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ABSTRACT. It has been proved that the smallest rectangular
board on which a (p,g)-knight’s graph is connected has sides
p+ q by 2g when p < ¢. It has also been proved that these
minimal connected knight's graphs are of genus 0 or 1, and
that they are of genus 0 when p and q of the form Md +1
and (M + 1)d + 1 with M a non-negative integer and d is a
positive odd integer. It is proved in this paper that the minimal
connected knight's graph is of genus 1 in all other cases.

1 Imtroduction

This paper has its roots in the study of the discrete metrics associated with
knights’ moves on an unrestricted chess board [1] and generalised knights’
moves on unrestricted boards [2]. For applications to pattern recognition
it is helpful to know the sizes of the restricted rectangular boards on which
these discrete metrics are defined, i.e. on which the knights’ graphs are
connected. The sizes of the minimal connected rectangular (p, g)-knights’
graphs were determined in [5]. In view of the complexity of the pattern
of moves of a knight on a chess board a surprising result of that paper
is that these minimal connected rectangular graphs are either planar or
toroidal. The patterns of edges on the minimal boards are simpler than
those on larger boards making it easier to study the related metrics, and
the biperiodic patterns of the toroidal graphs are easier to study than the
periodic patterns of the planar graphs. The aim of this paper is to determine
which of the graphs are planar and which are toroidal.

The vertices of a knight’s graph are the points with integer coordinates in
the whole plane or in some rectangular region of the plane with sides parallel
to the axes. An edge in a (p, g)-knight’s graph joins two vertices when the
difference of one of their coordinates is p and the difference of their other
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coordinate is g. In chess p and q are 1 and 2. A (p, ¢)-knight’s graph on
the whole plane is connected if and only if p and q are mutually prime and
p+qis odd [2, 3]. When p and q satisfy these conditions the (p, g)-knight’s
graph on a rectangular board of size X by Y is connected if and only if
min{X,Y} > p+q and max{X, Y} > 2max{p, q} [5]. It will be convenient
to take p < ¢. Then the minimal connected rectangular (p, q)-knight’s graph
is of size p+ ¢ by 2¢. It was proved in [5] that the genus of this graph is 0 or
1, and that it is 0if p = Md+1 and ¢ = (M +1)d+1 with M a non-negative
integer and d a positive odd integer. It is shown here that the genus is 1 in
all other cases, as conjectured in [5]. The proof is based on the theorem of
Kuratowski that a graph is not planar if it contains a homeomorph of the
complete bipartite graph K3 3. In this case the vertices of the K33 are six
of the vertices in which three disjoint simple closed paths (z-cycles) meet
two other disjoint simple closed paths (y-cycles). These cycles correspond
to the two generators of a torus which supports the graph. Three cases
have to be considered: 2<2p < ¢q,1.5p<g<2p—1andp+1 < q < 1.5p.
The proof of the existence of the appropriate z-cycles is the same for all
three cases, but the proof of the existence of the y-cycles becomes more
delicate as the ratio ¢/p becomes smaller.

An algorithm for finding paths (though not necessarily shortest paths)
between vertices in the unrestricted generalised knight’s graphs is given
in [3]. The problem of finding paths, particularly shortest paths, between
vertices in restricted connected rectangular knights’ graphs is much more
difficult. It is hoped that the special simple closed paths studied in the
course of this paper will help in an investigation of geodesics.

The author is grateful to Steve Wilson with whom the paper [5] was writ-
ten, and to Gareth Jones for valuable discussions throughout the prepara-
tion of both papers.

