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Abstract

All non-Hamiltonian cubic 2-edge-connected graphs, includ-
ing all snarks, on 16 or fewer vertices are listed, along with
some of their properties. Questions concerning the existence
of graphs with certain properties are posed.

1 Introduction

All graphs considered in this paper are finite and have no loops or
multiple edges. By V(G) and E(G) we denote the vertex set and
edge set, respectively, of the graph G.

A graph G'is k-edge-connected (resp. k-vertex-connected) if there
exist at least k edge-disjoint (resp. vertex-disjoint) paths between
each pair of vertices of G.

A cycle is a 2-regular connected graph. A Hamilton cycle in a
graph G is a 2-regular connected spanning subgraph of G. A Hamil-
ton decomposition of a regular graph G consists of a set of Hamilton
cycles (plus a 1-factor if A(G) is odd) of G such that these cycles (and
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the 1-factor when A(G) is odd) partition the edges of G. If G has a
Hamilton decomposition, it is said to be Hamilton decomposable.

A graph is said to be class 1 (resp. class 2) if it can be properly
edge-coloured with A(G) (resp. A(G) + 1) colours. A snark is a
2-edge-connected cubic graph that is class 2. Alternative definitions,
with additional requisite properties, exist for snarks [4, 9], but they
are not relevant to the discussion within this paper.

The line graph, denoted by L(G), of a graph G is defined to be the
graph with vertex set F(G), where two vertices of L(G) are adjacent
in L(G) if and only if the corresponding edges in G are incident with
a common vertex in G.

Definitions omitted in this paper can be found in [3].

This paper is motivated by the problem of determining necessary
and sufficient conditions for a graph G to be Hamilton decomposable.
An obvious necessary condition is that if G is a k-regular graph,
then G must be (2[%])-edge—connected. A computer search is under
way to find graphs that possess this necessary condition, but which
fail to be Hamilton decomposable. Further analysis of these graphs
will hopefully reveal additional, but less obvious, conditions which
Hamilton decomposable graphs must possess.

In this paper we focus on the results of this search with respect
to cubic graphs of order up to 16. All 3-regular 2-edge-connected
non-Hamiltonian graphs on 16 or fewer vertices are presented, along
with some of their properties. Clearly no snark is Hamiltonian, and
so this list includes all snarks of order up to 16.

2 Computer Search Results

The computer search determined that there exist exactly 1 non-
Hamiltonian cubic 2-edge-connected graph of order 10 (the Petersen
graph), 1 graph of order 12, 6 non-isomorphic graphs of order 14,
and 33 non-isomorphic graphs of order 16. Each graph is listed in
the following sections.

The Petersen graph is the only graph which possesses the prop-
erties of vertex-transitivity and edge-transitivity. All of the other
graphs are neither vertex-transitive nor edge-transitive.
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2.1 The Graph of Order 10

Graph 10.1
(The Petersen Graph)

Vertex-Connectivity 3
Class 2

2.2 The Graph of Order 12

Graph 12.1

Vertex-Connectivity 3
Class 2
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2.3 The Six Graphs of Order 14

Graph 14.1
Graph 144
Vertex-Connectivity 2 .
Vertex-Connectivity 3
Class 1
Class 2
Graph 14.2 Graph 14.5
Vertex-Connectivity 2 Vertex-Connectivity 3
Class 2 Class )
Graph 14.3
Vertex-Connectivity 3 Graph 14.6
Class 2 Vertex-Connectivity 3
Class 2
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2.4 The Thirty-Three Graphs of Order 16

Graph 16.4
Graph 16.1 rep
. Vertex-Connectivity 2
Vertex-Connectivity 2
Class 1
Class 1
Graph 16.5
Graph 16.2 Vertex-Connectivity 2
Vertex-Connectivity 2 Class 1
Class 1
Graph 16.3 Graph 16.6
Vertex-Connectivity 2 Vertex-Connectivity 2
Class 1 Class 1
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Graph 16.7 §%

Vertex-Connectivity 2 Graph 16.10
Class 1 Vertex-Connectivity 2
Class 2
Graph 16.8 %
Vertex-Connectivity 2 Graph 16.11
Class 2 Vertex-Connectivity 2
Class 2
Graph 16.9 %
Vertex-Connectivity 2 Graph 16.12
Class 2

Vertex-Connectivity 2
Class 2
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Graph 16.13 Graph 16.16
Vertex-Connectivity 2 Vertex-Connectivity 3
Class 2 Class 9

