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ABSTRACT. Taking as blocks some subspace pairs in a finite
unitary geometry we construct a number of new BIB designs
and PBIB designs, and also give their parameters.

1 Introduction

Let g be a prime power, and F: finite field with q? elements. We denote
by UV,,(Fy2) the n-dimensional unitary geometry over Fga, and by U, (Fga)
the finite unitary group of degree n over Fia.

Wan et al. [1] have given the formula for the number N(m, s;n) of (m, s)-
type subspaces in UV, (Fg2), the formula for the number N(m;, s1;m, s;n)
of (my, 31)-type subspaces included in a given (m, s)-type subspace, and
some theorems on the transitivity of U, (F2). Based on these results, they
constructed a number of BIB designs and PBIB designs with parameters
computed. The authors of the present paper have investigated the conjuga-
tion relation among subspaces in UV, (F,2), and proved that the conjuga-
tion P* of an (m, s)-type subspace P in UV, (F) is an (n—m, n+s—2m)-
type subspace. Using these results and choosing some subspace pairs as
blocks, we will construct some new BIB designs and PBIB designs with
two or more associate classes.

The following known results will be needed.
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Lemma 1. Let P, and P, be two m-dimensional subspaces of UV,(Fp),
Then there is a T € Uy, (F,2) such that Py = AP,T, where A is an m x m
nonsingular matrix over F, if and only if P, and P, are of the same type.
In other words, Upn(Fy2) acts transitively on each set of subspaces of the
same type. (See [1], Theorem 5.8).

Lemma 2. Let P, and P, be two m X n matrices of rank m. Then
there exists an element T € U,(F;2) such that Py = P,T if and only if
P, P| = P,P;. (See [1], Theorem 5.12).

Lemma 8. Let n = 2v+ 6, v > 2and § = 0 or 1. Take as treat-
ments the (v,0)-type subspaces of the (2v + 6§)-dimensional unitary geom-
etry UV, (F,2), and define two treatments to be the ith associates of each
other if their join is a (v + 1)-dimensional subspace (i =1,2,...,v). Then
one obtains an association scheme with v associate classes. Its parameters
are

I (e - (-1

IL=1(q2£ - 1)
= HZ=7—£+1(‘122 - 1) i2.42i8
m=1(q2e - 1) .
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Where w = p? +2p(i +6) +4(j +k—i—2p-0—-01) (j+k—i—2p—
o—01—1) +o[2(j +k —i—2p— 0 —01) + 1] and the range of the sum is
max(0, j — i,k — i) < p < min(v — 3, [J“‘ZL]) 0< a1 <o <6 (See[2),
Theorem 12 in Chapter 8).

Lemma 4. Let n > 4. Take the (1,0)-type subspaces as treatments,
and define two treatments to be the first (resp. second) associates of each
other if they as subspaces are orthogonal (resp. nonorthogonal). Then one
obtains an association scheme with parameters

v=[g" - (-1)"[g" ! - (-1)")/(¢* - 1),
n1=(¢""% - (-1)"%)(¢" 2 — (-1)"%)¢*/(¢* - 1),
Ph =g -1+ (" —(-1)""N)(¢"® - (-1)*®)¢*/(¢* - 1),
=(@" 2 = (-1)" ("2 - (-1)"3)/(¢* - 1).

(See [3]).
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2 Construction of BIB designs

Throughout this section we conduct our discussion in UV3(F2), and will
construct some BIB designs by taking the (1,0)-type subspaces in UVa(F2)
as treatments and taking some subspace pairs as blocks.

We first prove

Theorem 1. Let treatments be the (1,0)-type-subspaces in UVa(Fg),
and let the blocks be the (1,1)-type subspace pairs each consisting of two
orthogonal subspaces, and define a treatment V to be arranged in a block
(W,Wo) if VL W, and V L W,. Then we obtain a BIB design with
parameters

v=¢"+1, b=(¢>—q+1)(g-1)¢®, r=(¢-1)¢
k=g+1, A=(g-1g

Proof: We know that the unitary group Us(Fj2) acts transitively on the
set of (1,0)-type subspaces (see Lemma 1). According to Lemma 2, it is
easy to see that U3(Fy2) acts transitively on the set of ordered (1,0)-type
subspace pairs (note that two (1,0)-type subspaces must be nonorthogonal),
and also acts transitively on the set of ordered (1,1)-type subspaces pairs
each consisting of two orthogonal subspaces. Thus we certainly obtain a
BIB design. We now compute its parameters.

