On an Ordering of Convex Sublattices Preserving Planarity of the Lattice

S. Lavanya and S. Parameshwara Bhatta

Department of Mathematics
Mangalore University
Mangalagangothri
Konaje, D.K. - 574199
India

1 Introduction

For a lattice L, we shall denote by CS(L) (respectively, Sub(L)), the set of all convex sublattices (respectively, sublattices) of L, excluding the empty set. It is well known that both $CS(L) \cup \{\emptyset\}$ and $Sub(L) \cup \{\emptyset\}$ form lattices, with respect to the inclusion order, and these lattices have been studied extensively by several authors (ref [1], [4], [5], [6], [9]). However, these lattices do not preserve much properties of L. In [7], we introduced a new partial order on CS(L), which makes CS(L) a lattice, and it appears to be more appropriate than the inclusion order. In [8], we extended this partial order to Sub(L).

In this paper we introduce a new partial order \leq on CS(L) which is an extension of the partial order defined earlier by us in [7] and prove some interesting new results.

The partial order \leq on CS(L) is defined as follows.

Definition 1.1. Define a binary relation \leq' on CS(L) by, for $A, B \in CS(L)$, $A \leq' B$ if and only if for each $a \in A$ there exists a $b \in B$ such that $a \leq b$. Then the binary relation \leq on CS(L) defined by, for $A, B \in CS(L)$, $A \leq B$ if and only if either $A \leq' B$ but $B \nleq' A$

or

 $A \leq' B$, $B \leq' A$ and $A \subseteq B$, is a partial order on CS(L).

The poset $(CS(L), \leq)$ will be simply denoted by CS(L) in this paper.

In Section 2, we study some of the properties of the poset CS(L). In Section 3, using a result of D. Kelly and I. Rival [3], we derive an interesting result that a finite lattice L is planar if and only if CS(L) is planar.

For a subset A of a lattice L we denote by (A] and (A) respectively, the ideal and the convex sublattice generated by A in L. For a poset p,

 p^d denotes the dual of P. P is said to satisfy the Jordan-Dedekind chain condition if for every $a,b\in P$ with a< b all maximal chains connecting a and b are of equal length. A meet semilattice S is said to be distributive [10], if for $w,a,b\in S$ with $w\geq a\wedge b$ there exist $x\geq a, y\geq b$ such that $x\wedge y=w$ and it is said to be modular [10] if for $w,a,b\in S$ with $w\geq a\wedge b$ there exist $x\geq a, y\geq b$ such that $x\wedge y=x\wedge w$.

For other undefined notions and notations used in this paper we refer to Gratzer [2].

2 On the poset CS(L)

Example 2.1. For the lattice L given in Figure 1, the poset CS(L) is as shown in Figure 2.

Figure 1

Figure 2

Remark 2.2. For any lattice L, CS(L) is a meet semilattice. In fact, for $A, B \in CS(L)$ with $A \parallel B$,

$$A \wedge B = \begin{cases} A \cap B & \text{if } A \leq' B, B \leq' A \\ (\{a \wedge b \mid a \in A, b \in B\}] & \text{if } A \nleq' B, B \nleq' A \end{cases}$$

Remark 2.3. For any lattice L, the lattice of all ideals I(L) of L with respect to \subseteq , is a meet subsemilattice of CS(L). Moreover, CS(L) is the

ordinal sum [11] of the subposets (CS(L) - D(L)) and D(L), where D(L) is the lattice of dual ideals of L with respect to \subseteq .

Remark 2.4. Let L be a lattice satisfying the ascending and descending chain conditions. Then for $A, B \in CS(L)$,

- (a) $A \prec B$ if and only if either $\max A = \max B$ and $\min B \prec \min A$, or $0 \in A$ (where 0 is the least element of L) with $\max A \prec \max B = \min B$.
- (b) $A \parallel B$ if and only if either max $A = \max B$ and min $A \parallel \min B$, or $\max A \parallel \max B$.
- (c) A < B if and only if either $\max A = \max B$ and $\min A > \min B$, or $\max A < \max B$.

Theorem 2.5. The following statements are equivalent in CS(L).

