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ABSTRACT. The support size of a factorization is the sum over
the factors of the number of distinct edges in factor. The spec-
trum of support sizes of {\-factorizations of AK,, and AK,,» are
completely determined for all A and n.

1 Introduction

A )-factor in a multigraph G is a submultigraph F which is spanning and
A-regular. A A-factorization of a multigraph G is a partition of edges of
G into X-factors. For a simple graph G, the multigraph AG is obtained by
repeating each edge ) times. A mA-factorization I' = {F,,..., Fa} of IAG
is called Completely Decomposable (or briefly, C.D.), if these conditions
are satisfied: (i) IG is m-factorable, (ii) for every common divisor k of m
and !, (I/k)G is not (m/k)-factorable, (iii) there exist A m-factorizations
of lG, eg. T; = {F},.. Fd}1<z<). such that for every 1 < j < d,
F; is the union of F‘ s (1 < i € A). The support size of a A-factor is
the number of dlst.mct edges in the factor, and the support size of a A-
factorization is the sum of the support sizes of its factors. We denote by
S(G, I\, m)) the set of the support sizes of mA-factorizations of IAG, and
by CS(G, I\, m)) the set of the support sizes of C.D. mA-factorizations of
IMNG. For simplicity, S(Ky,IX, m)A), CS(Ky,IA,m}), and CS(Kpn, A, A)
will be denoted by S(n, I\, m)), CS(n,I\, m)), and C(n, )), respectively.

*This work was essentially carried out while the author was a member of the Center
for Theoretical Physics and Mathematics at AEOI and the final version of the manuscript
was completed while he was at Caltech as a graduate student.
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Let G be a simple ld-regular graph on n vertices which is I-factorable.
Let F = {Fy,...,F3} and G = {G,,...,Gq4} be two I-factorizations of G.
Then F and G are said to have k edges in common if Z?=1 |F;NG;| = k. Let
J(G,1) be the set of all k’s such that there exists a pair of I-factorizations
of G having exactly k edges in common. It is clear that determination of
J(G,1) is equivalent to the determination of CS(G,2,2!l), and so support
size problem for C.D. factorizations can be considered as a generalization
of intersection problem for factorizations of the complete graphs.

The factorizations of complete graphs (and complete bipartite graphs)
occur in a very natural way in the recursive constructions of triple systems,
e.g. v — 2v +4 and v — 3v constructions. In each of these constructions,
repeated edges give rise to repeated blocks in related designs. For this rea-
son, C(n, }), and S(n, A, IX) have had some interesting features, and have
been instrumental in determination of the set $SS(v, A) of the support sizes
of triple systems for A = 2 [17], A = 6, v > 14 [7] and for v = 0 (mod 4) [12]
with one possible omission for every » = 8 (mod 12). Recently, Colbourn
and Lindner utilizing some tripling constructions and well known results
on S(n, A, A) have determined SS(v, A) for v > 14 (again with one possible
omission) [6].- Also, in [3] utilizing graph factorization techniques SS(v, \)
has been completely determined for v > 14, v # 1 (mod 12) with one possi-
ble omission for every v = 8 (mod 12). Similarly, completely decomposable
factorizations of complete graphs can be utilized in the intersection problem
for simple triple systems, and in the problem of determination of the set
CSS(v, A) of the support sizes of completely decomposable triple systems
of order v and index A.

In [14], Lindner and Wallis have completely determined the set of all
integers k such that there exist two 1-factorizations of K, intersecting
in exactly k edges. In other words, they have completely determined
CS(2n,2,2). In [11], Fu has completely determined the set of all integers
k such that there exist two Latin squares of order n which agree in exactly
k cells. In other words, he has completely determined C(n,2). S(n,2,2),
S(n,3,3) and S(Kn a,3,3) have been completely determined by Colbourn
and Rosa (8], Colbourn [4], and Colbourn (5], respectively. In [9] utilizing
results of [4,8] Colbourn and Rosa completely determined the set S(n, A, )).

