t)3(6s)'45'. Give weight 12 to each point
of the GDD and use 4-frames of types 12" as input designs, where n =
5,6,7, which all exist from Theorem 1.1 (ii). We get a 4-frame of type
(72¢)5(72s)*540'. Apply Lemma 1.4 with s; = 72, or 72s, or 540, h = 18
and d = 1. Since a 4-frame of type 183! exists from [10] and a 4-frame of
type 18* exists for all © > 21, u = 1 mod 4, we get a 4-frame of type 18%,
u=20t+4s5+ 31, s=5,6,7,8,9. This gives a 4-frame of type 18* for all
u 2> 271, u = 3 mod 4. The proof is complete. a

Lemma 8.4. There exist 4-frames of types 93, 9133, 3633,

Proof: It is known [7] that a 9-GDD of type 332 exists. Give weight 3 to
each point and use a 4-frame of type 3? as input design. We get a 4-frame
of type 9%3. Further applying Lemma 1.2 with m = 4 gives a 4-frame of
type 3633. Still further apply Lemma 1.4 with s; =36, h =9 and d = 1.
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Since a 4-frame of type 9° exists from Theorem 1.1 (i), we get a 4-frame of
type 9133, ‘ |

Next, we deal with the hole size 6.

Lemma 3.5. Suppose there is a GDD such that (1) |G| € 2NU{15} for all
groups G, and (2) |B| € N\ {1,2,3,4,8,12} for all blocks B. Then there
is a 4-frame of type 6%, where u = 2|X|+ 1.

Proof: Give every point weight 12 and apply Lemma 1.3. Then adjoin 6
points at infinity to fill in the holes. [m]

Corollary 3.6. Suppose there is a TD(7,n), where n is even, n > 16,
0 <t <mnandtis even. Then there is a 4-frame of type 6%, where
u=10n+2t +31.

Proof: Delete n — 15 points from one group and n —¢ points from another
group. We get a GDD on 5n + 15 + ¢ points, having group type n®15!¢!
and blocks of size 5, 6 and 7. Apply Lemma 3.5. a

Lemma 38.7. For u = 3,11 mod 12, 351 < u < 527, and for u = 563, there
is a 4-frame of type 6%.

Proof: Apply Corollary 3.6 with n = 50, 48, 40, 36, 32. a

We can do further examples using the following construction for GDDs
that uses the idea of thwarts [4, Section 5.7].

Lemma 3.8. Suppose n is a prime power, k <n+1,0<s,t <n-—1, and
s+t > n+k—2. Then there is a GDD having group type (n — 1)*st!
and block sizes k, k+ 1 and k + 2.

Proof: Suppose we begin with any TD(k + 2, ) and delete the points on
one block B, and then delete n — s — 1 further points from one group and
n —¢ — 1 further points from another group. This will yield a GDD of the
desired type, having blocks of size k — 1, k, k+ 1, k+ 2. We want to make
sure that there are no blocks of size k — 1. We can do this for the TD
obtained from the Desarguesian plane if s+t >n+k—2.

Let A be a primitive element of GF(n). For 1 <i <k, let a; = —A~t1,
Let the groups of the TD be G,,..., Gk, H1, Hz, where G; = {i} x GF(n),
H, = {h} x GF(n) and H, = {h’} x GF(n). The blocks of the TD are
given by the formula

Boy = {(h,y), (K, 2)} U {(i,z + a;y): 1 <i < k},z,y € GF(n).

Suppose B = By is the block whose points are deleted, and suppose Tp =
{(h',A%):1 < j < n—t—1} are the further deleted points from H,. S
will consist of s points, to be specified later, that are not deleted from H,.
The property we require is the following: any block that contains a point
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of B intersecting G; (1 < ¢ < k) and a point of T, intersects H; in a point
of Sl.