Clearly, the number of treatments is
v=N(1,0;3) =¢* +1.

Let (W1, W2) be a block. Then W; has N(1,1;3) choices. For each chosen
W1, the (1,1)-ye subspaces which are orthogonal to W; are those (1,1)-type
subspaces which are included in W;. On the other hand,the conjugate
subspace of a (1,1)-type subspacei is a (2,2)-type subspace. Therefore

(¢ + 1)q?

) (P +1-(g+1))

b=N(1,1;3)N(1,1;2,2;3) =
=(¢* —q+1)(g—1)¢.

Let V be a given treatment. For the blocks (W}, W5) in which V is arranged,
the number of ways of choosing W, is the number of (1,1)-type subspaces
that are nonorthogonal to V. As the conjugation of a (1,0)-type subspace
in UV3(Fg2) is a (2,1)-type subspace, this number is

N(1,1;3) - N(1,1;2,1;3) = (¢* —q+ 1)¢* — (¢* +1 - 1) = (g — 1)¢°.

For every such Wy, the number of ways of choosing W, is the number of
the (1,1)-type subspaces that are orthogonal to V as well as to W,. As
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V UW, is a (2,2)-type subspace and (V U Wy)* is a (1,1)-type subspace,
this number is 1. Thus

r=(g-1)¢".
By the basic relations bk = rv and r(k — 1) = A(v — 1), we easily obtain

This comletes the proof.

Theorem 2. Take the (1,0)-type subspaces in UV3(Fg2) as treatments.
Take as blocks the elements of
B ={(W,, W) | W1a (1,1)-type subspace, W3 a
(1,0)-type subspace, and W; L Wa},

and define a treatment V to be arranged in a block (W), Ws) if V L W,
and V Y W,. Then we obtain a BIB design with parameters

v=¢+1,b=(+1)¢} r=¢ k=g, A=q-1.

Proof: By Theorem 1, the unitary group Us(F,2) acts transitively on the
set of treatments, and transitively on the set of treatment-pairs. According
to Lemma 2, U3(F,2) also acts transitively on B. Thus we certainly obtain
a BIB design. Its parameters can be computed as follows:

v=N(1,0;3)=¢>+1
b=N(1,0;3)N(1,1;2,1:3) = (¢ + 1)¢*
r=[N(1,0;3) - N(1,0;2,1;3)]N(1,1;1,1;3) = ¢°

_rv_

=5 =

a=TEZD oy
v—1

This completes the proof.

3 PBIB designs with more than two associate classes

Theorem 3. Let n=2v+6,v > 2, and § = 0 or 1. Adopt the association
scheme in Lemma 3. Take as blocks the subspace pairs (W, Wy) where W)
is an (m, s)-type subspace (s =0 or 1) and W3 is a (1, 0)-type subspace of
UVo(Fp) and Wy C W\W,, and define a treatment V' to be arranged in
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a block (W, W3) if V L Wy and V' Y Wa. Then we obtain a PBIB design
with v associate classes. Its parameters besides those of the association
scheme in Lemma 3 are

b= N(m, s;n)[N(,1,0;n — m,n+ s — 2m;n) — N(1,m — s)],
r=[N(1,0;n) — N(1,0;v + §,6;n)]N(m,s;v — 1 + 6, 6;n),
Ai=N(1,0;v +14,25;n) —2N(1,v) + N(1,v — )]
-N(m,s;v—i+6,6;n) ,
+[N(1,0;n) — N(1,0;» + i+ 6,2i + &;n)] - N(m, s;v — i — 1+ 6,6;n)
+ [N(1,0; v + i+ 6,2¢ + 6;n) — N(1,0; v + 4, 24; )]
-N(m,s;v—1—1+6,6 —1;n).