In this paper, C(n, ) and CS(n, A, l)\) are completely determined. The
main idea of our proofs is an effective use of embedding theorems for factor-
izations of complete graphs. In Section 2, we develop some general methods
to find spectrum of a graph G, C'S(G, A, l\), from spectrum of a special class
of its subgraphs, and in Section 3 utilizing this methods we prove our main
results. It should be noted that in all proofs completely decomposability
arises in a natural way, and even some of our proofs are not true in general
case. In fact, in all proofs we strongly use this assumption that we have a
C.D. factorization of a subgraph to construct a factorization of the original
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graph which is obviously completely decomposable. Therefore, by restrict-
ing ourselves to the case of C.D. factorizations we can prove some of our
lemmas in an easier way, while the result is the same as the general case.

Throughout this paper, we shall use G; + G to denote the union of two
multigraph G; and Gb.

2 Some General Results

In this section, we develop some recursive constructions to find spectrum
of a graph G from the spectrum of some special class of its subgraphs.
To apply recursive constructions we must find a partial determination of
CS(G, ), 1)) for all l-factorable graphs. To do this our main tools are (p, A)-
patterns. A (p, \)-pattern is a p x p matrix, P = (p;;), with nonnegative
integral entries such that 3°5_ p;; =% pi=Afor 1<j <p. A (p,1)-
pattern is a permutation matrix. The support size of a (p, A)-pattern is
the number of its nonzero entries. Let Sp(p, A) denote the set of support
sizes of (p, A)-patterns. In [9]+Colbourn and Rosa introduced (p, A)-pattern
and their support sizes in an equivalent form and they proved the following
lemma.

Lemma 2.1. If p > 2, then

{p.....minOp,p)} \ {p+1}, ifA#p,

o) = {{p, ..,minQAp,p")} \ {p+1,p> -1}, otherwise.

O
The following lemma is proved in [15].

Lemma 2.2. Let P be a (p, \)-pattern, then there exist A permutation
matrices, Py,..., P\, such that P = Z?=1 P;. a

The following lemma demonstrates the patterns in graph factorization.

Lemma 2.3. Let G be a simple ld-regular graph on n vertices which is
l-factorable. If r € Sp(d, A), then rin/2 € CS(G, A,1)).

Proof: Let {F},..., F4} be any l-factorization of G, and let P = (p;;) be
a (d, \)-pattern with support size r. Put

d
Gi=) piFj, 1<i<d
i=1

Then G = {G1, ..., G4} is a I)-factorization with support size rin/2 of AG.
Complete decomposability of G is a straightforward consequence of Lemma
2.1. ]

Two following lemmas are trivial-and so their proofs are left.
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Lemma 2.4. Let Gy,...,Gn be edge-disjoint simple graphs such that
(i) G; is lid-regular and l;-factorable (ii) their union G = *.,G; is ld-
regular and l-factorable, and (iii) if F; is any li-factor of G; (1 < i < n),
then Up_, F; is a l-factor of G. If r; € CS(G;,\,)), (1 < i < n), then
Y 7 € CS(G, ), IN). ]

Lemma 2.5. Let G; and G, be two edge-disjoint l-factorable graphs,
r € CS(G1, A\ 1)) and s € CS(Ga, A\, I)). If either vertex sets of G; and
G are the same or these sets are disjoint but G, and Gy are of the same
degree, then r + s € CS(G1 + Ga, A, IN). a

Lemma 2.6. Let G, and G, be two edge-disjoint simple graphs such that
(i) G1 is m-regular and 1-factorable (i) G = G; + G, is l-factorable (iii)
G2 has a partition {Fy,...,Fn} into spanning subgraphs such that if K
is any 1-factor of G, then for every 1 < i < m F; + K is a l-factor of G.
If r € CS(G1, A, A) and s € Sp(m, )), then r + sn € CS(G, A, 1)) in which
n= IF ll'

Proof: Let {M,..., My} be a C.D. Mfactorization with support size »
of G and let P = (p;;) be a (m,\)-pattern with support size s. Let
K; = M; + E;.';lp,-jb} for 1 < i < m. Then {K),...,K,)} is a C.D.

