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Abstract

We study the maximal intersection number of known Steiner Sys-
tems and designs obtained from codes. By using a Theorem of
Driessen, together with some new observations, we obtain many new
designs.

1 Introduction

We assume familiarity with some basic facts from design theory and coding
theory. The following definition of a design shall be used throughout this
article.

Let D = {B,, B;, ..., By} be a finite family of k-subsets (called blocks)
of a v-set X = {1,2,...,u} (with elements called points). Then D is a
t-(v, k, X) design if every t-subset of X is contained in exactly A blocks of
D

A design without repeated blocks is called a simple design. A ¢-(v, k,1)
design is called a Steiner system. The notation S(t,k,v) is commonly
adopted for such a design. It is well-known that if a ¢-(v, k, A) design exists
then the numbers A,, 1 < s < ¢, where

k-s+1

do=b=IDh A =T33

Aa—l

are integers. These are the so called necessary conditions for the exis-
tence of ¢t-(v, k,\) designs. Note that A\, = .
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Given integers 0 < ¢t < k < v, the smallest positive integer A such
that ¢,v, k, X satisfy the above necessary condition is called the minimal A
and is denoted by Apmin. If a t-(v, k, A) design exist, then necessarily Apmin
divides ). Also, if X(® is the collection of all k-element subsets of X, then
X® is a t-(v, k, Amaz) design, where Amae = (}—¢). The value Aoz is
called the maximum ) and X¥) is said to be the trivial design.

Given a t-(v, k, ) design D and a point z, the blocks of D that contain
z form a (t—1)-(v—1,k—1, ) design on X\{z} called the derived design
of D with respect to z. The blocks of D that do not contain z form a
(t—1)-(v—1,k, A\s—; —A¢) design on X\{z} called the residual design of D
with respect to z. Let D = {B, Ba,..., By} be a design with parameters
t-(v,k, ) and

p= max, |B; N Bj|.
Let p* = min p, where the minimum is taken over all designs with these
parameters. Designs for which p = p* we shall term as designs with
maximally different blocks, or DMDB's. We call p the maximal in-
tersection number of D.

The derived and residual design of a design with a maximal intersection
number p have maximal intersection numbers p — 1 and p, respectively.

Designs with repeated blocks correspond to the case p = k; simple
designs correspond to the cases p < k — 1; designs whose blocks cover only
distinct (k — 1)-subsets of X correspond to the cases p < k — 2 and so
on. In a sense, DMDB'’s are generalization of simple designs as well as of
supersimple designs (the latter being defined in [4]).

The following theorem, which is an equivalent form of the Johnson
Bound for the maximal number of words in a constant weight code [7],
can be used to obtain an estimate for p*.

Theorem 1.1. Let D = {By, Ba, ..., By}, where B;, i = 1,2,...,b, are k-
element subsets of X = {1,2,...,v}and |B;NBj| <p<kfor1<i<j<b

Then i
v|v-—- v—p
< 2|2t 222 ).

2 Facts and observations

The proofs of existence are based on the following facts and observations.

A. The maximal intersection number of a Steiner system S(¢, k,v) is p =
t—1.

B. Assmus and Mattson [1] have constructed a 5-(24,9,6) design from
the supports ofcodewords of weight 9 in the [24, 12, 9] extended quadratic
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residue code over GF(3). If x and y are two codewords of weight 9 whose
supports intersect in p coordinates, then either the distance between x and
y or between x and -y is less than or equal to 2(9 — p) + p/2. But the
minimal distance of the code is 9, and thus p < 6. Similarly, p < 10 for
the 5-(24,12,576) design obtained from the same code, and p < 8 for the
5-(24,12,48) design, obtained from the [24, 12, 8] self-orthogonal code over
GF(2) (cf. the same paper of Assmus and Mattson).

C. MacWilliams, Odlyzko and Sloane [8] have constructed a 5-(30, 12, 220)
design from the subsets of coordinate places holding codewords of weight
12 in the even formally self-dual [30, 15,12] code over GF(4). The code has
minimal distance 12 (equal to the minimal weight of a codeword). There
are three codewords for each support. Any other word of the code must
be at a distance at least 12 from each of these three. Suppose p > 9.
Then there must be a codeword which has at least 10 nonzero elements on
positions occupied by the nonzero elements of the support. At least 4 of
these elements must be identical. This gives two codewords at a distance at
most 10, which is a contradiction. So, p <9 for the above set of parameters.
Analogously, p < 12 for the 5-(30, 14, 5390) design and p < 14 for the 5-
(30, 16,123000) design, obtained in the same paper.

