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1 Introduction

For a lattice L, we shall denote by CS(L) (respectively, Sub(L)), the set of
all convex sublattices (respectively, sublattices) of L, excluding the empty
set. It is well known that both CS(L)U {0} and Sub(L)U {@} form lattices,
with respect to the inclusion order, and these lattices have been studied
extensively by several authors (ref [1], [4], [5], [6], [9]). However, these
lattices do not preserve much properties of L. In [7], we introduced a new
partial order on CS(L), which makes CS(L) a lattice, and it appears to be
more appropriate than the inclusion order. In [8], we extended this partial
order to Sub(L).

In this paper we introduce a new partial order < on CS(L) which is an
extension of the partial order defined earlier by us in [7] and prove some
interesting new results.

The partial order < on CS(L) is defined as follows.

Definition 1.1. Define a binary relation <’ on CS(L) by, for A,B €
CS(L), A <' B if and only if for each a € A there exists a b € B such that
a < b. Then the binary relation < on CS(L) defined by, for A, B € CS(L),
A < Bifand only ifeither A<’ Bbut B£' A

or

A<'B, B<' Aand AC B, is a partial order on CS(L).
The poset (CS(L), <) will be simply denoted by CS(L) in this paper.
In Section 2, we study some of the properties of the poset CS(L). In
Section 3, using a result of D. Kelly and I. Rival (3], we derive an interesting
result that a finite lattice L is planar if and only if CS(L) is planar.

For a subset A of a lattice L we denote by (A] and (A) respectively,
the ideal and the convex sublattice generated by A in L. For a poset p,
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p? denotes the dual of P. P is said to satisfy the Jordan-Dedekind chain
condition if for every a,b € P with a < b all maximal chains connecting a
and b are of equal length. A meet semilattice S is said to be distributive
(10}, if for w,a,b € S with w > a A b there exist £ > a, y > b such that
z Ay =w and it is said to be modular [10] if for w,a,b € S with w > a A b
there exist £ > @, y > bsuch that zAy =z A w.

For other undefined notions and notations used in this paper we refer to
Gratzer [2].

2 On the poset CS(L)

Example 2.1. For the lattice L given in Figure 1, the poset CS(L) is as
shown in Figure 2.

o
lo, o.'s
(ol
Figure 1 Figure 2

Remark 2.2. For any lattice L, CS(L) is a meet semilattice. In fact, for
A,B e CS(L) with A | B,

ANB=lANB ifA<"B,B<' A
" l({aAblac AbeB)) fAZ'B,BL A

Remark 2.3. For any lattice L, the lattice of all ideals I(L) of L with
respect to C, is a meet subsemilattice of CS(L). Moreover, CS(L) is the
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ordinal sum [11] of the subposets (CS(L) — D(L)) and D(L), where D(L)
is the lattice of dual ideals of L with respect to C.

Remark 2.4. Let L be a lattice satisfying the ascending and descending
chain conditions. Then for A, B € CS(L),

(a) A < B if and only if either max A = max B and min B < min A, or
0 € A (where O is the least element of L) with maxA < maxB =
min B.

(b) A || B if and only if either max A = max B and min A || min B, or

max A || max B.

(c) A < B if and only if either max A = max B and min A > min B, or
max A < max B.

Theorem 2.5. The following statements are equivalent in CS(L).
1) L is a chain.
2) CS(L) is a chain.
3) CS(L) is a distributive meet semilattice.
4) CS(L) is a modular meet semilattice.

Proof: (1) = (2): Let L be a chain and A, B € CS(L). If A £’ B, then
there exists an a € A such that a £ b for any b € B. But then a > b for
every b € B so that B <’ A and hence B < A holds. Similarly if B £’ A,
then A < B. Let A <’ B and B <’ A. We assert that either A C B or
BCA If A¢ B, then let a; € A and ¢; € B. Consider any b € B. We
have b < a for some a € A. If a £ b for any a € A, then b < a for every
a € A and hence b < a; also, so that a; € B, a contradiction. Therefore
b > a for some a € A which implies b € A.

(2) = (3) = (4): Obvious.

