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ABSTRACT. Much of chordal graph theory and its applications
is based on chordal graphs being the intersection graphs of sub-
trees of trees. This suggests also looking at intersection graphs
of subgraphs of chordal graphs, and so on, with appropriate
conditions imposed on the subgraphs. This paper investigates
such a hierarchy of generalizations of “chordal-type” graphs,
emphasizing the so-called “ekachordal graphs” — those next
in line beyond chordal graphs. Parts of the theory of chordal
graphs do carry over to chordal-type graphs, including a recur-
sive, elimination characterization for ekachordal graphs.

1 Introduction

Chordal graphs — those that contain no induced cycles of length four or
more — form one of the most structured, most studied and most applied
families of graphs. Among their many characterizations, perhaps the most
intrinsic is that they are precisely the intersection graphs of subtrees of
trees; see (3, Chapter 4] or [2] for more information. Indeed, several of the
richest applications of graph theory (especially to statistics and matrices;
see [6]) exploit chordal graphs being intersection graphs.

This paper introduces a hierarchy of nested, increasingly larger families of
“chordal-type” graphs. The chordal-type-0 graphs are precisely the forests.
For positive ¢, the chordal-type-¢ graphs are the intersection graphs of fam-
ilies of chordal-type-(¢ — 1) graphs that satisfy conditions given in the next
section. (This means that chordal-type-t graphs are also chordal-type-t’ for
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all ¢’ > t.) These conditions virtually disappear when ¢ = 1, making the
chordal-type-1 graphs precisely the chordal graphs.

There are, predictably, many different ways to generalize chordal graphs.
The approach taken here is to put appropriate conditions onto this nat-
ural generalization of chordal so as to retain as much as possible of the
structure and results that proved important in [6]. Section 2 discusses
these conditions and the resulting chordal-type graphs. Section 3 focuses
on chordal-type-2 graphs — those that stand next in line in the sequence
(forest, chordal, ...). These “ekachordal graphs” have a recursive char-
acterization that extends the traditional perfect elimination orderings for
chordal graphs. Section 4 surveys a variety of open questions and sugges-
tions for future work.

2 Chordal-Type Graphs

Define a graph to be chordal-type-0 if it is a forest. For each positive integer
t, define a graph G to be chordal-type-t if it is the intersection graph of
a family {H, : v a vertex of G} of induced subgraphs of a host chordal-
type-(t — 1) graph H such that the following three conditions hold on the
complete subgraphs of the guest graph G and the host graph H.

e Clique intersection condition: If Q is any complete subgraph
of G, then Hg =4y N{Hy : v € Q} is nonempty, connected and
chordal-type-(t — 1).

e Clique union condition: If Q is any complete subgraph of G, then
the subgraph induced by U{H, : v € Q} is chordal-type-(t — 1).

o Clique cover condition: Every complete subgraph of H is con-
tained in some H,,.

A chordal-type graph is one that is chordal-type-t for some ¢ > 0. Notice in
particular that each H, must be connected and chordal-type. The clique
intersection condition can be viewed as a strengthened Helly condition since
it can be rephrased as follows: If vy, ..., v are vertices of G such that 1 <
i < j < k implies H,, N H,, # @, then the induced subgraph (", Hy, of H
is nonempty, connected and chordal-type-(t—1); weakening the requirement
just to (;<i Hv; # @ would produce the traditional Helly condition. (The
choice of these three conditions is discussed further in §4.1.)

Call the vertices of a chordal-type-(t — 1) host graph H nodes to pre-
vent confusion with the vertices of the guest graph G. Each node of H
corresponds to the complete subgraph of G induced by those vertices v of
G for which H, contains that node; this allows us to say that a vertex or
complete subgraph of G is contained in a node. The mazcliques of a graph
are its inclusion-maximal complete subgraphs.
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Figure 1 shows that the 4-spoked wheel G = Wj is chordal-type-2 by
exhibiting a chordal-type-1 (= chordal) host H. The node 012 of H cor-
responds to the maxclique {0, 1,2) of G and so contains the vertices 0,1,2
of G. Thus H; is the path induced by the two nodes of H that contain 1,
H,y = Hy, Ho is all of H, etc. (The matrix B will be explained in the
proof of Theorem 2.)
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Lemma 1 The chordal-type-t graphs are closed under edge contraction.