Remark. By using Theorem 1.1 we can prove that, in fact, all of the
three designs from B, as well as, the 5-(30, 16,123000) design from C are
DMDB’s. For example, consider the 5-(24,9,6) design from B. We have
proved that p < 6 for the last design. Suppose p < 5. By Theorem 1.1 the
number of blocks of the design should be at most 1349 while a 5-(24,9,6)
design has 2024 blocks, which is a contradiction. Therefore p = 6 for the 5-
(24,9, 6) design found in B. Since p = 6 is the smallest possible intersection
number for this set of parameters, the 5-(24,9,6) design found in B is a
DMDB. Analogously, the 5-(24,12,576) design is a DMDB with p = 10,
the 5-(24, 12,48) design is a DMDB with p = 8 and the 5-(30, 16, 123000)
design is a DMDB with p = 14.

D. Theorem 2.1 (DRIESSEN [3]) If D is a t-(v, k, A) design with a maximal
intersection number p < k —m — I — 1, for fixed integers m,l > 0, then

Dpy={(BUL)\M:B€eD,MCB,|M|=m,LC(X\B),|L| =1}

= (ke t=ma ) (7)) /()

design. (Note that Doo = D.)
We make the following two observations:

isa

Corollary 2.2. Designs, obtained by Driessen’s Theorem for pairs m,{;
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and mag, ly, where m; # mgz, but m; — Iy = ma — Iz, have the same block-
size, and are disjoint.

Corollary 2.3. If Driessen’s Theorem produces simple nontrivial designs,
then m < k — ¢ — 1, and the initial design is not trivial.

The proofs follow directly from the definition of Dy. The next two
facts are well-known.

E. If D is a simple t-(v,k,)) design, then {X \ B : B € D} is a simple
- (v,0 - k,A("7%) /(5)) design.

F. If D is a simple ¢-(v, k, \) design, then X(*)\ D is a simple (v, k, Amaz —
) design.

3 Proofs

It is convenient to arrange the proofs of existence in a table. The proofs
start with an initial design which has small maximal intersection number.
An upper bound on the maximal intersection number is given in the fourth
column of the table, although in most of the cases we know the exact value
of p. We use the designs mentioned in A, B, and C, as well as their derived
and residual designs, as initial designs. Then we apply Driessen’s theorem
and the corollaries to obtain new designs. In some cases we apply E and F.

As an example, let us obtain a 4-(23,11,n6) design, n = 2494. Start
with an initial 4-(23,11,48) design D, with p = 7, the derived of the 5-
(24, 12,48) design with p = 8, mentioned in B. By the theorem of Driessen
we get a 4-(23,12,52272) design, D2, and a 4-(23,12,864) design, Do;.
According to the corollary 2.2, the last two designs are disjoint. Therefore,
Doy U Dyz is a 4-(23,12,53136) design. Using E, we get a 4-(23,11,35424)
design. Since Amq. is 50388 for the last set of parameters, using F, we finally
obtain a 4-(23, 11, 14964) design, i.e., a 4-(23, 11,16) design, n = 2494. The
proof can be described as the sequence Doy U Dy3, E, F. The table below
contains proofs of existence of 151 designs.
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New design The existence follows from
Parameters n Initial design D | Upper bound on p | Proof
5-(24,8,n) 24 5-(24,9.6 6 Dyo
5-(24,9,n6) 135 | 5-(24,9.6 6 D

136 5-(24,9,6) 6 Doo U Dy
5-(24,10,n18) 10 5-(24,9,6) 6 Do

56 5-(24,12,48) 8 Doz, E
5-(24,11,n42) 8 5-(24,12,48) 8 Doz, E

55 5-(24,9,6) 6 Doz

96 5-(24,12,576) 10 Do

118 5-(24,12,48) 8 Dy, F
5-(24,12,n6) 1152 | 5-(24,12,48) 8 Dy

1160 | 5-(24,12,48) 8 Doo U Dy
5-(28,7,n) 105 5-(28,7,1) 4 Dy, F

106 5-(28,7,1) 4 DooU D1y, F
5-(28,8,n7) 8 5-(28,7,1) 4 Doy
5-(28,9,n35) 36 5-(28,7,1) 4 Doz
5-(30,10,n42) 110 (30,12,220) 9 Doy
5-(30,11,n1540) | 1 5-(30,12,220) 9 Dyo
5-(30,12,n220) | 216 5-(30,12,220) 9 Dy