2 Unwrapping minimal connected knight’s graphs
The language and notation of [5] will be used throughout this paper. For p
and ¢ mutually prime with p < ¢ and d = ¢ —p odd the minimal connected
(p, g)-knight’s graph G is the (p,q)-knight’s graph on the set of vertices
(z,y) in Z? such that 1 < z < p+¢gand 1 <y < 2g. The set of points with
first coordinate z will be called the kine £(z). The function

_fz+p if1<z<q
f(x)_{z—q ifg+1<z<p+gq

ie. f(z) =z+p (mod p+ g) which is a cyclic permutation of [1,p + g), is
used to order the lines £(z). Two lines £(z) and ¢(z’) are said to be adjacent
if some vertex in £(z) is adjacent to some vertex in £(z’). Each line (z) is
adjacent to £(f~!(z)) and €(f(z)) and to no other line.
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It is convenient to think of the sequence of lines determined by the func-
tion f divided into blocks defined in the following way. If p > 1 then
Np < q < (N + 1)p for some positive integer N. In this case when
1 <z < q- Np, fN+}(z) = z+(N+1)p while f¥*+3(z) =z+(N+1)p—g,
and when g— Np+1 < z < p, f¥(z) = z+Np while fN+!(z) = z+Np—q.
Thus the sequence 1, (1), £3(1),..., fP*97}(1) can be seen as g— Np blocks
of length N +2 and (N +1)p—gq blocks of length N+1 such that within each
block successive values differ by p, while the difference between the value
at the end of one block and the value at the beginning of the next block is
—q. In each case there is at least one even block of lines and at least one
odd block of lines. Note that if p is even and g is odd then the number of
even blocks is odd, while if p is odd and q is even then the number of even
blocks is even both for N even and for N odd. Thus in all cases q and the
number v of even blocks are both even or both odd.

It is shown in Section 5 of [5] that if (fi(z),y;), 0 < j <p+g,isa
directed path in G then yo + yp+¢ is 0odd. Thus each line ¢(z) splits into
two half-lines, the vertices with even y-coordinates form the even half-line
¢(z), and those with odd y-coordinates form the odd half-line ¢(z). The two
half lines will be said to be complementary to each other. The sequence of
half-lines ordered by the function f can be extended by pericdicity to an
infinite sequence of half-lines of period 2(p + ¢).

The y-coordinates on each half-line are ordered using the function g(n) =
n + 2p (mod 2¢). This function divides the sequence of vertices on each
half-line into groups. The difference between one y-coordinate and the next
within a group is —2d while the difference between the y-coordinate at the
end of one group and that at the beginning of the next group is 2p. When
2p < q each group contains one or two vertices, when 1.5p < ¢ < 2p each
group contains two or three vertices, while when p+1 < ¢ < 1.5p and
p = Md + r each group contains M + 1 or M + 2 vertices.

Some of the adjacency properties of the unwrapped minimal knight’s
graphs are listed in the following two lemmas.

Lemma 2.1. Suppose that 1 < z < q. For each y there exists a unique y’
such that (z,y) is adjacent to (f(z),y’), and then (z, g*(y)) is adjacent to
(f(z), g*(2/)) for each integer k.

Lemma 2.2. Suppose that q+1<z<p-+q.
() I l(zc z)/) is adjacent to (f(z),y’) and (f(z),y") then y" is g(y') or
9 (@).
(ii) Suppose that both (z,y) and (z,9(y)) are adjacent to (f(z),y’). If

(z,y) is adjacent to (f(z),y”) then " = g~ (v'). If (z,9(y)) is
adjacent to (f(z),y") then y" = g(y/').
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(iii) If (x,y) is adjacent to (f(z),y’) and (z, g*(y)) is adjacent to (f(z),y")
then y" is g*~'(y’) or g*(v') or g*+1(y).

It is convenient to display the unwrapped minimal knight’s graphs with
the half-lines running across the page. The y-coordinates of the vertices
on each half-line are ordered from the left to the right of the page by the
function g, while the z-coordinates of the half-lines are ordered from the
top to the bottom of the page by the function f. If f(z) = = + p, so that
¢(z) and €(f(z)) are in the same block, then each vertex (z,y) is adjacent
to one of (f(z), y+4q) and (f(z), y—q) in the following line. In this case the
adjacent vertex (f(z),y % q) is placed below (z,y) in the figures. Only the
first and last lines of each block are included in the figures in this paper.
If fx) =z—qand p+1 < y < 29 — p then (z,y) is adjacent to both
(f(z),y + p) and (f(z),y — p). In this case the latter vertices are placed
astride (z,y) in the figures, while the other vertices on the half-lines ¢(z)
and ¢(f(z)) are placed as ordered by the function g.