Proof. Suppose G is chordal-type-t and note that the ¢t = 0 case (G a
forest) is trivial. Suppose ¢ > 1, H is a chordal-type-(t — 1) host for G,
and G/uv is G with edge uv contracted into the vertex v (u disappearing).
Let H~ be H with each occurrence of u contained in a node replaced by
v. Since H~ has not changed as a graph, it is still chordal-type-(¢ — 1).
Since H is induced by H, U H, and = ¢ {u,v} = H; = H;, the clique
union condition ensures G/uv is a guest graph with host H~ with respect
to subgraphs {H, : z € G/uv}. Thus G/uv is chordal-type-t. (]

The parallels between the theory of chordal-type-t graphs (for positive ¢)
and the theory of chordal graphs as laid out in [6] begin with the following
basic result.

Theorem 1 The nodes of a host chordal-type-(t — 1) graph for a guest
chordal-type-t graph G can always be taken to be (precisely, without repeti-
tion) the mazcliques of G.

Proof. Suppose H is any chordal-type-(¢ — 1) host with a guest chordal-
type-t graph G. Argue by induction on ¢, with the basis ¢ = 1 case (G
chordal) well-known [3, Theorem 4.8]. Suppose ¢ > 2. If Q is any maxclique
of G, then the clique intersection condition guarantees that Hq # @ and so
Q is contained in some node of H; indeed Q must actually be a node, since
any other vertex of G contained in that node would have to be adjacent to
every vertex of @ and so would be in Q. Thus each maxclique of G occurs
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as anode in H. All we need to show is that there exists a host H for which
no node (viewed as a set of vertices of G) contains another node.

Suppose H has minimum possible order among all possible chordal-type-
(¢—1) hosts for G and suppose (arguing toward a contradiction) H contains
two distinct nodes Q and @’ with Q C Q’; since Hg is connected and
|Hq| > 2, we can choose @’ so that QQ’ is an edge of H. By Lemma 1,
contracting edge QQ’ into the node @’ (Q disappearing) would produce a
chordal-type-(t — 1) host for G of smaller order than H. This contradicts
the assumed minimality of H and so completes the proof. O

Call a chordal-type-(t — 1) graph H and a family {H, : v € G} of sub-
graphs of H with guest chordal-type-t graph G a cligue (¢t — 1)-host for G
whenever the nodes of H correspond (precisely, without repetition) to the
maxcliques of G. The graph in Figure 1 is a clique 1-host for G = W.
Observe that the clique cover condition (ensuring that the “diagonal” edge
of H has some vertex v contained in both its end nodes) prevents C4 from
having a clique 1-host obtained from H by removing 0 from each node.
Indeed, when n > 4, C, is not even chordal-type: a clique (¢ — 1)-host
would have to have n nodes, the clique intersection condition would require
n edges forming a cycle, and the clique cover condition would prevent all
other edges — i.e., C,, would be the only possible host of itself. All wheels
are chordal-type-2, as are also any join of P, with ¢Kj. (The join of two
graphs is their union plus new edges joining each vertex of one with each
vertex of the other.) As illustrated by Cy being an induced subgraph of
W, the chordal-type-t graphs are not closed under induced subgraphs when
t>1

The complement of P; is a simple example of a chordal-type-3 graph that
is not chordal-type-2; Figure 2 shows it has a natural clique 2-host based
on W. (Showing that there is no clique 1-host is instructive practice with
the three conditions.)
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By the clique cover condition, each complete subgraph of a clique (¢t —1)-
host H can be associated with a complete subgraph of the host G induced
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by the intersection of the host nodes. For instance in Figure 1, each node
of H is associated with a triangle of G, each “perimeter” edge of H with a
“spoke” edge of G, the “diagonal” edge of H with the vertex 0 of G, and
both the triangles of H with the vertex 0 of G. For each i > 1, let H(Z)
consist of all the (guest) complete subgraphs of G that are associated with
(host) complete subgraphs of order i of H. So H(1) is the set of maxcliques
of G. Since different complete subgraphs of H of orders greater than one
may correspond to the same complete subgraph of G, it is important to
interpret H(2), H(3),... as multisets (i.e., sets with repeated elements).
For instance in Figure 1, H(2) ={01, 02, 03, 04, 0} and H(3) = {0,0}; in
Figure 2, H(2) contains nine edges and three vertices and H(3) = {1, 1, 4,
4,7, 7}

For any graph G and positive integer i, define k;(G) to be the number
of complete subgraphs of order i in G; thus k (G), k2(G) and k3(G) count,
respectively, the numbers of vertices, edges and triangles in G. Define
ko(G) = 1. Let x(G) = k1(G) —k2(G)+k3(G) — ka(G)+- - - be the (Euler)
characteristic of G. Theorem 2 generalizes [6, equality (5)].