217 5-(30,12,220) 9 Doo U Dy
5-(30,13,n495) | 13 5-(30,12,220) 9 Doy

98 5-(30,14,5390) 12 Do

1025 | 5-(30,16,123000) 14 Doy, E

[ 5-(30,14.n55) | 1547 | 5-(30,12,220) 9 Doz

5-(30,15,n22) 5880 | 5-(30,14,5390) 12 Doy

61500 | 5-(30,16,123000) 14 Dyo
4-(23,7,n) 129 4-(23,8,4) 4 Dy, F

180 4-(23,9,18) 6 Dao

"4-(23,8,n2) 45 4-(23,9.18) 6 Dio

240 | 4-(23,8.4) 4 Du

242 4-(23,8,4) 4 DgoU D),

360 4-(23,8,6) 5 Dy,

363 4-(23,8,6) 5 Doo U Dy,
4-(23,9,n18) 9 4-(23.8,6) 5 Doy

126 4-(23,9,18) 6 Dy

127 4-(23,9,18) 6 Doo U Dyy

224 4-(23,11,48) 7 Dos3, E

304 | 4-(23,8,4) 4 Doy U Dy, F

310 4-(23,8,4) 4 Dy, F
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New design The existence follows from
Parameters n Initial design Upper bound on p | Proof
4-(23,10,n42) | 10 4-(23,9,18) 6 Doy

45 4-(23,8,6) 5 Doz

48 4-(23,11,48) 7 Doz, E

158 4-(23,11,48) 7 DypuUDy, F

166 4-(23,11,48) 7 Dy, F
4-(23,11,n6) 672 4-(23,11,576) 9 Dyo

715 4-(23,9,18) 6 Do2

1056 | 4-(23,11,48) 7 Di

1064 | 4-(23,11,48) 7 Doo U Dy

2494 | 4-(23,11,48) 7 Doy UDy, E, F

2590 | 4-(23,11,48) 7 D3, E, F
4-(27,6,n) 21 4-(27,7,7) 4 Dio

126 4-(27,6,1) 3 Dy
4-(27,7,n7) 7 4-(27,6,1) 3 Dox

12 | 4-(27.7,7) 4 DwUDyy, F

113 4-(27,7,7) 4 Dy, F
4-(27,8,n35) 8 4-(27,7,7) 4 Do,

28 4-(27,6,1) 3 Doz
4-(27,9,n7) 684 | 4-(27,7,7) 4 Doz
4-(29,10,n140) | 99 4-(29,12,495) 9 Do
4-(29,11,n220) | 18 4-(29,12,495) 9 Dio

198 4-(29,11,220) 8 Dy

199 4-(29,11,220) 8 Do U Dyy
4-(29,12,n495) | 12 4-(29,11,220) 8 Do

204 4-(29,12,495) 9 Dy

205 4-(29,12,495) 9 Dgo U D1y
4-(29,13,n55) | 221 4-(29,12,495) 9 Doy

1326 | 4-(29,11,220) 8 Doz

1568 | 4-(29,14,8624) 12 Dio

16400 | 4-(29,15,123000) 13 Doy, E
4-(29,14n22) | 5488 4-(29,13,5390) 11 Doy

6188 | 4-(29,12,495) 9 Do2

57400 | 4-(29,16,143500) 14 Dy, E
3-(22,6,n) 180 [ 3-(22,8,18) 5 Do

233 3-(22,7,4) 3 DyuUDy, F

249 | 3-(22,7,4) 3 Dy, F
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New design The existence follows from
Parameters | n Initial design | Upper bound on p | Proof
3-(22,7,n) 420 | 3-(22,74) 3 Dy

