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ABSTRACT. The present paper studies bisectable trees, i.e., trees
whose edges can be colored by two colors so that the induced
monochromatic subgraphs are isomorphic. It is proved that the
number of edges that have to be removed from a tree with max-
imum degree three to make it bisectable can be bounded by an
absolute constant.

1 Introduction

A graph G is bisectable (or even), if its edges can be colored by two colors
such that the monochromatic subgraphs of G induced by the coloring are
isomorphic. The problem of deciding whether a graph is bisectable appears
difficult even for trees (see Graham and Robinson [2]). Harary and Robin-
son [3] conjectured that the problem is easy for trees T with maximum
degree A(T) < 3. More precisely, they conjectured that with the exception
of two trees, every tree with A(T') < 3 and with an even number of edges
is bisectable (of course, no graphs with an odd number of edges can be bi-
sectable). This conjecture was proven false by Heinrich and Horak [4], who
constructed an infinite class of non-bisectable trees with an even number of
edges and with maximum degree equal to three. This opened the question of
characterization of the class of non-bisectable maximum-degree-three trees.

Within this context, one may want to investigate how far a tree with
A(T) = 3 can stray from bisectability. The smallest number R(G) of edges
whose removal from G leaves a bisectable graph can serve as a measure of
this. For general trees, Alon, Caro and Krasikov [1] proved that R(T) <
O(v/(loglogv)), where v denotes the number of vertices of T. They also
constructed trees with R(T) > Q(logv). Horak and Zhu [5] proved that for
trees with A(T) < 3, R(T) < O(logv’), where v’ is the number of vertices of
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degree three in T'. In the present paper we improve their result by showing
that for trees with A(T") < 3, R(T') can be bounded by a constant. In fact,
our proof was motivated by their paper, and can be viewed as a refinement
of the proof of Theorem 3 from there.

Before we proceed with the paper, we will introduce a few definitions.
For a tree T with A(T) = 3, we denote by cub(T') the tree obtained from
T by suppressing the vertices of degree two (that is, cub(T) is topologically
isomorphic to T, but has only vertices of degrees one and three). A tree
is rooted, if one of its vertices, called the rvof, is designated as special. We
say that two rooted trees are isomorphic, if they admit an isomorphism
preserving roots.

2 The Result

Lemma 1. Let T be a tree with A(T) < 3, and with at most three vertices
of degree three. Then R(T) < 1.

Proof: It is readily seen that if P is a path, then R(P) < 1. If T has
at most three vertices of degree three, then it can be disconnected into
a collection of at most four paths by a removal of at most three edges.
Consequently, R(T) <3+4=T7. a

Lemma 2. Let T be a tree with A(T) < 3, and with at least four vertices
of degree three. Then there is a vertex u of degree three in T, and rooted
trees B, B’, and B" with the common root u (which has degree one in each -
of them), and with T =B U B’ U B", such that B and B’ have at most
three vertices of degree three each, while BU B’ has at least three degree
three vertices.

Proof: Let up be a vertex of degree one in T, and let u; be the vertex
with degree three in T' which is closest to ug. T may then be written as
T = B' U (B’)! U(B")', where u, is the common root of Bl, (B’)!, and
(B")! having degree one in each of them, and where (B”)! is the path ugu,.
Since T has at least four vertices of degree three, either the rooted trees
B!, (B')!, and (B")! are as required, or one of B! and (B’)!, say B!, has
at least four vertices of degree three. In the latter case, we let us be the
vertex of degree three in B! nearest to u,, and let T = B2U (B')2U(B")?,
where B2, (B’)?, and (B")?2 are all rooted in uz, uz has degree one in each of
them, and (B")? contains the path ugu; (or, equivalently, B2U(B')? C B!).
Again, either B2, (B’)?, and (B")? are as desired, or one of B2 and (B’)2
has at least four vertices of degree three. Continuing this way, we construct
B*, (B')*, and (B")*, k = 3,4,5, ..., and eventually reach the point where
neither of B¥ and (B’)* has more than three vertices of degree three. The
resulting trees will be as desired. a
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Lemma 8. If T is a rooted tree with root u whose degree in T is equal to
one, and if cub(T') is isomorphic (as a rooted tree) to one of By — Bs from
Figure 4, then either T is isomorphic to one of Hy — Hg from Figure 4, or
it can be written as Ty U Ty, where T} N T2 = {v} for some vertex v, where
T, is a rooted tree with root v, isomorphic to one of Gy — Gs of Figure 2,
where Ty doesn’t contain u, where v has degree one in Tz, and where T is
a tree rooted at u (see Figure 1).