The ordered pairs (p, q) for which it has been proved that the minimal
connected (p, ¢)-knight’s graph is planar are of four types. The first three
types are ordered pairs (1,2n), (n,n+ 1) and (2n,4n — 1), for n a positive
integer. In these cases M = 0, d=2n—-1and M =n—-1,d=1 and
M =1, d = 2n — 1, respectively. The fourth type is those ordered pairs
p=Md+1and g=(M+1)d+1 with M > 1 and d > 1. To describe
this last type more notation is needed. If d < p then p = Md + r for
some positive integers M and r with r < d. Then d = Lr + s for some
positive integer L and some non-negative integer s with s < r. Since p and
d are mutually prime s = 0 if and only if r = 1. The fourth type of pairs
(p, q) for which the (p, ¢)-knight’s graph has been shown to be of genus 0
are those for which p+ 1 < ¢ < 1.5p and r = 1. Thus the pairs (p,q) for
which it is conjectured in [5] that G has genus 1 fall into three classes: (i)
those with 2 < 2p < g, (ii) those with 1.5p < q < 2p — 1, (iii) those with
p+1<g<lbpand r>1.

3 x-cycles and y-cycles

In every minimal connected knight’s graph there exist simple closed paths
corresponding to one of the generators of a torus supporting the graph,
directed by the action of the function f. These will be called z-cycles.
When p > 1 and d > 2 there exist three disjoint z-cycles. When p and ¢
are not of the form Md+ 1 and (M + 1)d + 1 there exist also two disjoint
simple closed paths corresponding to the other generator, directed by the
function g. These will be called y-cycles.

An z-cycle is a simple closed path in the minimal connected (p, ¢)-knight’s
graph G with 2p + 2q edges and with vertices (f/(z),y;), 0 < j < 2p+ 2q,
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such that go = Yop+24. It is directed by the function f. Note that as one
moves along a path there is no choice in the change of the y-coordinate from
one half-line to another within a block. In the z-cycles described below the
changes of the y-coordinate between the last half-line of one block and the
first half-line of the next alternate between p and —p: such z-cycles will be
called will be called alternating z-cycles. In Figures 2, 3 and 4 they zig-zag
down the page.

Proposition 3.1. Let ¢ = g+ 1 if q is even and ¢’ = ¢+ 2 if ¢ is odd.
If p> 1 and d > 2 then for each first half-line €(zo) of a block of half-lines
there exist alternating xz-cycles starting at (zo, 1), (o, 3) and (zo,q’). They
are pairwise disjoint, and the ordering of their vertices is the same on each
half-line.

Proof: The notation &, will be used to denote 0 when n is even and 1 when
n is odd. Let £(zo) be the first of a block of half-lines. For each number yo
in [1,d] or in [g+ 1,g+ d] define a directed path with vertices (f7(zo),;),
0 < j < 2p+2q, where y;4.1 = y5+ (mod 2q) if &(f3*+ (z0)) and &(f(z0))
are in the same block while y;,1 = y; — (—1)™p if £(f7(xo)) is the last in
the m-th block of half-lines following £(zo). In particular, if &(f3(zo)) is
the last half-line of the block which starts with £(zo) then yj+1 = y; +p.
If the m blocks consist of n even blocks of half-lines and m — n odd blocks
of half-lines then yj41 = yo + 6mp +ng (mod 2¢g). After 2(p + g) edges the
path will have passed 2p blocks of half-lines of which 2v are of even length,
so that (f%P124(zg), y2p+24) = (Z0,%0). Thus the path is an alternating z-
cycle. Now suppose 3 = g*(1) = 1+2)p (mod 2g) and ¢’ = g#(1) = 1+2up

(mod 2q), and consider the alternating z-cycles starting at (zo, 1), (o, 3)
and (zo,q’). Their y-coordinates on the last line £(fJ(zo)) of the m-th
block of lines following £(zo), of which n are even blocks, are 1+ 6mp +ng

(mod 2q) = ¥ say, and 3+ 6mp+nq (mod 29) = g*(y) and ¢’ +6mp+ng

(mod 2q) = g*(¥’). On successive lines within each block the y-coordinates
are the same as on the last line of the block, or all are increased by gor all
are decreased by ¢. Thus on each half-line the y-coordinates of the three
alternating z-cycles are related by the same powers of the function g, so
that they are pairwise disjoint. a

A y-cycle based on an even half-line £(zg) or on an odd half-line £(xo) in
G is a simple closed path which contains, in order, all the vertices (zo,)
which are end points of groups of vertices on the half-line, and which does
not meet both a halfline and its complementary half-line. It inherits its
direction from the function g.