424 | 3-(22,7,4) 3 Dgo U Dy,

630 | 3-(22,7,6) 4 Dy,

636 | 3-(22,7.6) 4 Doo U Dy,

876 | 3-(22,8,12) 4 DyoU Dy, F

936 | 3-(22,8,12) 4 Dy, F
3(22,8n6). | 24 | 3-(22,7.6) 4 Doy

42 3-(22,9,42) 6 Do

224 | 3-(22,8,12) 4 Dy

226 3-(22,8,12) 4 Doo U Dy

336 | 3-(22,8,18) 5 Dny

339 | 3-(22,8,18) 5 Doo U Dy

672 | 3-(22,11,72) 7 D3

784 | 3-(22,74) 3 Dy2

800 3-(22,7.4) 3 Doy U Dyo
3(229n42) [ 9 3-(22,8,18) 5 Doy

36 3-(22,7,6) 4 Doq

117 | 3-(22,9,42) 6 Dy

118 | 3-(22,9,42) 6 Doo U Dy

176 | 3-(22,10,48) 6 Dos, E

206 | 3-(22,10,48) 6 DU Dy, F

214 | 3-(22,10,48) 6 Dy, F

312 | 3-(22,8,12) 4 Dy2

318 &(22,8,12) 4 Do1 U Dy3
3-(22,10,n6) | 130 | 3-(22,9.42) 6 Doy

528 { 3-(22,10,48) 6 D, E

585 | 3-(22,8,18) 5 Dpy

960 | 3-(22,10,48) 6 Dy

968 3-(22,10,48) 6 Doo U Dy

3118 | 3-(22,11,72) 7 D3, E,F

3022 | 3-(22,11,72) 7 Doy UDyy, E, F
3-(22,11,n9) | 88 3-(22,10,48) 6 Doy

715 | 3-(22,9,42) 6 Dy,

868 | 3-(22,11,72) 7 Dy

976 | 3-(22,11,72) 7 Doo U Dy,

3470 | 3-(22,10,48) 6 Doy U Dy, F

3558 | 3-(22,10,48) 6 Dy, F
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New design ~ The existence follows from
Parameters n Initial design Upper bound on p | Proof
3-(26,5,n) 3 3-(26,6,1) 2 Dyo

43 3-(26,7,35) 4 D, F

100 3-(26,6,1) 2 DyoUDyy, F

103 3-(26,6,1) 2 Dy, F

105 3-(26,5,1) 2 Dy

106 3-(26,5,1) 2 Doo U Dyy
3-(26,6,n) 42 3-(26,5,1) 2 Doy

120 3-(26,6,1) 2 Dy

121 3-(26,6,1) 2 Dgo U Dy,

140 3-(26,7,35) 4 Do

840 3-(26,6,7) 3 Dy
3-(26,7,n35) 21 3-(26,5,1) 2 Doa

57 3-(26,6,1) 2 Di2

57 3~(26,6,l) 2 Doy UDya

119 3-(26,7,35) 4 DooUDyy, F

120 3-(26,7,35) 4 Dy, F
3-(26,8,n7) 76 3-(26,6,1) 2 Dos

[3-(26,9,n21) | 228 3-(26,6,1) 2 Dos

3-128.9,1128; 55 3 28,10,220) 7 Do

495 3-(28,11,495) 8 Dao
3-(28,10,n20) [ 198 3-(28,11,495) 8 Dyo

1683 3-(28,12,935) 9 Dag

1980 3-(28,10,220) 7 Dn

1991 | 3-(28,10,220) 7 Doo U Dy
3-(28,11,n495) | 11 3-(28,10,220) 7 Doy

17 3-(28,12,935) 9 Dyo

187 3-(28,11,495) 8 Dy,

188 3-(28,11,495) 8 Doo U Dy
3-(28,12,n55) | 204 3-(28,11,495) 8 Doy

1122 3-(28,10,220) 7 Doa

1568 3-(28,13,8624) 11 Dyo

3264 3-(28,12,935) 9 Dy

3281 3-(28, 12,935) 9 Dgo U Dy,
3-(28,13,n22) | 884 3-(28,12,935) 9 Doy

5096 3-(28,12,5390) 10 Doy

5304 3-(28,11,495) 8 Do2

53300 | 3-(28,16,143500) 14 Dy, E
3(28,14,16) | 27440 | 3-(28,13,8629) 11 Do

30040 | 3-(28,12,935) 9 Doz

287000 | 3-(28,15,143500) 13 Dyo
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4 Concluding remarks

We have investigated the maximal intersection number of some known de-
signs. The results, by applying the theorem of Driessen and the corollaries,
lead to the proof of the existence of the 151 new designs from the table
above. The table does not contain a design which is derived or residual of
a design from the same table. So, the designs found above lead to many
other designs. Some other well-known theorems can be also used to obtain-
ing new designs from the ones obtained so far. The total of more than 500
new designs are generated this way [5]. A complete list can be found in [6].

Note that some of the designs from the table have the smallest known ),
for example, the 3-(26, 8, 532), 3-(26,9,4788), 4-(27, 8,270), 5-(24, 10, 180),
5-(24, 11, 336), 5-(28, 8,56) designs (cf.[2]). Some of the designs have even
the smallest possible ), for example, the 5-(30,11,1540) design. Some of the
sets are the only known sets of parameters for fixed ¢,v, k, for example, the
4-(27,9,4788), 5-(28,9,1260) designs. At this point, it is obvious that the
study of designs with small maximal intersection number p or, moreover,
DMDB’s, could be a source for finding many new designs.
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