Figure 1

Proof: The proof consists of a straightforward, but fairly tedious checking,
whose details are omitted, and whose outline is as follows: If cub(T) =
B; (the isomorphism being an isomorphism of rooted trees), and if T is
isomorphic neither to Hy nor to Hz, then it can be seen that the required
decomposition Ty U Tz can be achieved with Ty & G, (see Figure 1(b)).
Similarly, if cub(T") & B, but T is not isomorphic to any of H — Hs, then
one of G} — G4 can be used as T.

It requires somewhat more patience to check that if cub(T") = Bs, but
T % Hg, then one of Gy — Gyp will work as T}, that if cub(T') & By, but T
is isomorphic to neither Hy nor Hg, then one of G — G4, or of G13 — G118
will do, and, finally, that if cub(T') = Bs, then T} will take the form of one
of G1 -G 12. a

Lemma 4. Let T be a tree with A(T') = 3, and with at least four vertices
of degree three. Then T can be written as T = Ty U T, where

(i) Ty and T, have exactly one vertex in common,

(ii) T (as a tree rooted at Ty N T3) is isomorphic to one of the graphs
G, — G3z of Figures 2 and 3, and

(iii) the vertex Ty N T has degree one in T5.

Proof: Let u, B, B/, and B” be as in Lemma 2. It is easily seen that
the rooted tree cub(B) (and, similarly, the rooted tree cub(B’)) has to be
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isomorphic to one of B; — Bs. The result follows by Lemma 3 when at least
one of B and B’ is not isomorphic to any of H, — Hg. However, if B and B’
are each isomorphic to one of Hy — Hpg, then it follows from the fact that
BU B’ has at least three vertices of degree three that T; = BU B’ must be
isomorphic to one of G1g9 — G3z. a

Lemma 5. Let T be a tree with maximum degree at most three. Then
 there is a sequence Ty, T, ..., T, of rooted trees such that:

(i) To has at most three vertices of degree three,

(ii) for eachi,1<i<n, iN{THUT U-.--UT;_1} consists of a single
vertex, which is also the root of T;, and which has degree one in
{lhuTyu---uT,},

(iii) each of T},T,...,T, is isomorphic to one of G; — G3;, and
(iV) T=TOUT1U-~~UT,,.

Proof: This is proved by a repeated use of Lemma 4 (the trees T, are
constructed in the descending order of i). o

Figures 2 and 3 give a list of edge-colorings of each of the 37 graphs
G1 — Gay, the number of colorings of G; (1 < i < 37) in this list will be
denoted by n;. Thus, for example, ny = 4 (although not all four colorings of
G, in Figure 2 are distinct). For 1 < i < 37, the colorings of G; from Figures
2 and 3 will be denoted, as in those figures, by G¥, 1 < k < n;. We will
use these colorings in the proof of our main result. More precisely, we will
use their representations in colors 0 and 1. Since each of these colorings
gives rise to two such representations, we will us a prefix to distinguish
between them. Thus, for € € {0,1}, € — G* will denote the coloring of G;,
corresponding to G¥, in which the edges incident with the root are assigned
color ¢, or, equivalently, e — G¥ is the coloring obtained from G* by coloring
solid edges in Figure 2 (or 3) with color ¢, and coloring dashed edges with
color 1 —e.