A-factorization with support size » + sn of G. a

Now, let G be a simple d-regular graph on 2n. vertices which is 1-factorable,
and let G be a subgraph of G such that both G, and G = G \ G, are
1-factorable. Let k = deg(G1) and suppose that 2 < 2k < d and denote
| = d—k = deg(G,). Let B be any Latin square of order k. It is well-known
that B can be embedded in a Latin square A of order d (ie. by = a;j,
1 <14,5 < k) [10]. By assumption on G;, we can form a 1-factorization
{F1,..., F4} of G such that {Fy,...,Fi} is a 1-factorization of G;. For
1<14,j < ddenote F} = F,,;. Clearly, if 1 <i <k, then {F/|j > k}is a
1-factorization of G5.

Lemma 2.7. If r € CS(G1,\, ), 81 € CS(G2, )\, M), s2 € CS(Ga, A +
1,A+1),0<t <1, and 1 < j < min{k, A}, then

(i) by =7 +tdn+ jnl € CS(G, A +t, )\ +1¢).
(i) if d =2k, then by =7 +tdn + 51 € CS(G, A +t,\ +t).

(iii) if d=2k+1, and A = k, then r+ sy +t(d—1)n € CS(G, A+, A+1),
and if also l(kn—1) < 81 < lkn thenr+s;+dn € CS(G,A+1,A+1),
andr+s1+(2d—-1)n € CS(G, A+ 2,1+ 2).

(iv) Ifd=2k+1, then T+ s3+U(d — 1)n € CS(G, A+ |, A+ ).

Proof: Let {Kj,..., Ki} be a C.D. M-factorization with support size r of
AG1, Let {Kiy1,..., K4} be a C.D. Mfactorization with support size s; of
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AG2, and let {H;|k < i < d} be a C.D. (X + 1)-factorization with support
size 82 of (A + 1)Gs. and'let

L= &, 1<i<k,
AF} ifj=1
Li = § st : " k+1<i<d,
’ { ;=1F;+(/\—j+1)1"}, otherwise,
k+t )
Ni=Li+ Y F} 1<i<d
p=k+1

It is easy to see that £ = {Ly, ..., Ly} isa C.D. M-factorization with support
size r + jnl of AG, and for every i, 1 < i < n, L; and Y ;_,.., Fi are
edge-disjoint. Thus N = {Ny,..., Nn} is a C.D. (X + t)-factorization with
support size b; of (A + )G. To prove (ii) in the definition of N;’s simply
replace L; with K;. Now, let d = 2k + 1. Then we can assume that ay; = 1.
Trivially if {F;|i = 1,...,d} is a 1-factorization of G such that {F;|i < k}
is a 1-factorization of Gy, then for k < 4, 1 < j < d, K; and F;,; are
edge-disjoint except possibly for j = i. Let
ktt
Ni=K;j+ Y Foy for1<j<d,
i=k+1

then N'* = {N}|j > 1} is a C.D. (A + ¢)-factorization of (A + ¢)G. Since
K = {Ki|i > 1} is C.D,, we can form Fj’s in such a way that F; is a
subgraph of K;, and in this case support size of N* is r + s+ t(d — 1)n. If
I(kn — 1) < s < lkn, then support size of one of K;’s (k < i), say Ki+1
is exactly kn, and so it is simple. If we choose F;’s in such a way that
Fiy1 = G2 \ Kiy1, then support size of N is r + 51 + dn. Now let o be
a permutation on {1,...,d} which fixes only k + 1 and o(¢) € {1,...,k} if
1 < i < k. Then {N} + Fy(ag,pld = 1} is a (k + 2)-factorization with
support size r+s; 4+ (2d —1)n of (k+2)G. This completes proof of (iii). (iv)
Since H is C.D., without loss of generality we can suppose that for k < i
F, is a subgraph of H;. Let

M; = zg:k-l—lFﬂii-'-Kj for1<j<k
Y ikt Fay + (H; \ F;) otherwise.

It is an easy exercise to show that {M;|l < i < d} is a C.D. (A +1)-
factorization with support size r + s2 + I(d — 1)n of (A + )G (Notice that
{H; \ F;lj > k} is a C.D. Mfactorization of AGz, and {Sf,; Fayll <
j < d} is a C.D. l-factorization of IG). a

To determine CS(n,),I)) and C(n, A) for small n’s the following lem-
mas which demonstrate relation between intersection of factorizations and
support sizes of C.D. factorizations will be of some use.
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Lemma 2.8. Let G be a simple ld-regular graph on n vertices which is
I-factorable. If r € J(G, 1), then nld?/2 —r € CS(G, d, ld).