- L is a chain.
- 2) CS(L) is a chain.
- 3) CS(L) is a distributive meet semilattice.
- 4) CS(L) is a modular meet semilattice.

Proof: (1) \Rightarrow (2): Let L be a chain and $A, B \in CS(L)$. If $A \not\leq' B$, then there exists an $a \in A$ such that $a \not\leq b$ for any $b \in B$. But then a > b for every $b \in B$ so that $B \leq' A$ and hence $B \leq A$ holds. Similarly if $B \not\leq' A$, then $A \leq B$. Let $A \leq' B$ and $B \leq' A$. We assert that either $A \subseteq B$ or $B \subseteq A$. If $A \not\subseteq B$, then let $a_1 \in A$ and $a_1 \not\in B$. Consider any $b \in B$. We have $b \leq a$ for some $a \in A$. If $a \not\leq b$ for any $a \in A$, then $b \leq a$ for every $a \in A$ and hence $b \leq a_1$ also, so that $a_1 \in B$, a contradiction. Therefore $b \geq a$ for some $a \in A$ which implies $b \in A$.

- $(2) \Rightarrow (3) \Rightarrow (4)$: Obvious.
- (4) \Rightarrow (1): Suppose L is not a chain, then L has a four element sublattice as given in Figure 3.

Figure 3

Consider $W, A, B \in CS(L)$ where $W = \{b\}$, A = [a, b], $B = \{c\}$. We have $W \geq A \wedge B = (a]$. If there exist $X, Y \in CS(L)$ with $X \geq A$ and $Y \geq B$ such that $X \wedge Y = X \wedge W$, then since $X \wedge W = W$, $Y \geq W = \{b\}$. Therefore $Y \geq \{d\} \geq [a, b] = A$. But then $W < A \leq X \wedge Y$, a contradiction.

The following theorem characterizes lattices L for which CS(L) is a lattice.

Theorem 2.6. CS(L) is a join semilattice if and only if L has no sublattice isomorphic with $C_2 \times C_{\infty}$. (Where C_{∞} is the chain of positive integers with the usual ordering).

Proof: (\Rightarrow): Suppose L has a sublattice isomorphic with $C_2 \times C_\infty$ as shown in Figure 4. Consider $A, B \in CS(L)$ where $A = \langle \{a_1, a_2, a_3, \dots \} \rangle$ and $B = \{b_1\}$.

Figure 4

Clearly $\langle \{b_2, b_3, b_4, \dots \} \rangle$ is an upper bound of $\{A, B\}$ in CS(L). If $X = A \vee B$ exists, then $X \leq \langle \{b_2, b_3, b_4, \dots \} \rangle$. But $A \leq' X$ and $B \leq' X$ implies that $b_1 \leq x_0$ for some $x_0 \in X$ and for each $i = 1, 2, \dots, a_i \leq x_i$ for some $x_i \in X$. Hence $a_i \vee b_1 \leq x_0 \vee x_i \in X$. Therefore for each $j = 2, 3, \dots, b_j \leq x_j$ for some $x_j \in X$ so that $\langle \{b_2, b_3, b_4, \dots \} \rangle \leq' X$ and hence $X \subseteq \langle \{b_2, b_3, \dots \} \rangle = [b_2, b_3] \cup [b_2, b_4] \cup \dots$ Choose j such that $X \cap [b_2, b_j] \neq \emptyset$. Then $X \cap [b_{j+1}) \geq A, B$ and $X \cap [b_{j+1}) < X$, a contradiction.

(⇐): Let $A, B \in CS(L)$ with $A \parallel B$. If $A \leq' B$ and $B \leq' A$, then clearly $A \vee B = \langle A \cup B \rangle$. Let $A \not\leq' B$, $B \not\leq' A$. If $\max\{a \vee b \mid a \in A, b \in B\}$ exists in L, then it equals $A \vee B$. Suppose $\max\{a \vee b \mid a \in A, b \in B\}$ does not exist in L for some $A, B \in CS(L)$ with $A \parallel B$, $A \not\leq' B$ and $B \not\leq' A$. Then

there exist an $a_1 \in A$ such that $a_1 \not\leq b$ for any $b \in B$ and $a \ b_1 \in B$ such that $b_1 \not\leq a$ for any $a \in A$.