(4) = (1): Suppose L is not a chain, then L has a four element sublattice
as given in Figure 3.

d

Figure 3
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Consider W, A, B € CS(L) where W = {b}, A = [a,b], B = {c}. We
have W > AA B = (a]. If there exist X,Y € CS(L) with X > A and
Y > Bsuchthat XAY = X AW, thensince X AW =W, Y > W = {b}.
Therefore Y > {d} > [a,b] = A. But then W < A < XY, a contradiction.

The following theorem characterizes lattices L for which C'S(L) is a lat-
tice.

Theorem 2.8. CS(L) is a join semilattice if and only if L has no sublattice

isomorphic with Ca x Coo. (Where Cw is the chain of positive integers with
the usual ordering).

Proof: (=): Suppose L has a sublattice isomorphic with Cy x Cy, as
shown in Figure 4. Consider A, B € CS(L) where A = {{a1,a2,0a3,...})
and B = {bl}.

Figure 4

Clearly ({b2,bs,bs,...}) is an upper bound of {A, B} in CS(L). If X =
AV B exists, then X < ({b2,b3,b4,...}). But A <’ X and B <’ X
implies that b; < zp for some zo € X and for each i = 1,2,..., a; < z;
for some z; € X. Hence a; Vb1 < zo Vz; € X. Therefore for each
j=23,..., b <z for some z; € X so that ({bz,b3,b4,...}) <’ X
and hence X C ({b2,bs,...}) = [b2,b3] U [b2,bs] U .... Choose j such
that X N [be,b;] # @. Then X N [bj41) > A,B and X N [bj41) < X, a
contradiction.

(«<): Let A,B € CS(L) with A || B. If A <’ B and B <’ A, then clearly
AVB=(AUB). Let AZ'B, BZ’ A. f max{aVb|a€ A,be B} exists
in L, then it equals AV B. Suppose max{aV b | a € A,b € B} does not
exist in L for some A, B € CS(L) with A || B, A £’ B and B £’ A. Then
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there exist an a; € A such that a; £ b for any b € B and a b; € B such
that b; £ a for any a € A.

Since max{aVb | a € A,b € B} does not exist, either max{a, Vb | b € B}

or max{a V b; | a € A} does not exist. Without loss of generality it can

"be assumed that max{e; V b | b € B} does not exist. Then we can choose
Zy,Z2,%3,--- € L and by,bs,--- € B with z; =a; Vb, z; < ;i and b; < bj
whenever i < j for i=1,2,.... Clearly b; || a; V bj_; for j =2,3,....
Case (1): {a1 Ab;|i=1,2,...} has no maximum.

Then we can find an infinite chain @ Ab; < a1 Ab;, <a1Ab;, < ...
where {; < iz <.... But then L has a sublattice of the form C; x C, as
described in Figure 5.

Case (2): {a1Ab;|i=1,2,...} has maximum, say a; A b, for some n.

Then L has a sublattice of the form C» x Cy, as described in Figure 6.

In either case we get a contradiction.

oAb = Ok, T °5"".f§ ce

Figure 6

If L is a lattice satisfying the ascending chain condition, then we can

define a congruence relation @ on CS(L) such that the quotient lattice
CS(L)/ ®@is isomorphic to L. In fact, we have the following.
Remark 2.7. Let L be a lattice satisfying the ascending chain condition.
Then the binary relation @ on CS(L), defined by, for X,Y € CS(L),
X =Y (@) if and only if max X = maxY is a congruence relation on
CS(L). Also the mapping

f: CS(L)/®— L defined by, for X € CS(L),

f([X] @) = max X, is an isomorphism.
In the next theorem we derive an expression for the length of the lattice
CS(L), when L is a lattice of finite length.

Theorem 2.8. Let L be a lattice of finite length. Then

¢L) (L) +1)
2

¢CS(L)) = +¢(L)
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Proof: By Remark 2.3, it suffices to show that £([{0}, {i}]) = ﬂéﬂ%&)ﬂl
in CS(L). Let (L) =nand 0 =xp <3 <22 <+ <Zp =i hea
maximal chain say C; in L of length n. By Remark 2.4 we have {0} <
{z1} < [0,z1]) < {z2} < [z1,%2] < [0,22] < {z3} < -+ < {Zn-1} =<
[Tn—2,Zn—1] < -+ < [0,Zn—1] < {zn} = {i} is a maximal chain say, C2, in
[{0}, {i}] of CS(L). For each r, 0 < r < n —1, it is clear that there are
precisely = + 1 elements in C; with z, as their maximum and there is one
element in Cy with z,, as its maximum. Therefore

n(n+1).