Now, the points (3,0) and (h’, A7) are in the block B,,, where y =
AH3~1 5o the intersection of this block with H, is (k, A*~!). Since
1<i<kandl < j < n—t-1, weneed all points (h, A?),..., (h, An—*tk-2)
to be in S;. This is possible if s > n — ¢ + k — 2, which is equivalent to
s+t>n+k-—2. 0

We will use the following corollary.

Corollary 3.9. Suppose n is an odd prime power,n > 17,0<t <n -1,
t even, and n —t < 12. Then there is a 4-frame of type 6*, where u =
10n + 2¢ + 21.

Proof: Take k = 5 and s = 15 in Lemma 3.8. There is a GDD on 5n+10+t¢
points, having group type (n—1)515'¢! and blocks of sizes 5, 6 and 7. Apply
Lemma 3.5. (|

Lemma 3.10. For v = 3,11 mod 12, » > 275, there is a 4-frame of
type 6%.

Proof: We need only consider 275 < » < 347. Apply Corollary 3.9 with
n = 29,27,25,23 to do these cases. O

Lemma 3.11. For u = 3,11 mod 12, u > 275, there is a 4-frame of type
k¥, where h = 6 mod 12, h # 18.

Proof: Let h = 6g where g is odd, g # 3. So we can multiply the 4-frames
in Lemma 3.10 by g. ]

With the newly constructed 4-frames we can now update the results in
Theorem 1.1 as follows.

Theorem 3.12. There exists a 4-frame of type h*, if and only if u > 5,
h =0 mod 3 and h(u — 1) = 0 mod 4, except possibly where

(i) k=9 and u € {13,17,29,93,113,153,173,193};

(ii)) A =12 mod 24 and u € {8,12},
h =36 and u € {7,18,23, 28, 38,43,48};

(i) h=0mod 24 and u € {12},
h = 48,144 or 240 and u € {8},
h =24 or 120 and u € {7}; or

(iii) h=6 mod 12 and u € {n: n =3 mod 4 and n < 267},
h=18 and v € {17}.
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We remark that for some u» = 3 mod 4 and u» < 267 it is possible to use
the above constructions to get 4-frames of type 6*. However, the bound in
Theorem 3.12 (iii) still remains. So, we do not intend to list those possible
values of .

4 Resolvable (K, — e)-designs
In this section we shall present another application of the partitionable skew
Room frames given in Section 2 to show the existence of certain resolvable
(K4 — e)-designs.

A (K, —e)-design of order n is a pair (X, B), where B is an edge-disjoint
decomposition of the edge set of K, (the complete undirected graph on n
vertices) with vertex set X, into copies of

a d

K4'e =

c b

We shall denote K4 — e by any one of (a,b,¢,d), (a,b,d,c), (b,a,cd),
or (b,a,d,c) and call it a block of the design. It is well known that a
(K4 — e)-design of order n exists for all n = 0 or 1( mod 5), » > 6. If
(X,B) is a (K4 — e)-design of order n, then B contains n(n —1)/10 blocks.
A (K4 — e)-design is called resolvable if the block set B can be partitioned
into parallel classes, each forming a partition of X. Simple counting shows
that a resolvable (K4 — e)-design of order n exists only if » = 16( mod 20)
and n > 16. A. Street posed the existence question at Auburn conference
(1994). A. Rosa (private communication) provided the first example of
order 16 as follows.

Lemma 4.1. There exists a resolvable (K4 — e)-design of order 16.
Proof: Let X = {00,0,1,...,14}. Let B be the set of 24 blocks shown

below, which is partitioned into six parallel classes, where each row forms
a parallel class.

(1,00,0,2), (5,14,4,6), (9, 10,3,7), (11,13, 8, 12);
(5,10,0,00), (4,8,1,2), (13,6,7,9), (3, 14, 11, 12);
(6,11,00,1), (2,5,3,9), (8, 14,7, 10), (0,4, 12,13);
(7,12,00,2), (4, 6,3,10), (0,9,8,11), (1,13, 5, 14);
(c0,3,8,13), (7, 11,4, 5), (1,12,9, 10), (0,2, 6, 14);
(c0,9,4,14), (8,12,5,6), (2,10, 11,13), (3,7,0,1).