Proof: Let F = {Fy,...,F;} and G = {G4, ..., G4} be two I-factorizations
of G having exactly r edges in common. For every 1 < i < d, denote
Gi = 3,4 Gj. It is easy to check that {G},...,G%} is a C.D. I(d - 1)-
factorization of (d — 1)G. Let H; = G, + F;, for 1 < i < d. Now, H =
{Hy, ..., Hg} is a C.D. ld-factorization with support size nld?/2—r of dG. O

Lemma 2.9. Let G be a simple ld-regular graph on n vertices which is
l-factorable. Then k € J(G,1) if and only if Ind — k € CS(G,2,2l). a

Lemma 2.10. [14] If n > 3, then J(k2n,1) = {0,...,7(2n—1)} \ {n(2n—
1) —ili =1,2,3,5). o

Lemma 2.11. [11] If n > 4, then J(Ky 1) = {0,...,n?} \ {n? —i}i =
1,2,3,5}. O

3 Main Results

In this section utilizing methods which are developed in Section 2 we com-
pletely determine C(n, ) and CS(n, A, {X). For this reason, firstly we ob-
tain some necessary conditions on the support sizes of a I\-factorization of
AG, where G is a simple graph such that AG is {\-factorable, and then we
show that if G is a complete graph, these conditions are also sufficient. For
simplicity, we define the following notation. For any ld-regular I-factorable
graph on n vertices we define

{m,...,M}\ A if A#d,

PS(G, M1\ = {{m, ...,M}\ (AU B) otherwise,

in which m = ldn/2, M = min{\,d}m, A = {m +i|i = 1,2,3,5} and
P={M-ili=1,2,3,5}.
For even A and odd n, we define

{,....M} fAén—1

PS(Kn, A\ A) = .
( ) {{l,...,M}\B otherwise,

in which | = (n — 1)(n + 2)/2, M = min{\,n - 1}n(n - 1)/2, and B =
{M —i|i =1,2,3,5}. For odd J, let PS(Ky,\,\) =0.

In [9], Colbourn and Rosa have proved that S(n,),A) = PS(Ky, A, ).
An argument similar to the proof of necessity of conditions in [9] can be
used to prove the following lemmas.

Lemma 3.1. Let G be a simple ld-regular graph on n vertices which is
l-factorable. Then CS(G, \,1\) C PS(G, A, 1)). O
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Lemma 8.2. For odd n, CS(Kyn, A\, A) C PS(Kq, A, 1)) a

In the remainder of this section, we show that in the case of complete
graphs except for some small cases we have CS(G, ) = PS(G, A\ 1N).

Proposition 3.1. If n > 5, then C(n, A) = PS(Kpnn, A, A). PS(Ka4,2,2) \
C(n, 2) = {22,25,27}, and for A > 3. PS(Kq4,\,X) \ C(n, ) = {22,25}.

Proof: The main idea of proof is an effective use of Lemma 2.7. Let
G = Kpn Wemust find a subgraph G such that both G and Kn \ &y
are 1-factorable. First of all, it is well known that an 1-factorization of
Komm can be embedded in a 1-factorization of Ky if and only ifn > 2m.
Hence, we can form G, in such a way that G, is m-regular contains a copy
of Kmm as a subgraph. By applying Lemmas 2.3, 2.5, we can find some
partial determinations for CS(G1, A, ), and then applying Lemma 2.7 give
a partial determination of CS(G, A, A). In particular, it is easy to see that
if assertion is true for n = m it is also true for n = 2m, 2m + 1. Hence we
have to prove the assertion only for 4 < n < 9. Verification of assertion for
n = 4,5 is an easy exercise [2] and so it is left. For n = 6 we can choose
G, as vertex-disjoint union of either three copies of K32 or two copies of
K33, and then by applying Lemma 2.7 we obtain a partial determination
for C(6,)). This partial determination together with Table 1 prove the
assertion. For n = 7, we can choose G to be vertex disjoint union of either
two copies of K, 2 and a 2-regular bipartite graph on 6 vertices or a copy
of K3 3 and a 3-regular bipartite graph on 8 vertices. It is an easy exercise
to see that if H is a 3-regular bipartite graph on 8 vertices, then

CS(H,1,1) = {12},
{12,16,19,20,22,24} C CS(H,2,2),
{22 - 30,32,36} C CS(H,3,3),
34,35 € CS(H, )\, )), for A > 3.