Since $\max\{a \lor b \mid a \in A, b \in B\}$ does not exist, either $\max\{a_1 \lor b \mid b \in B\}$ or $\max\{a \lor b_1 \mid a \in A\}$ does not exist. Without loss of generality it can be assumed that $\max\{a_1 \lor b \mid b \in B\}$ does not exist. Then we can choose $x_1, x_2, x_3, \dots \in L$ and $b_1, b_2, \dots \in B$ with $x_i = a_1 \lor b_i$, $x_i < x_j$ and $b_i < b_j$ whenever i < j for $i = 1, 2, \dots$ Clearly $b_j \parallel a_1 \lor b_{j-1}$ for $j = 2, 3, \dots$

Case (1): $\{a_1 \wedge b_i \mid i = 1, 2, \dots\}$ has no maximum.

Then we can find an infinite chain $a_1 \wedge b_1 < a_1 \wedge b_{i_1} < a_1 \wedge b_{i_2} < \dots$ where $i_1 < i_2 < \dots$ But then L has a sublattice of the form $C_2 \times C_{\infty}$ as described in Figure 5.

Case (2): $\{a_1 \wedge b_i \mid i = 1, 2, ...\}$ has maximum, say $a_1 \wedge b_n$ for some n. Then L has a sublattice of the form $C_2 \times C_{\infty}$ as described in Figure 6. In either case we get a contradiction.

If L is a lattice satisfying the ascending chain condition, then we can define a congruence relation \bigoplus on CS(L) such that the quotient lattice CS(L)/ \bigoplus is isomorphic to L. In fact, we have the following.

Remark 2.7. Let L be a lattice satisfying the ascending chain condition. Then the binary relation \bigoplus on CS(L), defined by, for $X,Y\in CS(L)$, $X\equiv Y$ \bigoplus if and only if $\max X=\max Y$ is a congruence relation on CS(L). Also the mapping

$$f: CS(L)/\bigoplus \rightarrow L$$
 defined by, for $X \in CS(L)$,

 $f([X] \oplus) = \max X$, is an isomorphism.

In the next theorem we derive an expression for the length of the lattice CS(L), when L is a lattice of finite length.

Theorem 2.8. Let L be a lattice of finite length. Then

$$\ell(CS(L)) = \frac{\ell(L)\left(\ell(L) + 1\right)}{2} + \ell(L)$$

Proof: By Remark 2.3, it suffices to show that $\ell([\{0\}, \{i\}]) = \frac{\ell(L)(\ell(L)+1)}{2}$ in CS(L). Let $\ell(L) = n$ and $0 = x_0 \prec x_1 \prec x_2 \prec \cdots \prec x_n = i$ be a maximal chain say C_1 in L of length n. By Remark 2.4 we have $\{0\} \prec \{x_1\} \prec [0,x_1] \prec \{x_2\} \prec [x_1,x_2] \prec [0,x_2] \prec \{x_3\} \prec \cdots \prec \{x_{n-1}\} \prec [x_{n-2},x_{n-1}] \prec \cdots \prec [0,x_{n-1}] \prec \{x_n\} = \{i\}$ is a maximal chain say, C_2 , in $[\{0\},\{i\}]$ of CS(L). For each r, $0 \leq r \leq n-1$, it is clear that there are precisely r+1 elements in C_2 with x_r as their maximum and there is one element in C_2 with x_n as its maximum. Therefore