Proof: Let (W;, Ws) be a block. Then (w;) is an (m +1) x n matrix with
rank m + 1. Without loss of generally, we may assume that

— 7(® 0
WIWII = ( 0 O(m—a))

Then
s ms 1

N’ S I 0 0
(%) (%‘) =ms|{0 0 0
2 2 1 0 0 O
Thus, According to Lemma 2, the unitary group Un(Fj2) acts transitively

on the set of blocks. Therefore, we certainly obtain a PBIB design with v
associate classes. We now compute its parameters.

Let (W;, W) be a block, Then there are N(m, s;n) choices for W, and
for each chosen Wi, the number of ways of choosing W» is the number of
(1,0)-type subspaces in W}\W;j. Since the conjugation of the (m, s)-type
subspace W] is an (n — m, n + s — 2m)-type subspace, and Wj N W} is an
(m — s, 0)-type subspace (cf. Theorem 2 in [4]), W has

N(1,0;n—m,n+s—2m;n)— N(1,m —s)
choices. Therefore,
b= (m,s;n)[N(1,0;n —m,n+ s —2m;n) — N(1,m — s)).

Let V be a given treatment arranged in a block (W;, W5). Since V* is a
(v + 8, 6)-type subspace, it follows that W5 has

N(1,0;n») — N(1,0;v + §,6;n)
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choices. For each chosen W, the number of ways of choosing W; is the
number of (m, s)-type subspace which are orthogonal to both V and Ws.
Since VUWj is a (v+1, 2)-type subspace and (VUW32)* is a (v—1+-6, 6)-type
subspace, W; has

N(m,s;v —146,6;n)

choices, Then

r=[N(1,0;n) — N(1,0;v + §,8;n)] - N(m, s;v — 1+ 6, 6;n)

Let V; and V5, be two treatments which are the ith associates of each
other, and let them be arranged in a block (W), W3). There are two cases
to be considered.

Case 1. W, C ViUV,

Since V} U V5 is a (v + 4, 2i)-type subspace, there are N(1,0;v + i, 2i;n)
(1,0)-type subspace in V; UV, among which those included in V; are orthog-
onal to V;, while those included in V> are orthogonal to V2; none of them
can be taken as Wa. We claim that the (1,0)-type subspace a in V; UV,
that are included neither in V; nor in V, must be orthogonal neither to V;
nor V. In fact, let a = B + B2, 1 C Vi\V,, B2 C Vo\W;. If @ L V), then
(81 + )7 = 0 for all v C V5. Note that 5,5 = 0. Then B2¥ = 0 for all

‘yC “]. Hence

is a (v + 1,0)-type subspace which is impossible. Similarly, a L V; is
also impossible. Therefore, such « can be taken as W,. By the inclusion-
exclusion principle, such a has

N(@1,0,v+14,25;n)—2N(1,v)+ N(1,v — 1)

choices. For each chosen Wa, the number of ways of choosing W; is the
number of (m, s)-type subspace that are orthogonal to the (v + i, 2:)-type
subspace V3 U V;. Since the conjugation of.a (v + %, 2i)-type subspace is a
(v — i + 8, 6)-type subspace, it follows that W, has

N(m,s;v —i+6,6;n)
choices. In this case, therefore, such a block has
[N(1,0;v +4,26;n) —2N(1,v) + N(1,v —i)] - N(m, s;v — i+ 6,6;n)

choices.
Case 2. Wo € VUV,

We claim that a (1,0)-type subspace o that is not included in V; U V,
cannot be orthogonal to V;. Otherwise there would be a (v+1, 0)-type sub-
space (1) which is impossible. Similarly, such an & must not be orthogonal
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to V2. Thus a can be taken as Ws. For a chosen Wa, the number of ways
of choosing W, is the number of (m, s)-type subspace that are orthogonal
to V; U Vo U W,. To calculate this number we need to know of which type
the (v + ¢ + 1)-dimensional subspace Vi U V2 U W5 should be. We further
consider two subcases;

(1) Wa & (inVy)*
We claim that in this case V; U Vo U W must bea(u+z+1 2i 4+ 2)-type
subspace. In fact write D=ViNVa, Vi = (), Vo = (D) and

i v—1t 1 1
AW IAYEE o o A B
DI||D|_v-il0o o o0 By a)
Dy } { D; i A 0 0 B
W) \Wo/ 1 \B, B, By 0