Theorem 2 Every connected chordal-type graph has characteristic one.

Proof. Suppose G is a connected chordal-type-t graph, noting that the
result is immediate when ¢ = 0 (G is a tree). Suppose H is a clique (t - 1)-
host for G. Argue by induction on ¢ > 1, noting that the basis { = 1 case
(G chordal) is known from [6]. Define a matrix A with entries

oy = (-0 Y (19));

QeH(i)

i.e., Jaij| counts the number of occurrences of (guest) K;'s of G inside (host)
K;’s of H, with entries negated in the usual checkerboard pattern. Define
matrix B from A by augmenting a set-off Oth column of row sums and Oth
row of column sums; bgo = Y 5 boj = Y_; bio is thus the sum of all the entries
of A. See Figures 1 and 2.

For each i > 1, each host complete subgraph Q € H() has (as a complete
subgraph of G) characteristic one. Thus each Q@ € H(3) corresponds to
an equality 1 = k;(Q) — k2(Q) + --- and adding these (if ¢ odd, or their
negations if i even) for every Q € H(i) gives |H(3)| = |bir+bi2+- - - | = |bsol-
(In the example of Figure 1 with i = 2, this means adding four (1 =
2—1+0)’s [from the “perimeter” edges of H] and one (1 = 1—0+-0) [from
the “diagonal” edge of H] to get 5 = 9—4+0.) Hence |H(1)|-|H(2)|+--- =
x(H) = boo and so bgo = 1 by the inductive hypothesis.

For each guest complete subgraph Q of G, Hg is chordal-type-(t — 1)
and so x(Hq) = 1 by the induction hypothesis. For every j > 1, each
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order-j guest Q corresponds to an equality 1 = ky(Hg) — ko(Hg)+--- and
adding these (if j odd, or their negations if j even) for every such Q gives
|ks(G)| = |b1s + b2j + - - -| = lbos]. (In the example of Figure 1 with j =2,
this means adding four (1 = 2 —1+0)’s [from the “spoke” edges of G] and
four (1 =1 -0+ 0)’s [from the “felly” edges of G] to get 8 =12 — 4 +0.)
Hence k1(G) — k2(G) + - -- = x(G) = bgo = 1. a

As a corollary, cycles C,, with n > 4, K33 and the octahedron K22
(having characteristics 0, —3 and 2 respectively) are not chordal-type. The
converse of Theorem 2 fails, as the family of graphs of characteristic one
is not closed under edge contraction as would be required by Lemma 1.
Starting with the octahedron K322 and introducing a seventh vertex adja-
cent to two nonadjacent vertices produces a graph that has characteristic
one but that is not chordal-type (having an edge contraction to a graph
of characteristic zero). On the other hand, starting with the octahedron
K322 and introducing a seventh vertex adjacent to all the vertices of the
octahedron produces a chordal-type-2 graph (with host isomorphic to Kg)
that does have characteristic one.

Theorem 3 generalizes the basic “arboreal equalities” from [6].

Theorem 3 Suppose H is a clique (t — 1)-host for a guest chordal-type-t
graph G. Then, for all j > 0,

E@) =Y KQ-Y kKQ) +) kK@ ---. ()

Q€eH(1) QEH(2) QeH(3)

Proof. Suppose H is a clique (¢ — 1)-host with guest G. The j = 0 case
follows from Theorem 2 since (1) becomes 1 = 3°(—1)*|H(i)| = x(H). The
J 21 cases follow by summing all the identities 1 = x(Hg) over all order-i
complete subgraphs Q of G (as in the proof of Theorem 2). a

3 Ekachordal (= Chordal-Type-2) Graphs

The definition of chordal-type-t simplifies considerably when ¢t = 2: the
clique intersection condition merely requires that each Hg be nonempty
and connected, since induced subgraphs of chordal-type-1 (i.e., chordal)
graphs are chordal; the clique union condition is automatically true; and the
clique cover condition remains unchanged (and, while it is not traditionally
required in chordal graph theory, it is harmless).