$$\ell(C_2) = 1 + 2 + 3 + \cdots + n = \frac{n(n+1)}{2}.$$

Let $\{0\} = A_0 \prec A_1 \prec \cdots \prec A_m = \{i\}$ be any maximal chain, say C_3 , in $[\{0\}, \{i\}]$ of CS(L). Consider any $j, 1 \leq j \leq m$. If $\max A_j \neq \max A_k$ for any $1 \leq k \leq m, k \neq j$, then $A_{j-1} < \{\max A_j\} \leq A_j$. But since $A_{j-1} \prec A_j$, $\{\max A_j\} = A_j$ and also j = m in this case. If $\max A_j = \max A_k = x$ say, for some $k \neq j, 1 \leq k \leq m$, then let t be the least integer such that $\max A_t = x$. Now we have $A_{t-1} < \{\max A_t\} \leq A_t$ which implies $A_t = \{\max A_t\}$. Therefore for every $j, \{y_j\} = \{\max A_j\}$ is an element in this chain. Let $y_{p_0}, y_{p_1}, \ldots, y_{p_r}$ be the distinct elements among y_j 's, where $p_i < p_j$ if i < j. Then $0 = y_{p_0} \prec y_{p_1} \prec \cdots \prec y_{p_r} = i$. For each $s, 1 \leq s \leq r$, if $A_k = \{y_{p_s}\}$, then $A_{k-1} = [0, y_{p_{s-1}}]$ and hence $\ell([\{y_{p_{s-1}}\}, \{y_{p_s}\}])$ in CS(L) is less than or equal to $\ell([0, y_{p_{r-1}}])$ in L. But $\ell([0, y_{p_r}]) = \ell([0, i]) = n$. Therefore $\ell([0, y_{p_{r-1}}]) \leq n - 1$, $\ell([0, y_{p_{r-2}}]) \leq n - 2$ and so on. Hence

$$\ell(C_3) \leq n + (n-1) + \cdots + 1 = \frac{n(n+1)}{2}.$$

If $a_1 > a_2 > a_3 > \dots$ is an infinite descending chain in a lattice L, then $\{a_1\} < [a_2, a_1] < [a_3, a_1] < \dots < L$ is an infinite ascending chain in CS(L). Hence we have the following remark.

Remark 2.9: For any lattice L, if CS(L) is of locally finite length, then L is bounded below and hence CS(L) will be of finite length.

Lemma 2.10. Let L be a lattice with least element 0 and $A_0 \prec A_1 \prec \cdots \prec A_n$ be a maximal chain, say C, connecting A_0 and A_n in CS(L), such that $\max A_i$ and $\min A_i$ exist for every i, $0 \le i \le n$. If $y_{p_0} \prec y_{p_1} \prec \cdots \prec y_{p_m}$ are the distinct elements among $y_i = \max A_i$ for $0 \le i \le n$, then

$$\ell(C) \le \ell([0, \min A_0]) + \ell([\min A_n, \max A_n]) + \sum_{j=2}^m \ell([0, y_{p_j}]) \tag{1}$$

Proof: Let $1 \le t \le n$ be the greatest integer such that $\max A_0 = \max A_t$ and $1 \le s \le n$ be the least integer such that $\max A_n = \max A_s$. Let C_1 and C_2 be the subchains $A_0 \prec A_1 \prec \cdots \prec A_t$

and $A_s \prec A_{s+1} \prec \cdots \prec A_n$ of C respectively. Then by Remark 2.4, we have $\min A_t \prec \min A_{t-1} \prec \cdots \prec \min A_0$ where $\min A_t = 0$ and $\min A_n \prec \min A_{n-1} \prec \cdots \prec \min A_s$ where $\min A_s = \max A_n$. Now consider the remaining part $A_t \prec \cdots \prec A_s$, say C_3 , of C where $A_{t+1} = \{y_{p_1}\}$ and $A_s = \{y_{p_m}\}$. We have for each $j, 1 \leq j \leq m, \{y_{p_j}\}$ is an element in C_3 and for $1 \leq j \leq m, \ell[\{y_{p_j}\}, \{y_{p_{j+1}}\}] \leq \ell([0, y_{p_{j+1}}])$.

Therefore

$$\begin{split} \ell(C) &= \ell(C_1) + \ell(C_2) + \ell(C_3) \\ &\leq \ell([0, \min A_0]) + \ell([\min A_n, \max A_n] + \sum_{j=2}^m \ell([0, y_{p_j}]) + 1. \end{split}$$

(Note that addition of 1 is essential, since length of the subchain $A_t \prec A_{t+1}$ is not included in the summation).