For W, is not orthogonal to D = V; NV, we have By # 0. Thus the rank
of the matrix on the right hand side of (1) is 2i + 2. Since (Vi NV;)* is a
(v + i + 8, 2i + 8)-type subspace, the (1,0)-type subspace W5 has

N(1,0;n) — N(1,0;v 4+ i+ 6,2i + 6; n)

choices. For a chosen Wy, since ViU Vo UWa is a (v + i + 1,2 + 2)-type
subspace and its conjugation is a (v — ¢ — 1 + 6, §)-type subspace, W; has

N(m,s;v—i—1+6,6;n)
choices. Therefore, the number of blocks in this case is
[N(1,0;n) — N(1,0; v + i+ §,2i + 6;n)] - N(m, s;v — i — 14 6,6;n)

(2) W2 € (VinV)"\(L U Va).

We will claim that in this case VUVoUW; must be a (v+i+1, 2i+1)-type
subspace. If we still adopt the symbols in the subcase (1), then B, = 0,
B # 0 and B3 # 0. Noting that A is an invertible matrix of order i, we
can write Wp = Wp — B, - A~!. D, — Bs - (A")~'.D,. Then
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D)\ (D % 0 0 0\ /D,\ /D1\
D D 0 = 0 0 D D
D, 22 = 0 0 I® 0 D, Dy
Wy \W, -Bs(A)' 0 -BA! 1) \We) \ W,
I6) 0 0 0
0 Iv=4) 0 (]
0 0 I® 0
-B3(A)"! 0 -BjA! 1
Q) 0 0 o0\ /o0 o A B
0 =9 0 0 0 0 0 O
= 0 0 19 ofla o o B
~B3(A)' 0 -BjA' 1/ \B, 0 Bs 0
I() 0 0 0
0 Iv=1) 0 0
0 0 I® 0
—B3(A)! 0 -BjA! 1
004 0
0 0 O 0
=la40 0 o @)
— =
0 0 0 W,

Since W2 is not included in V; U V53, it follows that W2 Wz # 0. Otherwise
(w) is a (v + 1,0)-type subspace by (2). But this is impossible. Since

W, - Wz # 0, (2) implies that the rank of

R
D, D,
D D
Dy | | D;
W,/ \W,

is2i+1. Then UVoUW, is a (v +1i+1,2i + 1)-type subspace. We
know that (Vy N V2)* is a (v + i + 6,21 + 6)-type subspace, ViU V5 is a
(v + %, 2i)-type subspace, and

NN =vVuVy D2Vviul,.
1 2

Then the (1,0)-type subspaces W, that are included in (V3 NV3)*\(V; U V3)
have

N(1,0;v+i+6,2i+ 6;n) — N(1,0; v + 1, 2i;n)
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choices. For a chosen Wy, since Vi U Vo U Ws is a (v + 1 + 1,21 + 1)-type
subspace and its conjugation is a (v — % — 1 + 6,8 — 1)-type subspace, W,
has

N(m,s;y—i—1+6,6 —1;n)

choices. Therefore, the number of blocks in this case is

[NQQ,0;v+i+6,2i+ 6;n) — N(1,0; v + 4,24 n)]
-N(m,s;v—i~-1+6,6—1;n)

Combining these cases, we have

A1 = [N(1,0;v +14,2i;n) —2N(1,v) + N(1,v — 1))
-N(m,s;v—i+6,6n)
+ [N(1,0;n) — N(1,0;v + i + 6,2i + §;n)]
-N(m,s;v—i—1+6,6;n)
+[N(1,0;v + i+ 6,2i + 6;n) — N(1,0; v + 4, 2i; n)]
-N(m,s;v—i-1+6,6 —1;n)

This completes the proof.