The last vertex (z,y) of a group in the first line £(z) of a block can
always be joined to the first vertex (z,y + 2p) of the next group by a path
consisting of the two edges joining these vertices to the vertex (z+¢,y+p).
It will be convenient to call such a path a cap. For certain half-lines £(xo)
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the first and last vertices of a group can be joined by special paths within
the following half-lines £(f?(zq)) for 0 < j < p+q. It will be convenient to
call such a path a chain. In the figures the caps stand above and the chains
hang below the half-lines £(zg). The longer the groups of vertices the more
complicated are the chains joining their ends. Nevertheless, in the figures
each chain has a vertical axis of symmetry. The successions of caps and
chains form disjoint y-cycles based on the even and odd half-lines £(zy).

The existence of y-cycles is proved in the following propositions. The
existence of non-simple closed paths joining successive vertices on certain
half-lines was proved in [5], but their patterns are complex and difficult to
grasp. In contrast the patterns of the caps and chains joining the ends of
groups of vertices are much more transparent so that it is possible to study
their intersections with the z-cycles.

Case (i) 2<2p<q

If p > 1 then Np < g < (N + 1)p for some positive integer N, and there
are blocks of lines of length N + 1 and blocks of length N 4 2. Thus in all
cases there are blocks of even length. It is proved in the next proposition
that when 2 < 2p < ¢ there are y-cycles based on the even and odd half-
lines at the beginning of an even block. Note that in this case the groups of
vertices on each half-line contain one or two vertices, and runs of 1-groups
are separated by single 2-groups. The lemma is based on Proposition 3 and
Theorem 5 of [5).

Proposition 3.2. Suppose that 2 < 2p < q. If €(zo) is the first line of
a block of 2k lines then G contains y-cycles based on the even and odd
half-lines €(zo).

Proof: If 1 < y < 2d then g(y) = y+2p so that the vertex (zo, y) is the last
of one group while (zg, g(y)) is the first of the next group. They are joined
by a cap consisting of the two edges joining them to the vertex (zo+¢, y+p).
If2d+1 < y < 2q then g(y) = y — 2d so that (z,y) and (zo, g(y)) are in
the same group. They are joined by a chain whose vertices in order are
(f¥(z0),y + jg (mod 2¢)), 0 < j < 2k —1, and (f*(zo),y + ¢+ p) and
(f2=1=3(z0),y + ¢+ 2p + jq (mod 2g)), 0 < j < 2k — 1. In Figure 2 the
chain has a vertical axis of symmetry between (z¢,y) and (zo, y — 2d) and
through (f2*(xp),y + ¢ + p). The sequences of caps and chains based on
the even and odd half-lines £(zg) are disjoint y-cycles. a
Case (ii) 1.5p <g¢<2p -1

When 1.5p < g < 2p — 1 the function g divides each half-line into groups
of two or three vertices. Vertices with 2p+1 < y < 4d start 2-groups while
vertices with 4d +1 < y < 2q start 3-groups. The first and last vertex
in each group on the first half-lines of certain blocks can be connected by
chains. The chains joining the ends of a 2-group are relatively short while
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the chains joining the ends of a 3-group are much longer. The existence of
non-simple closed paths in this case is proved in Theorem 7 of [5].

Proposition 8.8. If 1.5p < g < 2p — 1 then G contains two successive 2-
blocks which are separated by an even number of 3-blocks, and it contains
y-cycles based on the even and odd half-lines of the first line &(zo) of the
first of these 2-blocks.