Then (X, B) is the desired resolvable (K, — e)-design of order 16. (]
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A K, —e group divisible design of type k™ is a triple (X, G, B), where X is
the vertex set, G is a partition of X into groups (holes) of size h each, B is an
edge-disjoint decomposition of the edge set of Ky ... » (the multipartite
complete undirected graph with G as the partition of the vertex set X)
into copies of (blocks) K4 —e. A (K4 — e)-frame of type h™ is a K; — e
group divisible design of type A" (X, G,B) in which the blocks can be
partitioned into Holey parullel classes, each forming a partition of X\ G
for some G € G.

Lemma 4.2. If there is a partitionable skew Room frame of type h™, then
there is a (K4 — e)-frame of type (5h)™.

Proof: Let F be a given partitionable skew Room frame of type A" with
hole set H and let {z, y} be a pair in the cell (r, c) of F. We first construct a
(K3 —e)-GDD of type (5h)" (X, G,B), where G ={HxZs: He H}, X =
UgecG and B contains all the 5 graphs ((z,9), (¥,9),(c, 1+ 9),(r,2 + g))
for {z,y} € F and g € Z5. This construction has been used implicitly in [6].
Since F is partitionable, for each H’ € H the quadryples which partition
the set Uygeny yvH will resilt in a holey parallel class in the resulting
(K4 — €)-GDD of type (5h)". Therefore, the (K4 — €)-GDD is actually a
(K4 — e)-frame. (]
ngmma 4.8. There exist (K4 — e)-frames of type 155, 159, 517, 513 and
5.

Proof: From Lemmas 2.2-2.5, there are partitionable skew Room frames
of types 3%, 3%, 117, 113 and 1?°. The conclusion follows from Lemma 4.2. O

For (K4 — e)-frames, constructions such as Inflation, Weighting and PBD
closure are valid. We state them below.

Lemma 4.4 (Inflation). If there exists a (K4 — e)-frame of type h* and
a resolvable TD(3,m), then there exists a (K4 — e)-frame of type (mh)*.

Lemma 4.5 (Weighting). Let (X,G,B) be a GDD, and let w: X —
Z* U {0} be a weight function on X. Suppose that for every block B € B
there exists a (K4 — e)-frame of type {w(z): z € B}. Then there exists a
(K4 — e)-frame of type {3, w(x): G € G}.

Lemma 4.6 (PBD closure). For any fixed hole size h, the set {u: 3(K4—
e)-frame of type h*} is PBD-closed.

We may use these recursive constructions to get a certain class of (K4 —e)-
frames.

Lemma 4.7. There exists a (K4 — e)-frame of type 15* for u € {n: n >
5,n = 1( mod 4),n # 33,49}.

Proof: From Lemma 4.3, there are (K, — ¢)-frames of types 155, 159, 517,
513 and 52°. Applying Lemma 4.4 with m = 3, we have (K, — e)-frames
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of types 157, 15! and 15%. For u € {n: n > 5,n = 1( mod 4), and n #
33,49}, it is known [10, Lemma 3.4] that » € B(5,9,13,17,29). Then the
conclusion follows from Lemma. 4.6. O

We are now in a position to show the main result of this section.

Lemma 4.8. There exists a resolvable (K, — e)-design of order n for
n = 16( mod 60), n > 16, n # 496, 736.