Theorem 4. Let n=2v+6§, v > 2, and § =0 or 1. Adopt the association
scheme in Lemma 3. Take as blocks the subspace pairs (W1, Wa) where W,
is an (m, s)-type subspace (s =0 or 1) and W5 is a (1,1)-type subspace of
UVn(Fp2) and Wa L W,. Define a treatment V to be arranged in a block
(W1, W) if V L W, and V [ W,. Then we obtain a PBIB design with v
associate classes. Its parameters besides those of the association scheme in
Lemma 3 are

b= N(m,s;n)- N(1,1;n—m,n+ s —2m;n),
r=[N(1,1;n) — N(1,1;v + 6,6;n)] - N(m,s;v — 14 6,6;n),
Ai=[N@,1;v+1,2i;n)- N(m, s;v —i+ 6,6 n)
+[N(1,1;n) - NQ,L;v+1i46,2i + §;n)] - N(m, s;v —i— 1+ 6,6;n)
+ [N(@,1;v+1i+6,2i+ §;n) — 2N(1,1;v + 6,6;n)
+N(Q,1;v —i+6,6;n) — N(1,1;v + ¢, 2i;n))
-N(m,s;v—i-146,6—1;n).

Proof: We only need to compute \; because the proof is similar to that of
Theorem 3.

Let V1 and V; be two treatments, the ith associates of each other, and
be arranged in a block (W1, W2). There are three cases to be considered.
Casel. Wo C ViUV,
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The (1,1)-type subspace in V3 UV, are neither included in V; nor included
in V5. Thus an argument similar to that in the proof of Theorem 3 gives
that the (1,1)-type subspaces in V; UV, are orthogonal neither to V; nor to
Va, and then all of them can be taken as W5. Hence in this case W, has

N(1,1;v+14,2;n)

choices. For a chosen Wy, the number of ways of choosing W is the number
of (m, s)-type subspace in (V;UV,)*, i.e. N(m, s;v—i+8,8;n). Therefore,
the number of blocks in this case is

NQ1,1;v+14,2i;n) - N(m,s;v —i+6,6;n).

Case 2. Wo Z V UV

Because the (1,1)-type subspaces not in Vi* U V' are orthogonal neither
to V1 nor to V3, they can be taken as Wa. Since V¥ UVZ = (ViNV,)* isa
(v + i+ 8, 2i + 6)-type subspace, W5 has

N(@1,1;n) - N(1,1;v +i+6,2i + 6;n)

choices. For a chosen W, the number of ways of choosing W is the number
of (m, s)-type subspaces that are orthogonal to all of Vi, V, and W,. An
argument similar to that in the proof of Theorem 3 gives that V; U VoUW,
is a (v+14+1, 2i+2)-type subspace and its conjugation is a (v — ¢ —1+6, §)-
type subspace, so Wy has N(m, s; v — i —1+ 8, §; n) choices. Therefore the
number of blocks in this case is

[NQ,1;m) — N(1, ;v + i+ 6,2i + 6;n)] - N(m, s;v — i — 1+ 6,6;n)

Case 3. W, C (Vi nVe)*\(V1 U Va).

We know that (V1 N V2)* includes N(1,1;v + i + §,2i + 6;n) (1,1)-type
subspaces. Among them there are N(1,1;v+8, §; n) (1,1)-type subspaces in
V;* and these subspaces are orthogonal to V, and there are N(1, 1; v+, §;n)
(1,1)-type subspaces in V' and these subspaces are orthogonal to V5. All
these subspaces can not be taken as Wa. Noting that V¥ N V' = (ViU V,)*
is a (v — i + §,8;n)-type subspace, we obtain by the inclusion-exclusion
principle the number of (1,1)-type subspaces that are orthogonal neither to
Vi nor to V2 to be

N1, Lv+i+62i+6n)-2NQ1,1,v+6,6;n)+ N(1,1;v —i+6,6;n).

Since (ViNV2)* = VUV3 D ViUV; and the (1,1)-type subspaces in ViUV;
are orthogonal neither to V; nor to V5, the number of (1,1)-type subspaces
in (V1 N V2)*\(V1 U V;) that are orthogonal neither to V; nor to V; is

N, 1L,v+i+6,2i+6;n) —2N(1,1;v +6,6;n)
+NQ,1;v—i+6,6;n) - NQ1,1;v +4,24;n).
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For a chosen W, an argument similar to that in the proof of Theorem
3 gives that V; UV, U W, is a (v + i + 1,2¢ + 1)-type subspace and its
conjugation is a (v — i — 1+ §,6 — 1)-type subspace, so W; has

N(m,s;v—i—-1+6,6 —1;n)
choices. Therefore, the number of blocks in this case is

[N, ;v +i4+6,2i+6n)—2N(L, v+ 6,6n)+ N(1,1;v —i+6,6;n)
—N(1,1;v+14,2i;n)] - N(m,s;v —i —1+4 6,6 — 1;n).