Because the chordal-type-2 graphs seem to form a particularly natural
family standing next in order beyond chordal graphs, and because there is
no “simple” characterization (paralleling “no induced cycles” for chordal)
yet known, we call chordal-type-2 graphs ekachordal graphs. (The prefix
eka- is from chemistry, where it is used “to denote provisionally a predicted
element that should stand next in order to a given element.”) Thus wheels
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are examples of ekachordal graphs, but the complement of P; in Figure 2
is not. (Appropriating another Sanskrit-based chemical prefix, that graph
would be “dvichordal,” i.e., in the next family beyond ekachordal graphs.)

The next theorem shows how to recognize whether a given H with family
{H, : v € G} is a host for G, and so whether G is ekachordal, without
directly verifying the clique intersection and clique cover conditions on all
the guest and host complete subgraphs. (This parallels (6, Theorem 3],
except there only j = 1 was needed.)

Theorem 4 Suppose H is a chordal graph whose nodes are precisely the
mazcliques of a connected graph G and each member of an H(i) (defined as
above) is a nonempty complete subgraph of G. Then H and {H, : v € G}
form a clique 1-host for G (and so G is an ekachordal graph with clique
1-host H) if and only if equality (1) holds for all j > 1.

Proof. Suppose H and G are as in the theorem. The “only if” direction
is from Theorem 3. For the converse, suppose (1) holds for all j > 1.
Vertices u and v are adjacent in G if and only if they are in a common
complete subgraph of G, and that is equivalent (since the nodes of H are
the maxcliques of G) to H,NH, # @; thus G is the intersection graph of the
family {H, : v € G}. The clique cover condition holds since each H(i) # 0.
All that needs to be checked is the clique intersection condition: that Hg
is connected whenever Q is a complete subgraph of G. Since each Hg is
chordal, Theorem 2 implies that x(Hg) is the number of components of Hg;
ie., 1 < x(Hg) with equality if and only if Hg is connected. Comparing
the sum of the inequalities 1 < x(Hg) over all order-j complete subgraphs
of G with the equality (1) shows that each x(Hg) = 1 and so each Hg
must be connected. a

The following recursive approach to ekachordal graphs, while regrettably
complicated when the parameter s is larger than one, does lead to a useful
characterization. For s > 1, define the s-elements of a graph to be all its
complete subgraphs of orders less than or equal to s. Use the symbols N*
and U° instead of the usual set symbols N and U to signify working with
respect to all s-elements, rather than just vertices (and rather than a graph-
theoretic operation that employs set-theoretic notation). Define an s-clique
elimination ordering (abbreviated s-CEO) to be an ordering Q1, ..., Q. of
all the maxcliques of G (each viewed as a set of s-elements) with, for each
i€ {1,...,c—1}, a number s; € {1,...,s} and indices f@E,1),..., fG, 8)
such that ¢ < f(i,1) < --- < f(i,8;) < ¢ such that the following three
conditions hold:

(i) If1 < jl < j2 < s, then for some kv f(ian) = f(f(ivj1)1 k)'
(i) Qin° (Uj>i@5) € Qe YV’ -+ VU Qriion)-
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(iii) Qi N(Qru,1) N+ N Qi) #O.

When s = 1, s-elements are just vertices and each s; = 1. Condition (i)
is vacuous. Condition (ii) means that each f(i,1) > i is an index of some
maxclique of G that contains Q; N (Qi+1U---UQ.), where Qi\(U;>:Q;) is
a maximal set of pairwise-adjacent simplicial vertices (vertices in a unique
maxclique) of the induced subgraph (Q;, ..., Q.). (Notice that, since each
i € {1,...,c — 1} determines an index f(i,1) € {i +1,...,c}, it must be
that f(1,1) =2, f(f(1,1),1) = 3, etc.) Thus the 1-CEO is a conventional
perfect elimination ordering (an ordering v;,...,v, of the vertices of G
such that each v; is simplicial in the induced subgraph (v;,...,v,) of G);
by the traditional theory of chordal graphs (see [3] or [2]), this is equivalent
to G being chordal. Condition (iii) means that G is connected, and so
having a 1-CEO corresponds to being a connected chordal graph. (Such
clique elimination orderings are called “running intersection orderings” in
(1] and [2] and “creation orderings” in [5]; they are also used in the statistics
literature cited in [6].) Think of the vertices as being stripped off so as to
destroy the maxcliques one at a time, with each Q; linked to the remaining
maxcliques by one maxclique Q1.