Remark 2.11. For any lattice L, if L satisfies the Jordan-Dedekind chain condition, then equation (1) in the above theorem holds with equality.

Lemma 2.12. Let L be a lattice satisfying the descending chain condition. If $A \prec B$ for some $A, B \in CS(L)$ and max B does not exist, then max A also does not exist and min $B \prec \min A$. Also in this case $B \leq' A$.

From Remark 2.11 and Lemma 2.12, we have the following theorem.

Theorem 2.13. Let L be a lattice satisfying the descending chain condition. If L satisfies the Jordan-Dedekind chain condition, then CS(L) also satisfies the Jordan-Dedekind chain condition.

Note: If a lattice L does not satisfy the descending chain condition, then CS(L) need not satisfy the Jordan-Dedekind chain condition even when L satisfies it.

For example, the lattice L in Figure 7 satisfies the Jordan-Dedekind chain condition. But

$$\{i, a_1, a_2, \dots\} \prec \{i, a_1, a_2, \dots, b_1, b_2, \dots\}$$

 $\prec \{i, a_1, a_2, \dots, b_1, b_2, \dots, c_1, c_2, \dots\} \prec L$

and

$$\{i, a_1, a_2, \ldots\} \prec \{i, d_1, d_2, \ldots, a_1, a_2, \ldots\} \prec L$$

are two maximal chains between $\{i, a_1, a_2, \dots\}$ and L in CS(L) of unequal lengths.

Figure 7

3 Equivalence of planarity for L and CS(L)

In this section, using a result of D. Kelly and I. Rival [2], we derive the main result of the paper which is obtained as a corollary of following theorem.

Theorem 3.1. Let L be a finite lattice and $P = \{C_1, C_2, C_3, \ldots, C_n\}$, $n \geq 4$ be a subposet of CS(L) having the following two properties (where α denotes "is comparable to").

- 1) For each C_i , $i \geq 3$, there exist C_j , $C_k \in P$ with j, k < i such that $C_i \propto C_j$, but $C_i \parallel C_k$.
- 2) For every pair (C_i, C_j) , i < j, $j \ge 4$, there exists $C_k \in P$, k < j such that $C_k \propto C_j$ but $C_k \parallel C_i$, or $C_k \propto C_i$ but $C_k \parallel C_j$.

Then L has a subposet order isomorphic with P or P^d .

Proof: We separate the two cases max $C_1 = \max C_2$ and $\max C_1 \neq \max C_2$. Case (1): $\max C_1 = \max C_2$

From (1) we have $C_3 \propto C_1$ and $C_3 \parallel C_2$, or $C_3 \propto C_2$ and $C_3 \parallel C_1$. If $C_3 \propto C_1$, then $\max C_3 \propto \max C_1 = \max C_2$. But since $C_3 \parallel C_2$ we get $\max C_3 = \max C_2 = \max C_1$. Also, if $C_3 \propto C_2$, then $\max C_3 \propto \max C_2 = \max C_1$ and since $C_3 \parallel C_1$, $\max C_3 = \max C_2 = \max C_1$. In general, for any $j = 2, 3, \ldots, n-1$ if $\max C_i = \max C_1$, for every $i \leq j$, then since by (1), $C_{j+1} \propto C_{k_1}$ and $C_{j+1} \parallel C_{k_2}$ for some $k_1, k_2 \leq j$, it follows that $\max C_{j+1} = \max C_1$. Therefore $\max C_1 = \max C_2 = \cdots = \max C_n$.

Now, consider the subposet $L_1 = \{\min C_1, \min C_2, \ldots, \min C_n\}$ of L. Then the map $f: L_1 \to p^d$ defined by $f(\min C_i) = C_i$ for $i = 1, 2, \ldots, n$ is an order isomorphism.

Case 2: $\max C_1 \neq \max C_2$

We prove by induction on n, that $\max C_1 \neq \max C_j$ for any $1 \leq i, j \leq n$. Let n = 4. Then $P = \{C_1, C_2, C_3, C_4\}$ is of one of the types as shown in Figure 8 or their duals.