Proof: That there are successive 2-blocks separated by an even number of
3-blocks is proved in Lemma 5 of [5]. Let the first line of the first 2-block
be €(zo), let the first line of the next 2-block be £(z’), and let there be 2
3-blocks between them.

If (2o,y) is the first vertex of a 2-group then 2p + 1 < y < 4d. Each of
the vertices (zo,¥), (zo+p,¥—9), (To+pP—q,y—q+p), (Zo+p,¥y—9+2p),
(o0, y—2q+2p) is adjacent to the next, all the y-coordinates being in [1, 2q].
Thus (zo,y) is connected to (zo,y — 2d), the last of the group, by a short
chain. In Figure 3 the chain has a vertical axis of symmetry between (zo,y)
and (zo,y — 2d) and through (zo+p—q,¥y —p +9).

If (xo,y) is the first vertex of a 3-group then it is connected to vertices
with y-coordinates y — g in the first and last half-lines of the even 3-groups
following £(zo) and to vertices with y-coordinates y—g+p = y—d in the first
and last half-lines in the odd 3-groups following £(z) and also in the first
half-line £(z’) of the next 2-block. Similarly, the last vertex of the group,
(zo, y —4d), is connected to vertices with y-coordinates y —4d+-q in the first
and last half-lines of the even 3-groups following £(zo) and to vertices with
y-coordinates y —4d+g—p = y—3d in the first and last half-lines in the odd
3-groups following €(zo) and also in the first half-line £(z’) of the next 2-
block. The vertices (z/, y—d) and (z’,y —3d) = (=, g(y — d)) are sometimes
but not always the first and last vertices of a 2-group. Nevertheless, they
are connected by a short chain in precisely the same way as detailed in the
previous paragraph since in this case 4d +1 < y < 2q and as before the
appropriate y-coordinates all lie in the interval [1,2q]. Thus the end vertices
of a 3-group are connected by a long chain. In Figure 3 the chain has a
vertical axis of symmetry through the vertices with y-coordinates y —q—2d
in the first and last lines of the even 2-groups following £(zo).

Since two chains meet at most at a common end vertex, the sequences of
caps and chains joining the ends of groups of vertices on the even and odd
half-lines £(zo) are y-cycles. o
Case (iii) p+1<g<15pandr>1

Ifp+1<q<15pthenp=Md+rand g=(M+1)d+r with M > 1,
and the cycle of y-coordinates contains groups of length M + 1 and groups
of length M +2. On certain half-lines the groups of vertices of length M +1
are joined by short chains while the groups of vertices of length M + 2 are
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joined by long chains. The notion of monotone segments is introduced to
clarify the description of these chains.

A directed path, or segment of a path, (f7(z),y;) will be said to be
monotone increasing if y;,1 = y; + p whenever €(f7(z)) is the last line of a
block, and monotone decreasing if y;41 = y; — p whenever &(f7(z)) is the
last line of a block. Recall that connections between vertices on successive
lines of a block are unique. In the figures the monotone increasing segments
run from top left to bottom right, while monotone decreasing segments run
from top right to bottom left.

Proposition 3.4. If p+1 < ¢ < 1.5p and r > 1 then G contains two
successive runs of M 2-blocks which are separated by an odd number of
runs of M —1 2-blocks, successive runs of 2-blocks being separated by a
single 3-block, and it contains y-cycles based on the even and odd half-lines
of the first line of the first of these 2-blocks.

Proof: Let ¢(zo) be the first line of a run of M 2-blocks which is separated
from the next run of M 2-blocks by an odd number of runs of M — 1
2-blocks. The existence of such runs of lines is proved in Lemma 7 of [5].

If (zo, y) is the first of an (M +1)-group of vertices then 29—2d+1 <y <
2(M +1)d. For the last vertex of the group 2¢ —2(M +1)d+1 < gM(y) =
¥y—2Md <2d. In this case y — (j ~1)d — ¢, y — jd, g™ (v) + (F — 1)d+ ¢
and g™(y) + jd lie in [1,2q] whenever 1 < j < M. Thus (zo,y) is joined
to (f2¥(zo),y — Md) by a monotone increasing path and (zo, g™ (y)) is
joined to (f2M(zo), 9™ (y) + Md) = (f?M(z0),y — Md) by a decreasing
path. Thus (2o, ) is joined to (zo, g™ (y)) by a chain in the half-lines from
£(zo) to &(f?M(zo)). In Figure 4 the chain has a vertical axis of symmetry
through the vertex (f2M(z,),y — Md).