C2)=14+24+3+:--4+n= 5

Let {0} = Ag < A1 < -+ < Ay = {3} be any maximal chain, say Cj, in
[{0}, {i}] of CS(L). Consider any j, 1 < j < m. If max A; # max Ay for
any 1l < k<m,k #J, then Aj_l < {ma.x AJ} < Aj. But since Aj_l < Aj,
{max A;} = A; and also j = m in this case. If maxA; = maxA; = z
say, for some k # j, 1 < k < m, then let ¢ be the least integer such
that max A; = z. Now we have A;,_; < {max A;} < A, which implies
A = {max A,}. Therefore for every j, {y;} = {max A;} is an element in
this chain. Let yp,, Yp,,- - -, Yp, be the distinct elements among y;’s, where
pi <pjifi<j. Then0=yp, <yp, <+ <yp, =1. Foreachs,1<s<r,
if Ak = {yp,}, then Ax_1 = [0, yp,_,] and hence &([{yp, ., }, {#, }]) in CS(L)
is less than or equal to £([0,yp,_,]) in L. But £([0,%,,]) = £([0,i]) = n.
Therefore £([0,yp,_,]) <n -1, €([0,¥p,_,]) <n —2 and so on. Hence

n(n+1)
5
If a; > a3 > a3 > ... is an infinite descending chain in a lattice L, then
{a1} < [a2,a1] < [a3,a1] < --- < L is an infinite ascending chain in CS(L).
Hence we have the following remark.

Remark 2.9: For any lattice L, if CS(L) is of locally finite length, then
L is bounded below and hence C'S(L) will be of finite length.

Lemma 2.10. Let L be a lattice with least element 0 and Ag < A} < -+ <
A,, be a maximal chain, say C, connecting Ag and A,, in CS(L), such that
max A; and min A; exist for every 1,0 <i <n. If yp, < ¥p, <+ < Ypmm
are the distinct elements among y; = max A; for 0 < i < n, then

UC)<n+(m—-1)+---+1=

£(C) < £(|0, min Ag)) + &([min An, max Ay,]) + i «O.5,) (1)
=2

Proof: Let 1 <t < n be the greatest integer such that max Ap = max A,

and 1 < s € n be the least integer such that
mazA, = max A,. Let C; and C; be the subchains Ag < A1 <--- < A,
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and A; < As41 < -+ < Ay, of C respectively. Then by Remark 2.4, we
have min A; < min A;_; < -+ < min Ap where min A; = 0 and min 4,, <
min A,—; < --- < min A, where min A, = max A,,. Now consider the
remaining part A < --- < A,, say C3, of C where A¢y1 = {yp,} and
As; = {yp..}. We have for each j, 1 < j <m, {y,,} is an element in Cs and

for1<j<m, e[{y,,}, {yPi+1 H < [0, yp5+1])-
Therefore

€C) = €(C1) + €(C2) +4(Cs)

< ([0, min Ao]) + €([min A,, max A,] + i &[0, yp,]) + 1.
i=2

(Note that addition of 1 is essential, since length of the subchain A, < At
is not included in the summation).

Remark 2.11. For any lattice L, if L satisfies the Jordan-Dedekind chain
condition, then equation (1) in the above theorem holds with equality.

Lemma 2.12. Let L be a lattice satisfying the descending chain condition.
If A < B for some A, B € CS(L) and max B does not exist, then max A
also does not exist and min B < min A. Also in this case B <’ A.

From Remark 2.11 and Lemma 2.12, we have the following theorem.

Theorem 2.13. Let L be a lattice satisfying the descending chain condi-
tion. If L satisfies the Jordan-Dedekind chain condition, then CS(L) also
satisfies the Jordan-Dedekind chain condition.

Note: If a lattice L does not satisfy the descending chain condition, then
CS(L) need not satisfy the Jordan-Dedekind chain condition even when L
satisfies it.