Proof: From Lemma 4.7, there exists a (K4 — e)-frame of type 15* for
u € {n:n > 5n=1(mod 4), and n # 33,49}. Add one new point co to
the (K4 — e)-frame and construct a resolvable (K4 — e)-design of order 16
on set H U {oo} for each hole H of the (K4 — €)- frame. The resolvable
(K4 — e)-design of order 16 from Lemma 4.1 has six parallel classes. The
(K4 — e)-frame of type 15* has u(u —1)152/10 blocks and 6u holey parallel
classes, since each holey parallel class contains 15(u — 1)/4 blocks. For each
hole H, combine the six parallel classes of the resolvable (K4 — e)-design of
order 16 and the six holey parallel classes to form six parallel classes of a
resolvable (K4 — e)-design of order 15u + 1. The proof is complete. O

5 A new construction for HSOLSSOMs

In [14], 4-frames have been used to construct three mutually orthogonal
Latin squares with holes (3 HMOLS). In this section, we show how to use
4-frames to construct HSOLSSOMSs, a special kind of 3 HMOLS.

Suppose A, B and C are three mutually orthogonal Latin squares of
order v such that B = AT and C = CT. We say that they form a self-
orthogonal Latin square (SOLS) with a symmetric orthogonal mate (SOM)
of order v, denoted by SOLSSOM(v). If C contains the same entries on the
main diagonal, the SOLSSOM is called unipotent. A unipotent SOLSSOM
of order 4 based on {a, b, c,d} is shown in Table 5.1.

a c d b a b ¢ d
d b a ¢ b a d ¢
b d ¢ a c d a b
¢c a b d d ¢ b a

Table 5.1. A unipotent SOLSSOM(4)

If the SOLSSOM contains v holes of size & which are disjoint and spanning,
we denote the holey design by HSOLSSOM(h®), where h* is the type of
the design. The existence of a HSOLSSOM(h*) has been investigated in
[8], [9], [15], [2], we state the most recent result (see {2]) as follows.

Theorem 5.1. (1) If h is an odd positive integer, then a HSOLSSOM(h*)
exists if and only if u is odd and u > 5, except possibly when h = 3 and
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u € {11,183, 15,17, 19, 23, 27,33, 39,51,59,87}. (2) If k is an even positive
integer, then a HSOLSSOM(h*) exists if and only if w > 5, except possibly
whenh = 6, or h = 2( mod 4) and u € {8, 10,12, 14, 15, 16, 18, 20, 22, 24, 28,
32}.

Theorem 5.2. If there exists a 4-frame of type h*, then there exists a
HSOLSSOM of type h*.

Proof: Let (X, G,B) be a 4-frame of type k*, where G = {G1, G, ...,G,},
|Gj| = h for 1 < j < u. We shall construct a HSOLSSOM of type h* on X
having G as a hole set.

We construct the holey SOLS of order h* first. Suppose the rows and
columns of the array are indexed by X and the subarrays G; x G; are
empty for 1 < j < u. For any block B = {a,b, c,d}, delete the diagonal
entries of the first square in Table 1 and put it as the subarray B x B. It
is clear that each cell (z,y) not in any subarray G; x G; is occupied with
some entry since the two elements z and y are in different G;’s and must be
contained in a unique block of the 4-frame. It is easily seen that the array
constructed above is a holey SOLS of type h*. It remains to construct its
symmetric orthogonal mate.

For the symmetric orthogonal mate, the construction is similar. Suppose
the rows and columns of the array are indexed by X in the same way as
the holey SOLS does. Let the subarrays G; x G; be empty for 1 <j < u.

For any G € G, partition G into triples T1,T5,...,T}/3 such that T;
corresponds to the j-th holey parallel class with hole G, 1 < 5 < h/3.
For any block B = {a, b, c,d}, B must appear in a unique, say j-th, holey
parallel class with certain hole G € G. Suppose T; = {z,y, 2}. Delete the
diagonal entries of the second square in Table 1, replace b, c,d by z,, 2,
respectively and put it as the subarray B x B. The resulting array is the
required SOM. First, it is easily seen that each cell not in any of G; x G;
is occupied with certain entry. If two cells (r,z) and (r,y) are occupied
with the same entry z, where r € G;, z,y € G;, and z € G;. Suppose r
and z are contained in block B and r and y in B’. Suppose z is in the
s-th triple from G;. According to the construction, B and B’ must both
in the s-th holey parallel class with the hole G;. But, B and B’ have a
common element r, a contradiction. Therefore, no two entries in the same
row can be equal. Also, z is not in G;. Otherwise, ¢ = j and r is in Gj,
a contradiction. This means that each row intersecting G; x G; contains
all elements in X \ G;. Similarly, each column has the same property. We
have shown that the array is a holey Latin square. It is also symmetric
since each ingredient 4 x 4 subarray is symmetric.