If (zo, ) is the first of an (M + 2)-group of vertices then 2(M +1)d+1 <
¥ < 2g. For the last vertex of the group 1 < gM+1(y) < 29— 2(M + 1)d.
In this case (zo,y) is joined to (f2M(z9),y — Md) by a monotone in-
creasing path and (zo, g*+!(y)) is joined to (f2M(zo), g™ *'(y) + Md) =
(f?M(z0), g(y — Md)) by a monotone decreasing path. Now by the re-
flection principle described in the proof of Lemma 8 of [5], (f2M(z),y —
Md) is connected to (f4M+1(zo),y — g), and (f?(zo), g(y — Md)) is con-
nected to (f4M+1(z;), gM+1(y) + g), the paths being monotone deceas-
ing and monotone increasing, respectively, in the first run of M — 1 2-
blocks. By repeated use of the reflection principle within the runs of
M —1 2-blocks (zo,y) is connected to (f/@M+D-1(z,) 4 — g) if j is even
and to (fI@M+1)-1(z5) 4 — Md) if j is odd, by a path which is alter-
nately monotone increasing and monotone decreasing within the succes-
sive runs of M — 1 2-blocks. In particular, if there are 2n — 1 runs of
M —1 2-blocks between the successive runs of M 2-blocks then taking
J = 2n the vertex (zo,y) is joined to (fZ@M+1)-1(zy) 4 — q) in the
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first line of the 3-block preceding the next run of M 2-blocks, and so to
(z',y — d). Similarly, (zo, g™ gy)) is joined to (ffM+1-1(z,), g (y) + )
if j is even and to (fF@M+1-1(z),gM(y) + Md) if j is odd. In par-
ticular, (zo, g™ (y) is joined to (f22M+1)-1(zo),gM(y) + ) and so to
(', g™(v) + d) = (¢,9M'(y — @)). In this case (/,y — d) is the first
of an (M + 1)-group so it is connected to (=, g™~ (y —d)) by a short chain
in the following 2M half-lines via the vertex (f2¥(2’),y — (M +1)d), so
that (zo,y) and (zo,g™+!(y)) are joined by a long chain in the half-lines
£(zo) to £(f2M(z’)). In Figure 4 the chain has a vertical axis of symmetry
through (f2¥(z’),y — (M + 1)d).

Since two chains meet at most at a common end vertex, the sequences of
caps and chains joining the ends of groups of vertices on the even and odd
half-lines £(zo) are y-cycles. O

4 Non-planar knight’s graphs

The proof that the minimal connected knight’s graph is of genus 1 when p
and g are not of the form Md+1 and (M +1)d+1 is based on the existence
of subgraphs which are homeomorphic to K3 3. The vertices of the K3 3 are
six of the common vertices of three alternating z-cycles with two disjoint y-
cycles. The basic situation is described in the following proposition. Recall
that ¢ =g+ 1if giseven and ¢’ = ¢+2if g is odd.

Proposition 4.1. Suppose that for some zo the graph G contains two
y-cycles ~y; and . based on the odd and even half-lines €(zg). Let a3, ag
and a3 be the segments of the alternating z-cycles through (zo, 1), (o, 3)
and (zo, ') starting at the last common vertex b(c;) with 71 and ending
at the first common vertex e(a;) with vz in the direction of the function f,
and let B be the segment of the alternating z-cycle through (zo, 1) starting
at the last common vertex b(8) with v, and ending at the first common
vertex e(f) with v, in the direction of the function f~'. If the vertices
b(ay), b(B), blaz), b(as) lie on v in that order, and the vertices e(B),
e(ay), e(az), e(as) lie on 2 in that order, relative to the ordering induced
from the function g, or if for both sets of vertices the roles of az and a3
are reversed, then G is not planar.