In a 2-CEO, the vertices and edges (the 2-elements) are again stripped off
to destroy maxcliques one at a time, but now with each Q; linked to the re-
maining maxcliques either by one maxclique, Qy;,1), or by two maxcliques,
Qs(i,1) and Qy(; 2), and if by two, then the first will be linked to the second
later on (i.e., f(f(i,1), k) = f(,2) for some k € {1, 2}) by condition (i). As
an example of a 2-CEO for G in Figure 1, take Q; = {0, 1, 2, 01, 02, 12} to
be all 2-elements of (0, 1,2}, Q2 to be all 2-elements of {0, 2, 3), Q3 to be all
2-elements of (0, 3,4), Q4 to be all 2-elements of {0,1,4), 8; = s = 2, and
s3=1 Put f(1,1)=2, f(1,2)=4, f(2,1)=3, f(2,2)=4and f(3,1) =
4. For condition (i), note that f(1,2) =4 = £(2,2) = £(£(1,1),2) (so for
i=11=1&j2=2=k=2)and f(2,2) =4 = f(3,1) = f(f(2,1),1)
(o fori =2, 5, =1& jo» =2 = k = 1). For condition (ii), note
that @1 n? (Q2U% Q3 U2 Qq) = {0, 1, 2, 01, 02} C Q1,1 U2 Qa12) =
Q2U%Q, = {0, 1, 2, 3, 4,01, 02, 03, 04, 14, 23} and Q2N? (Q3U2Qy) = {0,
3,03} C Qs21) V2 Qpo2) = Q3 U2 Qq = {0, 1, 3, 4, 01, 03, 04, 14, 34}
and Q3 N2 (Q4) = {0, 4, 04} C Q!(3,1) = Q4 = {0, 1, 4, 01, 04, 14}. For
condition (iii), each expression contains 0 and so is nonempty. The join of
P4 with 3K is an example of an ekachordal graph that has a 3-CEO, but
no 2-CEO.

Theorem 5 A connected graph is ekachordal if and only if it has an s-CEO
for some value s.

Proof. First suppose H is a clique 1-host for a connected ekachordal graph
G, and (since H is chordal) that @, ..., Q. is a perfect elimination ordering
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for H. Let s be the order of a largest maxclique of H. For each 1, let
f(,1) < .-+ < f(i,8) < s be the subscripts of the neighbors of Q; in
(@, ..., Qc) inside H. Condition (i) of the definition of s-CEO follows from
the definition of perfect elimination ordering, since every two neighbors
Q;,, Qj, of Q; will be adjacent in (Qy, .. ., Qc), and so either Q;, will be a
neighbor of Qj, in (Qj,,...,Qc) inside H or similarly with jj, j2 reversed.
Condition (ii) follows from the clique intersection condition, since QC
Q:in*Q; (j > ¢) implies Hq contains a Q;-to-Q; path beginning with some
edge QiQ (i, k), showing Q C Qy(;,x). Condition (iii) follows from G being
connected and the clique cover condition, since QN (Qs¢i,1) N« -NQs(i,s0))
is a complete subgraph of H, so it is contained in some H, and so it will
contain this v.

Conversely, suppose Q1,...,Q. is an s-CEO for G. Define H on the
nodes Qy, .. ., Q. such that Q; is adjacent to Q; (i < 7) if and only if there
exists a k such that f(i,k) = j. Then G is the intersection graph of the
H,’s since the nodes for H are the maxcliques of G (arguing as in the proof
of Theorem 4). That H is a clique 1-host for G can be argued by induction
on ¢, noting that the basis case ¢ =1 (G is complete) is trivial. In showing
that H is chordal, note that @, will be simplicial in H by condition (i)
of the definition of s-CEO, and so the induction hypothesis can be used.
In showing the clique intersection condition, suppose Q is any complete
subgraph of G and Q C Q; N® Q; where 1 < j; by condition (ii) there
will be an edge Q1Qy(;,x) in Hq, and so the induction hypothesis can be
used. To show the clique cover condition, any complete subgraph of H that
contains Q, will have to be contained in Q; N (Q11 N---NQy(1,s,)) # I by
condition (iii). ]