Now, Lemmas 2.5-2.9 give a strong partial determination of C(7, A) and
then all we have to prove is 491 —1 € C(7,)) for 1 < I < 6 and it is done
in Table 2. For n = 8,9 we can choose G to be vertex-disjoint union of a
copy of K44 and a 4-regular bipartite graph on 2(n — 4) vertices, and by
applying Lemmas 2.5, 2.7, 2.9 and 2.11 we obtain the result. [m]

Proposition 3.2. For givenn and |, n > 5, CS(Kinin, A, IX) = PS(Kinn,
A ).

Proof: Kinn is edge-disjoint union of 12 copies of K,  which satisfy
conditions of Lemma 2.4. Now assertion is an immediate consequence of
Lemma 2.4 and Proposition 3.1. a

Proposition 3.3. For given n and A, n > 4, CS(2n, A\, A) = PS(2n, AA).
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Proof: It is well known that'a 1-factorization of Ks,, can be embedded in
a 1-factorization of K, if and only if » > 2m. Now an argument similar
to the proof of Proposition 3.1 shows that to prove the assertion, it suffices
to verify it only for 4 < n < 7. First of all, note that Lemma 2.3 gives a
partial determination for CS(2n,\, )) for all n. For n = 4,6, let n = 2m
and choose G; to be vertex-disjoint union of two copies of K»,, and so
G2 =G, is a copy of K, m. Now applying parts (iii) and (iv) of Lemma
2.7 together with Lemmas 2.8 and 2.10 and Proposition 3.1 give rise to
result. For n = 5, notice that Kjo has a 3-factorization {Fy, F», F3} in
which each F; is vertex-disjoint union of a copy of K4 and a copy of Kjgs.
Now if P = (p;;) is any (3, \)-pattern and we let G; = ZLI pij Fj, then
{G1,G2,G3} is a 3)-factorization of 3AK,9. Applying Lemma 2.4 gives
partial determination for CS(G;, 1, ), and clearly if {GJ|j = 1,2,3} is a
A-factorization of G;, then {G{ [1 <14,7 < 3} is a A-factorization of AKo.
By taking different patterns and factorizations we obtain a strong partial
determination of CS(Ko, A, A), and in view of it and Lemmas 2.8-2.10, to
complete proof we only have to show that 451 — 1 € CS(K,1,1) for I < 8
and 404 € CS(10,10,10). To prove this, Let G; be 4-regular bipartite graph
on 10 vertices, and apply Lemma 2.7 (it is an easy exercise to check that
39 € CS(G1,2,2), 59 € CS8(G1,3,3) and 79 € CS(Gy,5,5)) [2]. Finally,
for n =17 let G, be vertex-disjoint union of a copy of K44 and a 4-regular
graph on 6 vertices and apply Lemma 2.7 together with Lemmas 2.5, 2.8,
2.10 and Proposition 3.1. a

Proposition 3.4. Let u and ! be two positive integers, u is odd and u > 1.
If (u,1) # (3,1),(5,1), then CS(lu+1,),1\) = PS(Kyyy1, A, IN).

Proof: Clearly for m > 1 K(mi1)ut1 is edge-disjoint union of a copy of
Kyt1 a copy of Kpy, 11 and a copy of K, (m+1)u and latter is edge-disjoint
union of (m + 1) copies of Ky. Applying Lemma 2.4 with this partition
of K(mi1yu+1 gives an inductive method to determine CS(lu + 1,),1))
and in particular it shows that if assertion is true for { = m then it is
also true for I = m + 1. Therefore, we must only prove the assertion
for (u,l) = (3,2),(5,2) and for u > 5, I = 1. The latter is proved in
Proposition 3.3, for (u,l) = (3,2) assertion is an easy exercise and for
(u,1) = (5,2) applying Lemma 2.4 (K;; = K¢ + K¢ + K5 5) together with
partial determination of C'S(6, A, ) which is obtained from Lemma 2.3 give
rise to the result. a

Proposition 3.5. Let u and | be two positive integers and u > 2. Then

CS(4lu +1,),21\) = PS(Katus1, A, 2I).