Proof: Note that by definition the y-cycles v; and v, are disjoint. If the
roles of a2 and as are as given in the first reading of the proposition then
the conditions ensure that the two triples of vertices b(a1), b(az2), e(as) and
b(B), b(as), e(az) are the vertices of a homeomorph of a K33. Its edges
are the four segments of the loop 1 between the four vertices b(a:1), b(az2),
b(az) and b(B), the paths a; and ag, a path from b(a;) to e(az) via e(ay)
along a; and 72, and a path from b(8) to e(as) via e(8) along B and 7,.
Then by a theorem of Kuratowski [4] the graph is not planar. In the other

249



reading the roles of a2 and a3 are reversed. The first reading is illustrated

in Figure 1. a
/
\ ela )
/\\ e(ﬁ}/\/l\/\/\/\/\/\/\/ 7
2
\\// \
/
\ B
/
\ b(B)
/\\ b(a)//\/\/\/\/\/\/\/\/ 71
\\/} \ \ bla,) \ bla,)
/ / /
)% b ) %
\e(o:‘) \e(aa) \ ela)
/\\ e(B}/\/\/\/\/\/\/\/a\/ 72
‘\\// \
/
Figure 1.

Construction of a K33 on a minimal connected knight’s graph

Note that p > 1 and d > 2 in all the three cases considered in the following
theorem so that by Proposition 3.1 there exist disjoint alternating z-cycles
through the vertices (zo, 1), (2o, 3) and (zo, ¢’) whenever £(zo) is the first of
a block of lines. Propositions 3.2, 3.3 and 3.4 show that in each case there
exist y-cycles 1 and «,. It will be necessary to investigate the orderings of
b(a1) and b(B8) on v, and of e(ar;) and e(B) on 3.

Theorem 4.1. Let p and q be mutually prime with p + q odd. Then the
minimal connected knight’s graph G is of genus 0 when p = Md + 1 and
q = (M +1)d+1 for some non-negative integer M and positive odd integer
d, and is of genus 1 otherwise.

Proof: The graph G is proved to be of genus 0 or 1 in Proposition 4 of 5]
It is proved to be of genus 0 when p = Md+1 and ¢ = (M+1)d+1in
Theorem 10 of [5]. Thus it remains to be proved that it has genus 1 for Case
(i) 2 < 2p < g, Case (ii), 1.5p < ¢ < 2p — 1 and Case (iii) p+1 < ¢ < 1.5p
with » > 1.

In each of the three cases p > 1 and d > 2, so that by Proposition
3.1 whenever £(zo) is the first of a block of half-lines there exist pairwise
disjoint alternating z-cycles through (2o, 1), (o, 3) and (2o, ¢’). Moreover,
by Propositions 3.2, 3.3 and 3.4 there exist y-cycles y; and 7, based on
the even and the odd half-lines £(zo) described in those propositions. In
each case the vertex (zo, 1) is the last of a group of vertices and (zo, g(1))
is the first of the next group. They are joined by a cap whose middle
vertex is (f~1(zo),1 + p). The vertex (zo,1) is joined by a chain to the
first vertex (zo,y') of its group where in Case (i) (zo,y’) = (z0, 9~1(1)), in
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Case (ii) (zo,¥") = (z0,973(1)) and in Case (iii) (z0,5") = (0,4~ ~(1)).
The alternating z-cycle through (zo, 1) meets the y-cycle 7, at (zo,1) and
(f~)(zo),1 + p) and some other vertices in the chain joining (zo,1) to
(z0,¥’), but in no other chain or cap. Thus, in the notation of Proposition
4.1, in each case b(8) = (f~'(z0), 1+ p) and b(a;) lies in the chain joining
(zo,1) to (zo,%’), and these vertices lie on 1 in the order (zo0, %), b(as),
b(8), (z0,1).