It remains to show the orthogonality. Suppose the holey SOLS and the
SOM are not orthogonal. Then there must be two cells (a,b) and (a’,b’)
such that the entries in the holey SOLS are both ¢ and the entries in the
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SOM are both z. Suppose block B contains a,b, ¢ and block B’ contains
a',b',c. Suppose z is in triple T, of G;. According to the construction
of the SOM, B and B’ are both in s-th holey parallel class with hole G;.
But, B and B’ have a common element c, a contradiction. The proof is
complete. a
Example 5.3. A HSOLSSOM of type 35 constructed from a 4-frame. Start
from a 4-frame of type 3%, based on X = {1,2,...,15} with holes and holey
parallel classes indicated below.

holey parallel class hole
{4,9,10,13},{6,8,11,14},{5,7,12,15} {1,2, 3}
{2,8,12,13},{1,7,10,14},{3,9,11,15}  {4,5,6}
{1,5,11,13},{3,4,12,14},{2,6,10,15} {7,8, 9}
{1,4,8,15},{2,5,9,14}, {3,6,7,13} {10,11,12}
{2,4,7,11},{8,5,8,10}, {1,6,9,12} {13,14,15}

A holey SOLS of type 3° and its symmetric orthogonal mate are shown in
Table 5.2 and Table 5.3, respectively.

8 [11{ 9 |10] 15/12|14[13|6 | 5
9[10[11]12(14|15| 4 |13] 8
121 8|7 13|10{11} 5 [15]14] 6
9

1

15|11{14 2|1[1013]7] 3
13]14|10 12|31 2| 8(1]15
15|13 3111111214
11115{13 1
15]10|14 3
13]14{12 4 2|11
9| 3[15[14]5[13 112
2 13184 [14]15 1{6]3
141 7] 1]15]13] 6 2(3]5
10{1]3]6[2]4]|9[5]8
31211111[6]5]7]|8|4
1012]12|5[413]|6[9]|7

Table 5.2. A holey SOLS of type 3°

4
6
9
8
7

718[10
311012
12|11 1

Wl
—=INlwn|w

S = R A R Ed B N S
(o4}

~)
ol I S P S R

We can employ Theorem 5.2 and Theorem 3.12 to improve Theorem 5.1,
especially for hole sizes 3 and 6.
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10{7 13| 411|145 | 8|15|9 | 6|12
13]10| 7 [14] 4 |11(8 |15/ 5|6 |12 9
7113[10{11]14}{4 (15| 58 [12
10113] 7 15{12( 1] 2]14| 9
7]10[13 1[15{12[14] 9|2 8
13[ 7 |10 12] 1]15[9]2 14|11
4114|11]15( 1|12 6|13| 3110

(o,

W
0| v

—
—
w

NNluvlw
[\

—
o
— S J W

[ve]
Pad
w
w
P
N
Yo
[\
b
w
w
N
Bld—=]0
|-

916{12| 3|1 8(11110}5]|2|1]7 |4

6{12/9[8]11[3[5([2(10[4|1|7
121916 (11| 3|8|2[10f(5(7[4 |1

Table 5.3. A symmetric orthogonal mate

Theorem 5.4. There exist HSOLSSOM:s of type h* when

h =3 and u € {13,17,33},

h=6andu odd >5,u ¢ {n: n=3mod 4 and n < 267}.
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