Proof: An argument similar to the proof of Proposition 3.4 shows that we
can reduce our problem to the case [ = 1. Now, let A and B be two disjoint
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Qu-sets, co € AU B and X = AU BU {oo}. Let G be a copy of Kqui1 on
X, G be a copy of K, 2, on bipartition (4, B) and let G2 = G Ifu=2,
then it is an easy exercise to find a partition {Fi,...,, F4} of G2 which
satisfies conditions of Lemma 2.6. For u > 2, let H = {Hy, ..., Hoy—1} and
G = {La, ..., L2,} be two 1-factorizations of K, on A and B, respectively,
and let Ha, and L, be two 1-factors of K2, on A and B, such that for every
i,1 <i<wu, Hy, and H;, as well as Ly and Ly, have exactly one edge in
common (notice that if 2 > 8, then a Room square of order 2u, and so a
pair of orthogonal 1-factorizations of K3, exists [16]). Denote

H;N Hy, = {{ai,bi}}, 1 <i<uy,
Ll nLu+i = {{C;, dt}}a 1<i<u.

For1<i<u,let

F; = (H; U L; U {{00, ai}, {00, 5:}}) \ {{as, 8:}},
Fupi= (H;uL;u {{00: ci}' {°°v di}} \ {{ch dl}}

Now, applying Lemma 2.6 and Proposition 3.1 give rise to the result. 0O

Proposition 3.6. Let ! and n be two positive integers such that Kint1 is
I-factorable. If n > 3 and (I,n) # (1,3),(1,5), then

J(Kins1,1) = {0, ..., In(iln +1)/2} \ {in(ln+1)/2 —i|i =1,2,3,5}.
a

Proof: Assertion is an immediate consequence of Lemma 2.9 and Propo-
sitions 3.3-3.5. (]

Now, we deal with the case G = K, for some odd n and I = 1. Clearly,
a \-factorization of A\K,, ‘exists if and only if X is even. Let A = 2t. Ap-
plying Lemma 2.5 with G = 2K,, G = G2 = K, shows that one can
essentially reduce problem to the case ¢ = 1. It should be noticed that
by definition, each 2-factorization of 2K2,4 is completely decomposable.
Thus we have CS(2u + 1,2,2) = S(2u + 1,2,2), and consequently it is
completely determined in [8]. However, for the sake of completeness and
attaining some uniformity in proofs, we give an inductive method to deter-
mine CS(2u + 1,2,2) but instead we don’t prove the result for some small
cases and for these we refer to [8].

Let m be an odd integer, I € {0,1} and n = m + 3 — 2l. Let X; =
Z, = {1,...,n}, X2 = {z1,...,Zm} be an m-set disjoint from X, and
X =XUXs. Let F} = {{Zi, 2i+ l}l‘i € Xlt and F» = {{i,i+2|i € Xl}.
Let G = F, if n = m + 1 and G = (F1 + F2) otherwise. (Notice that in
both cases G is 1-factorable [17].)

191



Lemma 3.3. If r € CS(n, 2t,2t), s € CS(G, 2t,2t), and u € Sp(m -1, 2t),
thenb=r+ s+ (u+3)n € CS(m + n,2t,2t).

Proof: Let H = {H,,...,Hn_1} be a C.D. 2t-factorization with sup-
port size 7 of 2Ky, on X, and let K = {Kj,...,K;,_1} be a C.D.
2t-factorization with support size s of 2tG, and for 1 < i < m; define
L; = H; + K;. Let Py,..., P, be permutation matrices of order m — [
such that support size of P = Z?;l P;isu, and let 04, . ..,09; be the corre-
sponding permutations on {1,...,m—1}. Let A= (aij) be any latin square
of order n on X; whose last three rows are

3 n 5 2 .. 1 n-2
1 2 3 4 ... nl1 n
2 1 4 3 n n-l

For1 < i < n define D? = {(a(,,_g).-, @(n-1),i Gni)} and D,'l = {(zm, A(n—1),i,
@ni)}, and let

Ly 14i= {{zjraak(j)i}ll Sjs<m-l, 1<k<2t}+ tD:!'