Figure 8

From the figures, using Remark 2.4, it follows that if $\max C_i = \max C_j$ for any $1 \le i, j \le 4$, then $\max C_i = \max C_j$ for every $1 \le i, j \le 4$. Assume that if $P = \{C_1, C_2, \ldots, C_{n-1}\}, n > 4$, then $\max C_i \ne \max C_j$ for any $1 \le i, j \le n-1$.

Let $P = \{C_1, C_2, \ldots, C_n\}$. By the assumption we have $\max C_i \neq \max C_j$ for any $1 \leq i, j \leq n-1$. Let $\max C_i = \max C_n$ for some i < n. By (2), there exists C_j , j < n such that $C_j \propto C_i$ and $C_j \parallel C_n$, or $C_j \propto C_n$ and $C_j \parallel C_i$. In any case we get $\max C_i = \max C_j$, a contradiction. By induction it follows that $\max C_i \neq \max C_j$ for any $1 \leq i, j \leq n$. Consider the subposet $L_2 = \{\max C_1, \max C_2, \ldots, \max C_n\}$ of L. Define the map $f: L_2 \to P$ by $f(\max C_i) = C_i$ for $i = 1, 2, \ldots, n$. Then f is an order isomorphism.

Corollary 3.2. A finite lattice L is planar if and only if CS(L) is planar.

Proof: D. Kelly and I. Rival [3] prove that a finite lattice is planar if and only if it does not contain any lattice in M as a subposet where

$$M = \{A_n \mid n \ge 6\} \cup \{B, B^d, C, C^d, D, D^d\} \cup \{E_n, E_n^d \mid n \ge 4\}$$
$$\cup \{F_n \mid n \ge 4\} \cup \{G_n \mid n \ge 3\} \cup \{H_n \mid n \ge 6\}$$

 A_n , B, C, D, E_n , F_n , G_n and H_n are as shown in the figures 9-16.

Let L be a planar finite lattice. Suppose CS(L) is not planar, then it contains some lattice $X \in M$ as a subposet. But $X - \{0, I\}$ satisfies the conditions of the theorem with C_1, C_2, \ldots, C_n as marked in the figures. Therefore L contains a subposet say Y_1 order isomorphic to $X - \{0, I\}$ or $(X - \{0, I\})^d$. But then by adjoining the least element 0 and the greatest element i of L to Y_1 and mapping them to 0 and I of X respectively, Y_1 will be isomorphic to X or X^d , a contradiction to the planarity of L.

Converse part follows from Remark 2.3, by noting that L is isomorphic to D(L).

Acknowledgement. The first author greatly acknowledges the financial support given by CSIR, New Delhi, India.

References

- [1] C.C. Chen and K.M. Koh, On the lattice of convex sublattices of a finite lattice, *Nanta Math*, 5 (1972), 92-95.
- [2] G. Gratzer, General lattice theory, Birkhauser Verlag, Basel, 1978.
- [3] D. Kelly and I. Rival, Planar lattices, Canad J. Math., 27 No. 3, (1975), 636–665.
- [4] K.M. Koh, Lattices and their sublattice-lattices, SEA Bull Math. 10, No. 2 (1986), 128-135.
- [5] K.M. Koh, On the lattice of convex sublattices of a lattice, Nanta Math, 6 (1972), 18-37.
- [6] K.M. Koh, On the complementation of the CS(L) of a lattice L, Tamkang J. Math, 7 (1976), 145-150.
- [7] S. Lavanya and S. Parameshwara Bhatta, A New approach to the lattice of convex sublattices of a lattice, to appear in Algebra Universalis.
- [8] S. Lavanya and S. Parameshwara Bhatta, A New ordering on the set of all sublattices of a lattice, Southeast Asia. Bull. Math. 18, No.2 (1994), 43-49.
- [9] V.I. Marmazeev, The lattice of convex sublattices of a lattice (Russian), Ordered sets and lattices, 9 (1986), 50-58, 110-111, Saratov Gos Univ., Saratov.
- [10] J.B. Rhodes, Modular and distributive semilattices, Trans. Amer. Math. Soc., 201 (1975), 31-41.
- [11] L. Skornjakov, Elements of lattice theory, 1977.