% Graph 16.17

Graph 16.14 Vertex-Connectivity 3
Vertex-Connectivity 2 Class 2
Class 2

@ Graph 16.18

Graph 16.15 Vertex-Connectivity 3

Class 2

Vertex-Connectivity 2
Class 2
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Graph 16.19 Graph 16.22

Vertex-Connectivity 3 Vertex-Connectivity 3
Class 2 Class 2
Graph 16.20 Graph 16.23
Vertex-Connectivity 3 Vertex-Connectivity 3
Class 2 Class 2

Graph 16.24
Graph 16.21
Vertex-Connectivity 3
Vertex-Connectivity 3 Class 9
Class 2
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Graph 16.25 Graph 16.28

Vertex-Connectivity 3 Vertex-Connectivity 3
Class 2 Class 2
Graph 16.26 Graph 16.29
Vertex-Connectivity 3 Vertex-Connectivity 3
Class 2 Class 2
Graph 16.27 Graph 16.30
Vertex-Connectivity 3 Vertex-Connectivity 3
Class 2 Class 2
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Graph 16.31

Vertex-Connectivity 3
Class 2

Graph 16.33

Vertex-Connectivity 3
Class 2

Graph 16.32

Vertex-Connectivity 3
Class 2

3 Discussion

We first note that many of the graphs presented are similar; in par-
ticular, many appear to have been derived from the Petersen graph.
Indeed, graphs 10.1, 14.1, 16.1, 16.2 and 16.3 are basic in the sense
that all of the remaining graphs can be obtained from them by means
of the following three operations, each of which produces a cubic non-
Hamiltonian graph:

1. Vertex-Splicing with a cubic graph

Take a cubic non-Hamiltonian graph, G, and any cubic graph,
G2. Delete a vertex vy from G and a vertex v, from G, and
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then arbitrarily pair the three neighbours of v; in G with the
three neighbours of v; in G2. Form a single graph, G, by joining
each set of paired vertices by an edge.

2. Edge-Splicing with a cubic graph

Take a cubic non-Hamiltonian graph, Gy, and any cubic graph,
G3. Delete an edge e; from Gy and an edge e; from Gy and
then arbitrarily pair the two end-vertices of e; in Gy with the
two end-vertices of ez in G3. Form a single graph, G, by joining
each set of paired vertices by an edge.

3. Subdividing a 2-edge-cut
Take a cubic non-Hamiltonian graph with an edge-cut of size

two, subdivide the two edges of a 2-edge-cut and then join the
two new vertices by adding an edge between them.

Each of these three operations can be repeatedly applied to yield
non-Hamiltonian cubic graphs of arbitrarily large order.

After conducting further analysis of these graphs, and of the pre-
liminary output of other computer searches that are still in progress,
various questions arise. For instance, it has been shown that vertex-
transitive graphs having a prime number of vertices are Hamilton
decomposable [8]. And connected vertex-transitive graphs of order
p? or p°, where p is a prime, have been shown to be Hamiltonian[7].
We wonder if these results can be extended, and so we ask:

Question 1 Does there ezist a connected vertez-transitive graph G
of order p*, where p is a prime and n > 1, such that G is not
Hamilton decomposable?

No answer is yet known for this first question, nor for the question
which follows next; no such graphs have been found by the computer
searches conducted thus far.

Question 2 Does there ezist a k-regular connected vertez-transitive
bipartite graph G such that G is not Hamilton decomposable?

Note that if, in the above question, we replace vertex-transitivity
with the property of being (2|_§-J )-edge-connected, then the question
is affirmatively answered by the existence of the Horton graph [3].
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The computer results presented in this paper would also suggest
the following question:

Question 3 What further conditions are needed to ensure that a k-
regular k-vertez-connected class 1 graph is Hamilton decomposable?

The Horton graph [3] is one of many graphs [6] which are k-
regular, k-vertex-connected, and class 1, yet which are not Hamilton
decomposable. '

Finally, Bermond [2] has conjectured that if G is Hamilton decom-
posable, then so is L(G). One might thus ask the following related
question:

Question 4 What further conditions are needed to ensure that a k-
regular (2[%])-edge-cannected non-Hamilton decomposable graph G
has a line graph, L(G), which is non-Hamilton decomposable?

That additional conditions are necessary is illustrated by the line
graph of the Petersen graph, which is 4-regular, 4-edge-connected,
and has no Hamilton decomposition, yet its line graph is Hamilton
decomposable.
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