It is an easy exercise to check that {L,,..., L,4n_1} is a 2t-factorization
with support size b of 2tK,, 4y on X. a

Proposition 3.7. For every odd n, n > 7,

{m,..., M}, ift# (n—-1)/2,
CS(n,2t,2t) =
St ) {{m, ..., M}\ A, otherwise,
where m = (n —1)(n + 3)/2, M = min{n — 1,2t}.n(n — 1)/2, and A =
{M —ili =1,2,3,5}.

Proof: Applying Lemma 2.5 with G = 2K,,, G, = G = K, and | = 2
shows to prove the assertion it suffices to show that (i) CS(n, 2,2) = {(n-
1)(n+3)/2,...,n(n—1)} and (ii) {n(n—1)+i|i = 1,2,3,5} C CS(n, 4,4)}.
By Lemma 3.1 if (i) and (ii) are true for n = m they are also true for
n =2m+ 1, 2m + 3, so we have to prove them only for n € {7,9,11,13},
but this is an easy exercise (To see a direct proof which proves (i) as well
one can consult [7,8]). 0O
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Table 1. A partial determination of C(6, \)

2 1 5 3 4 6 [1 2 3 4 5 6]
3421675 2 315 6 4
A 123654 , 312645
114 36 51 2['""7[45 6 231
56 14 2 3 56 4 3 1 2
6 5 4 2 3 1] 6 4 5 1 2 3
6 4 5 2 3 1] 1 2 3 4 5 6]
56 412 3 2 315 6 4
4 56 31 2 316 2475
A3=13 1 26 4 5[°M=|45 26 31
2 315 6 4 5 6 4 3 1 2
1 2 3 4 5 6 6 4 5 1 2 3]
[1 2 3 5 6 4] 1 2 5 3 4 6]
2 31456 243165
A_[31 6245 , 312654
5145 26 3 11" |4 36 5 1 2"
56 4 31 2 56 1 4 2 3
6 4 5 1 2 3 6 5 4 2 3 1
Supp. Name A Construction
36 A(36) 1 As
72 A(72) 2 A(36) + (564231)A,
108 A(108) 3 A(72) + (645312)A,
144 A(144) 4 | A(108) +(456123)A,
36k+7 | Ak, 7) | k+1 A(36k) + A,
46 A(46) 2 Az + As
36k +11 | A(k,11) | k+1 | A(36k) +(132456)A4;
36k+13 | A(k,13) | k+1 | A(36k)+(312456)4;
36k +14 | A(k,14) | k+1 | A(36k)+(213456)4,
36k+16 | A(k,16) | k+1 | A(36k)+(231456)A;
53 A(GBG3) | k+2| Ay+(132456)4s
36k +19 | A(k,19) | k+1 | A(36k) +(123465)A4,
58 A(s8) | 2 A(36) + Az
36k +23 | A(k,23) | k+1 | A(36k)+(132465)A,;
36k +25 | A(k,25) | k+1 | A(36k)+(312465)A,
36k +26 | A(k,26) | k+1 | A(36k)+ (213465)A4,
36k +29 | A(k,29) | k+1 | A(36k)+(321564)4,
36k 4+ 31 | A(k,31) | k+1 | A(36k)+(312564)A,;

Remark: 1 <k <4.
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Table 1. (continue)

Supp.