Combining all the three cases, we have

Xi=[N(1,1;v+14,2in)- N(m, s;v —i+6,6;n)
+N(1,5;n)-NQ,l;v+i+6,2i+6;n)]- N(m,s;v —i—1+6,6n)
+ [N(1,1;v+ i+ 6,2i+ 6;n) — 2N(1,1;v 4 6,6;n)
+N(1,1;0 —i+46,6;n) — N(1,1;v +14,2i;n))
-N(m,s;v—i—1+6,6 —1;n).

This proves the theorem.

4 PBIB designs with two associate classes

In this section we will construct PBIB designs with two associate classes by
using the association scheme in Lemma 4 and also by specializing Theorems
3 and 4.

Theorem 5. Adopt the association scheme in Lemma 4. Take as blocks the
subspace pairs (Wy, W) of UV, (Fy2) where W, is an (m, s)-type subspace,
W, is a (1,0)-type subspace and Wa C W\W). Define a treatment V' to
be arranged in a block (W1, W,) if V L W, and V Y W». Then we obtain
a PBIB design with two associate classes and with the parameters given in
Lemma 4 and by the following:

b= N(m,s;n)-[N(1,0;n —m,n+ s —2m;n) — N(1,m — s)].
r=ngy- N(m,s;n — 2,7 — 2;n),

rv

k=7

AL = P%z -N(m, s;n —3,n —4;n),
rk—1)—\iny

M= —m—

2

Proof: An argument similar to the proof of Theorem 3 shows that the
structure so obtained is a PBIB design.
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The parameter b has the same value as in Theorem 3.

Let V be a given treatment and be arranged in a block (W;, W3). Then
there are ny choices for Wy, and for each chosen W5, the number of ways of
choosing W, is the number of (m, s)-type subspaces that are orthogonal to
both V and W,. Note that such an (m, s)-type subspace must not include
W, for W> is not orthogonal to V. Since V U W5 is a (2,2)-type subspace
and its conjugation is an (n — 2,n — 2)-type subspace, it follows that W;
has N(m, s;n — 2,n — 2;n) choices and then

r=n5 -N(m,s;n—2,n—2;n).

Let V; and V, be a pair of orthogonal (1,0)-type subspaces, and be
arranged in a block (W;,W;). Then W, has P}, choices. Noting that
ViUV, UW; is a (3,2)-type subspace whose conjugation is an (n—3,n —4)-
type subspace, it follows that W; has N(m, s;n — 3,n — 4;n) choices, and
then

A = P, - N(m,s;n—3,n —4;n).

The other parameters can be computed from the basic parameter relations.
This proves the Theorem.

Similarly, we have
Theorem 6. Adopt the association scheme in Lemma 4. Take as blocks
the subspace pairs (W, W,) where W, is an (m, s)-type subspace and Wy
is a (1,1)-type subspace orthogonal to W), and define a treatment V' to be
arranged in a block (W, W) if V L W; and V Y Wa. Then we obtain
a PBIB design with two associate classes, and its parameters are those in
Lemma 4 and as in the following:

b= N(m,s;n)- N(1,1;n — m,n+ s — 2m;n),
r=[N(1,1;n) - N(1,1;n—1,n—2;n)]- N(m,s;n —2,n — 2;n),
A1 =[N(Q,5;7)-2N(1,;n—-1,n—2;n) + N(1,1;n — 2,n — 4;n))
- N(m,s;n - 3,n — 4;n),

™V
k=—b—
,\2= T(k—l)—/\l‘nl.

n2

Taking v = 2 in Theorems 3 and 4 and suitably taking the value of §, m
and s, we obtain a number of PBIB designs with two associate classes.