For example, the lattice L in Figure 7 satisfies the Jordan-Dedekind
chain condition. But

{i,al,az,...} < {i,a1,a2,...,bl,b2,...}
< {i,a5,a2,...,b,b,...,c1,62,...} < L
and
{i,a;,ag,...} -<{i,d1,d2,...,al,a2,...} <L

are two maximal chains between {%, a1, az,...} and L in CS(L) of unequal
lengths.
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8 Equivalence of planarity for L and CS(L)

In this section, using a result of D. Kelly and I. Rival [2], we derive the main
result of the paper which is obtained as a corollary of following theorem.

Theorem 3.1. Let L be a finite lattice and P = {C),C»,Cs,...,Cyr},
n > 4 be a subposet of CS(L) having the following two properties (where
o denotes “is comparable to”).

1) For each C;, i > 3, there exist C;, Cy € P with j, k < i such that
C,', o Cj, but Cg || Ck.

2) For every pair (C;,C;), i < j, J = 4, there exists Cy, € P, k < j such
that Cj, o C; but Ci || C;, or Ci < C; but C || Cj.

Then L has a subposet order isomorphic with P or P4,

Proof: We separate the two cases max Cy = max C; and max C; # maxCy.
Case (1): maxC; = max Cs

From (1) we have C3 o< C; and C3 || Cz, or C3 «x Cz and C3 || Cy. If
C3 « Ci, then maxC3 ox maxC; = maxCs. But since Cs || C2 we get
max Ca = max Cy = max C;. Also, if C3 «x C2, then max C3 o« maxCp =
maxC) and since C3 | Cy, maxCs = maxC> = maxCj. In general, for
any j = 2,3,...,n — 1 if maxC; = maxC,, for every i < j, then since
by (1), Cj+1 o< Cx, and Cjy1 || Ck, for some ki, k2 < j, it follows that
max Cj41 = max C;. Therefore maxC; = maxCp = --- = max Chn.
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Now, consider the subposet Ly = {minC},minC3,...,minC,} of L.
Then the map f: L; — p? defined by f(minC;) =C; for i = 1,2,...,n is
an order isomorphism.

Case 2: maxC 7 max Cs
We prove by induction on n, that max C; # maxCj for any 1 <4, j < n.

Let n = 4. Then P = {C},C>,Cs, Cs} is of one of the types as shown in
Figure 8 or their duals.

NNNNNNNN
3 e v vaq Yl Nogl Ne g , & e
Figure 8
From the figures, using Remark 2.4, it follows that if max C; = max C;
for any 1 <4, j < 4, then max C; = maxCj for every 1 <4, j < 4. Assume
that if P = {C,Cs,...,Cn_1}, n > 4, then maxC; # maxC; for any

1<4,5<n-1.

Let P = {C},C3,...,Cn}. By the assumption we have max C; # max C;
forany 1 <1, j <n—1. Let max C; = max C,, for some i < n. By (2), there
exists Cj, j < n such that C; o C; and C;j || Cy, or Cj « C,, and Cj || C;.
In any case we get maxC; = maxCj, a contradiction. By induction it
follows that max C; # max Cj for any 1 < 4, j < n. Consider the subposet

L = {max C1,maxCj,...,maxC,} of L. Define the map f: L — P by
f(maxC;) =C; for i =1,2,...,n. Then f is an order isomorphism.

Corollary 3.2. A finite lattice L is planar if and only if CS(L) is planar.

Proof: D. Kelly and I. Rival [3] prove that a finite lattice is planar if and
only if it does not contain any lattice in M as a subposet where

M ={An |n>6}U{B,B%C,C%D,D*} U{E,, E? | n >4}
U{Fa|n24}U{G, |n23}U{H, |n>6}

An, B, C, D, E,, F,, G, and H, are as shown in the figures 9-16.

Let L be a planar finite lattice. Suppose CS(L) is not planar, then it
contains some lattice X € M as a subposet. But X — {0, I} satisfies the
conditions of the theorem with C;,C5,...,C, as marked in the figures.
Therefore L contains a subposet say Y; order isomorphic to X — {0,1} or
(X — {0,I})%. But then by adjoining the least element 0 and the greatest
element i of L to Y; and mapping them to 0 and I of X respectively, Y;
will be isomorphic to X or X¢, a contradiction to the planarity of L.

Converse part follows from Remark 2.3, by noting that L is isomorphic
to D(L).
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