Name

A

Construction

36k + 34
71
36k + 37
36k + 38
36k + 41
36k + 46
36k + 53
36k + 56
36k + 58
107
143
179
209
211
214
215

A(k, 34)
A(T1)
A(k,37)
A(k, 38f
A(k,41)
A(k,46)
A(k, 53)
A(k, 56)
A(k, 58)
A(107)
A(143)
A(143)
A(209)
A(211)
A(214)

A(215)

k+1
2
k+2
k+2
k+2
k+2
k+2
k+2
k+2

NN ;AW

A(36Kk) + (231564)A;
As + (231564)As
A(k,25) + (312654)A,
A(k,26) + (213654)A,
A(k,25) + (231456)4,
A(k,29) + (231654)A;
A(k,34) + (312654) A,
A(k,31) + (12364 5)A4;
A(k,29) + (231645)4,
A(T1) + (312645)As
A(107) + (23156 4) A,
A(143) + (3126 45) Ay
A(4,34) + (312645)A4,
A(209) + (132456) A,
A(209) + (623451)A,
A(209) + (231456)A,

Remark: 1 <k <4.

Table 2. A partial determintation of C(7, A)

N DU AW N =

Ay

Ay =

B A O =W N
b OO N =W
LU - N,
—_WN I W

B

=B WOt

2 3456 7
316 47SHS
1 27 65 4
5 6 2 7 31
6 71 2 4 3
745 31 2
453126
d [1 2 3 4 5 6
4 2 31786 5
5 316 2 47
1], A3=14 5 2 6 7 3
3 5 6 71 2 4
2 6 7 4 5 3 1
6] 7 4531 2
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Table 2. (continue)

Supp. | Name | A Construction
97 Ag7 2| A3+(5762413)A;
146 Aue | 3| Aor+(7456132)A4;
196 Ags | 4| Arae + (4 67132 S)Al
244 Agaqr | 5 | Aros +(2315746)A2
293 A293 6 A244 + (3 12765 4)A2

References

[1] S. Ajoodani-Namini, Latin and semi-Latin factorizations of complete
graphs and support sizes of quadruple systems, J. Combin. Theory,
Ser. A, to appear.

[2] S. Ajoodani-Namini, The spectrum of support sizes of triple systems,
MS thesis, University of Tehran, 1990.

[3] C.J. Colbourn, Repeated edges in 3-factorizations, J. Comb. Math.
Combin. Computing 4 (1988), 133-154.

[4] C.J. Colbourn, Concerning 3-factorizations of 3K, », Ars Combinato-
ria 30 (1990), 257-274.

[6] C.J. Colbourn and C.C. Lindner, Support sizes of triple systems, J.
Combin. Theory to appear.

[6] C.J. Colbourn and E.S. Mahnoodian, Support sizes of sixfold triple
systems, Discrete Math. to appear.

[7] C.J. Colbourn and A. Rosa, Repeated edges in 2-factorizations, J.
Graph Theory 14 (1990), 5-24.

[8] C.J. Colbourn and A. Rosa, Support sizes of A-factorizations, Proc. Int.
Conf. on Incidence Geometry and Combinatorial Structures, 1991.

[9] T. Evans, Embedding incomplete Latin squares, Amer. Math. Monthly
67 (1960), 958-961.

[10] H.L. Fu, On the construction of certain types of Latin squares having
prescribed intersections, Ph.D. thesis, Auburn University, 1980.

[11] G.B. Khosrovshahi and S. Ajoodani-Namini, Combining t-designs, J.
Combin. Theory Ser. A 58 (1991), 26-34.

[12] C.C. Lindner, E. Mendelsohn, and A. Rosa, On the number of 1-
factorizations of the complete graphs, J. Combin. Theory Ser. B 20
(1976), 265-282.

195



[13] C.C. Lindner and W.D. Wallis, A note on one-factorizations having a
prescribed number of edges in common, Annals of Discrete Math. 12
(1982), 203-209.

[14] R.C. Mullin and E. Nemeth, An existence theorem for Room squares,
Aequationes Math. 13 (1975), 1-7.

[15] H.B. Mann and H.J. Ryser, Systems of distinct representatives, Amer.
Math. Monthly 60 (1953), 397-401.

[16] A. Rosa and D. Hoffman, The number of repeated blocks in twofold
triple systems, J. Combin. Theory Ser. A 41 (1986), 61-88.

[17] R.G. Stanton and I.P. Goulden, Graph factorizations, general triple
systems and cyclic triple systems, Aequationes Math. 22 (1981), 1-28.

196