A chordal graph whose largest clique has order at most s + 1 has been
called an s-chordal graph. Thus the 1-chordal graphs are the forests. Define
a graph to be an s-ekachordal graph if it is ekachordal with an s-chordal
clique 1-host, so that the 1-ekachordal graphs are precisely the chordal
graphs. The 2-ekachordal graphs form a very conservative expansion of the
class of chordal graphs (but still include, for instance, all wheels, but not
the join of Py with 3Kj).

Theorem 8 A connected graph is s-ekachordal if and only if it has an
8-CEO.

Proof. This follows as a refinement of the proof of Theorem 5. O

4 Directions for Further Work

4.1 Conditions: Is the definition of chordal-type-t in Section 1 the
“right one”? Conditions are certainly needed to produce interesting fami-
lies of graphs, conditions that somehow reflect those aspects of trees that
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underlie chordal graph theory, but are these the best choices? Whent =1,2
the conditions coalesce into simple, natural ones, but the choice becomes
less certain beyond ¢t = 2 — i.e., beyond ekachordal graphs.

In particular: Is the clique union condition necessary? Could somewhat
weaker conditions give the same results? Would somewhat stronger condi-
tions give “nicer” results?

4.2 Characterizations: Isthere a “simple” characterization of chordal-
type graphs? Or of ekachordal, s-ekachordal or 2-ekachordal graphs? (Equiv-
alently, what is a more descriptive name for ekachordal graphs?) Can more
be made of the role of the characteristic x? (Compare: A connected graph
is chordal if and only if it and all its connected induced subgraphs have char-
acteristic one.) Can the notion of s -CEO be modified for chordal-type-3
graphs? :

4.3 Representation Procedures: One of the most important aspects
of chordal graph theory as surveyed in [6] (or from a somewhat different
viewpoint in [2]) is the use of a greedy algorithm to construct clique 0-hosts
(clique trees) for chordal graphs. How can clique 1-hosts be constructed for
ekachordal graphs (even knowing all their maxcliques)? Such a procedure
could also be used on an arbitrary graph, and then Theorem 4 used to test
for being ekachordal. How can 2-chordal clique 1-hosts be constructed for
2-ekachordal graphs?

4.4 Identification of H(i)’s:  For a chordal graph with various clique
0-hosts H, H(2) is uniquely determined and its members (and their multi-
plicities) can be identified graph-theoretically; see [6]. But for an ekachordal
graph, the H(i)’s are not even uniquely determined. There appears to be
hope, however, that if H(4) = @, then the terms in (1) after cancellation
are uniquely determined by G (and so the corresponding members of H(2)
and H(3) should be identifiable graph-theoretically).

4.5 Within Chordal-Type Graphs: The s-chordal and s-ekachordal
graphs can be viewed as the first two rows of a “periodic table” of chordal-
type graphs. Define s-chordal-type-t graphs inductively: s-chordal-type-1 if
s-chordal; s-chordal-type-t if the intersection graph of subgraphs (satisfying
the clique intersection, union and cover conditions) of an s-chordal-type-
(t — 1) graph. The s-chordal and s-ekachordal graphs are, respectively,
those of s-chordal-type-1 and -2. The chordal-type-t graphs are those of s-
chordal-type-t for some s or (equivalently!) those of 1-chordal-type-(¢ + 1).
Is there a “simple” characterization of (or a representation procedure for)
8-chordal-type-t graphs?

Notice that we could mimic the above using any other hierarchy of chordal
graphs instead of being s-chordal; e.g., having leafage at most s as in [5],
* or having rank at most s as in [4].

4.6 Applications: Since the emphasis of [6, Section 4] was on how
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chordal graphs are applied to matrices and statistics, will some vestigial
forms of these applications extend to chordal-type graphs? Or to ekachordal
graphs? Or at least to 2-ekachordal graphs? Is there a way to generalize
the Decomposition Theorem of [6] to these broader contexts?
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