If v = 2 and § = 0, then the association scheme in Lemma 3 becomes
one with two associate classes and with parameters

v=(@+1)(g+1), mi=(®+1)q, phi=q¢-1, ph=¢*+1. (3)
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If v =2 and § = 1, then the association scheme in lemma 3 also becomes
the one with two associate classes and with parameters

v=(@+1)(+1), m=+1) ph=F-1, ph=F+1.(4)

Then we have the following PBIB designs with two associate classes.

Theorem 7. Taking v=2,86 =0, m =1 and s = 0 in Theorem 3, we
obtain a PBIB design wish two associate classes. Its parameters are those
in (3) and as in the following

b= (¢ +1)(¢* +1)(g + 1)¢°

r=(+1)¢
k=g
M =(g-1)¢
A2 =0.

Theorem 8. Takingv=2,6§=1, m =1 and s = 0 in Theorem 3, we
obtain a PBIB design with two associate classes. Its parameters are those
in (4) and as in the following

b= (" +1)(¢® +1)(¢° +1)¢°

r=(¢*+1)¢°
k=g
A= (¢ - 1)¢*
Ao =0.

Theorem 9. Taking v =2,6§ =1, m=1 and s =1 in Theorem 3, we
obtain a PBIB design with two associate classes. It parameters are those
in (4) and as in the following

b=(¢° +1)(¢* + 1)(¢* — g+ 1)¢*
r=(¢®+1)q
k=(g+1)¢°

A = (¢® +q-1)¢*

Ao =(g° — 1)(¢*+1).

Theorem 10. Taking v =2, 6§ =1, m =2 and s = 1 in Theorem 3, we
obtain a PBIB design with two associate classes. Its parameters are those
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in (4) and as in the following

b=(¢°+1)(¢* +1)(¢* + 1)¢*

r=(¢*+1)¢°
k=gq
AM=(g— 1)92
A2 =0.

Theorem 11. Taking v =2, § =0, m =1 and s = 0 in Theorem 4, we
obtain a PBIB design with two associate classes. Its parameters are those
in (3) and as in the following

b= (g +1) (¢ +1)(g-1)¢®
r=(@+1)(g-1)¢

k=g+1
A= (g—1)¢?
A2 =0.

Theorem 12. Taking v=2,6=1,m=1 and s = 0 in Theorem 4, we
obtain a PBIB design with two associate classes. Its parameters are those
in (4) and as in the following

b=(¢° +1)(¢* + 1)(¢*> — ¢ + 1)¢*
r=(¢*+1)(¢g—1)¢°

k=(g"-1)q
A= (g—1)(¢® — g — 1)
Ay =0.

Theorem 13. Taking v=2,6§ =1, m=1 and s = 1 in Theorem 4, we
obtain a PBIB design win two associate classes. Its parameters are those
in (4) and as in the following

b=(?+1)(g-1" - +¢* —q+1)¢
r=(+1)(g—1)q"
k=(¢"+1)(g+1)

M=(F+1)(g-1)¢°

de = (¢° +1)(g—1)¢.
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Theorem 14. Taking v = 2,8 =1, m = 2 and s = 1 in Theorem 4,we
obtain a PBIB design with two associate classes. Its parameters are those
in (4) and as in the following

b= (" +1)(@+1)(* —q+1)(g-1)g°
r=(¢" +1)(¢—1)¢°

k=g+1
A =(g-1)¢°
A2 =0.

References

[1] Zhexian Wan, Geometry of Classical Groups over Finite Fields, Printed
in Sweden, Student Litteratur, Lurd, 1993.

[2] Zhexian Wan, Zongduo Dai, Xuning Feng and Benfu Yang, Some Stud-
ies on Finite Geometries and Incomplete Block Designs, Science Press,
Beijing, 1966.

[3] Zhexian Wan and Benfu Yang, Studies in finite geometries and the con-
struction of incomplete block designs III, some “anzahl” theorems in the
unitary geometry over finite fields and their application, Acta mathe-
matica sinica 15, 533-544 (in Chinese). English translation: Chinese
mathematics T, 252-264.

[4] Wandi Wei and Benfu Yang, Finite unitary geometries and PBIB de-
signs (II), JCMCC 10 (1991), 205-212.

[5] Benfu Yang and Wandi Wei, Finite unitary geometries and PBIB de-
signs (I) JCMCC 6 (1989), 51-61.

211