We will now describe an algorithm for coloring the edges of a maximum-
degree-three tree T. To this end, set 51 = 8e2 = --+ = 8,37 = 0 for
€ =0,1, and let Tp,Ty,...,T,, be the decomposition of T described by
Lemma 5. The algorithm then goes on as follows:

o First, color the edges of Tp with colors 0 and 1 so that no more
than seven edges need to be removed to make the monochromatic
subgraphs isomorphic (Lemma 1 guarantees that this is possible).
Then repeat the following three steps for i = 1,2,...,37.
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e (Trees Ty, T,...,Ti—; are assumed to have already been colored).
Let € be the color by which the edge of Ty UT, U --- U T}_; incident
to the root of T; is colored.

e Let j be such that T; is isomorphic to G;, use coloring (1 — €) —
G;“""'"l to color T;, and increase s,_. ; by one.

e Finally, if 81—¢,j = Nj, set 81¢; = 0.

We now prove the following

Theorem 6. The coloring described by the above algorithm is such that
no more than 3559 edges need to be removed from T to make its monochro-
matic components isomorphic.

Proof: First, note that the coloring algorithm is such that the monochro-
matic components of each T; are also monochromatic components in T (this
fact will be tacitly assume throughout the proof).

We will now partition {T},T3,...,Tn} into 74 classes H, ;, € € {0,1},1 <
J < 37, so that the class H,,; contains those T; which are isomorphic to
G;, and which are colored by a coloring of the form € — G¥ for some k (or,
equivalently, in which the edges incident with the root are colored by color
€).

Consider now a fixed H,; = {T},, Tiay---,Ti,. }, Where iy < ig < -+ <
im. In particular, m = s,; (mod n;), where the value of s, ; is its terminal
value from the algorithm. Therefore, m = rn; + s¢; for some r. Also, the
algorithm colored graphs T;,, T;,, . crTin;s T s s Ty With € = Gle—
Gi,...,e -Gy, e—Gl,... e — G5, respectively.

We will now show that the removal of Trnj+1:Trng2, -+ 05 Trnjtee; =Tm
from H,,; results in a collection H; ; such that the induced monochromatic
subgraphs of the union of trees in H. . are isomorphic.

To this end, let G ; be the collection {e — G¥: 1 < k < n;}. One may
check in Figures 2 and 3 that, for every j, the induced monochromatic
subgraphs of | {T': T € G.,;} are isomorphic. Since . ; is essentially just
a collection of copies of G,j, the monochromatic subgraphs of |J{T: T €
Hc,;} must be isomorphic too. Also, since for all j, s.; < n; < 4, and
the number of edges in G; is at most 16, the total number of edges of the
graphs removed from ., ; is at most 3 - 16 = 48.

If we do this for every ¢ € {0,1}, and for every 7, 1 < j < 37, and then
remove at most seven more edges so that the monochromatic subgraphs of
(what will be left of) Ty are isomorphic, then the resulting graph will have
isomorphic induced monochromatic subgraphs, and we will have removed
at most 7 4 2 - 37 - 48 = 3559 edges. a

Corollary 7. Let T be a tree with A(T) < 3. Then R(T) < 3559. o
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Remark The estimate in Theorem 6 is far from best possible. It can
be proved (using, e.g., Theorem 9 of [4]) that in Lemma 1, two can be
used instead of seven. More importantly, a more detailed version of the
argument of Theorem 6 may be used to further reduce the estimated number
of edges that need to be removed. In fact, it can be shown that the number
3559 in Theorem 6 can be replaced by 23. Although this may, at the first
sight, appear to be vastly superior to the estimate provided by the proof of
Theorem 6, the author feels that the tight constant upper bound on R(T)
is more likely to be much smaller, maybe as small as two. In light of this, it
was felt that the contribution of our result to the estimate of R(T") was in
bounding it by a constant, and that unless this constant could be brought
down to at least a number smaller than, say, ten, the exact value of the
constant was of little significance. Consequently, for simplicity’s sake, we
decided not to exhibit the strongest — and most complicated — version of
the method of Theorem 6.
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Figure 3
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