If p is odd then v is even and the alternating z-cycle through (zo0,1)
meets the even half-line £(zo) at the vertex (xo, 1+ p), the previous vertex
on the z-cycle being (f~1(zo),1). In Case (i) (zo,1 + p) is the last vertex
of a 2-group while in Case (ii) it is the last vertex of a 2-group or a 3-group
so that e(a;) = (zo, 1 + p) and e(B) lies in the chain joining (0,1 +p) to
the first vertex of the group. In Case (iii), if M = 2n — 1 then (zo,1+p) is
the right vertex of the centre pair of an (M + 1)-group whose first and last
vertices are (zo,g~"(1 + p)) and (zo,g" (1 + p)), while if M = 2n then
(zo, 1+ p) is the right vertex of the centre pair of an (M + 2)-group whose
first and last vertices are (zo,g~" (1 + p)) and (zo,g™(1 + p)). Thus in
the blocks following the even half-line £(zo) the alternating z-cycle through
(zo, 1) has vertices alternately on and to the right of the line of symmetry
of the chain joining the ends of the group. Thus e(ay) and e(B) lie in this
chain and e(8) precedes e(ay).

If p is even then g is odd and the alternating z-cycle through (z0,1)
meets the even half-line £(xo) at the vertex (zo, 1 + g), the previous vertex
on the z-cycle being (f~!(zo), 1+ g+ p). In Case (i) the vertex (zo,1+q)
is preceded and followed by caps in 2 so that e(an) = (zo,1+¢ +p) and
e(B) = (0,1 + g) and they lie on 7 in the order (zo,97(1 + 9)), e(B),
e(a1), (zo, 9(1+9)). In Case (ii) the vertex (o, 1+ g) is the central vertex
of a 3-group starting at (zo,9~'(1 + ¢)) and ending at (zo,9(1 +g)). In
Case (iii) if M = 2n or if M = 2n — 1 then (zo, 1 + g) is the central vertex
of a group starting at (zo,g~"(1 + ¢)) and ending at (o, g"(1 +¢)), these
vertices being joined by a short chain when M = 2n and by a long chain
when M = 2n —1. Now in the blocks following the even half-line £(zo) the
alternating z-cycle through (zo, 1) has vertices alternately to the right and
on the line of symmetry of the chain joining the ends of the group. Thus
e(a;) and e(B) lie in this chain and e(8) precedes e(a)1).

Since the relative positions of the vertices of the three alternating z-
cycles are the same on each half-line, it follows that in all three cases the
two y-cycles and the three alternating z-cycles satisfy the conditions of
Proposition 4.1 so that the graph is of genus 1. O

The two y-cycles v; and 72, and the four paths a;, a2, as and g are
illustrated in the following three figures. Case (i) with p even is illustrated
in Figure 2. Cases (ii) and (iii) with p even are illustrated in Figures 3 and
4. Only the first and last lines of each block of lines are included in the
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figures. The edges in the y-cycles are marked in bold print, the edges in
the a and S paths are marked with solid lines and the other edges in the
graph are marked in dotted lines. The a paths start at vertices marked in
large print while the path S starts at a vertex marked in bold print. They
end at corresponding underlined vertices.

x y-values in half-line &(x)

8
12: 17 3 9 1§ 1 7 13 19 S 11 17
I\ NN\ NN\ NI\
2: 14 20 ¢ 12 19 $¢ 10 16 2 8 14 29 7.
11: 4 16 18 2 4§ 14 20 & 12 18 ¢ 1 2

NININ NSNS NZ NN N
1: 7 13 19 S 11 17 3 9 s 1 7
13: 7 13 19 s 11 17 3 9 15 1 7
NSNS NN AN NN N NN
3: 4 10 16 2 8 14 20 6 12 18 4 10
12: 14 20 6 12 18 4 10 16 2 @8 14 20
Ns SN\ NN\ NI\ N\2s
17 3 9 1§ 1 7 13 19 s 11 17 7
11: 13 19 & 11 317 3 0§ 14 4 4
N NN N NN NN
16 2 8 14 20 6 12 18 ¢ 10
13: 4 10 18 2 @8 14 20 6 12 18 & 10
/N ONININS ININS N
3 19 5 1} 17 3 9 15§ 1 7
12: 17 3 9 15 { 7 13 19 s 11 17
/N N/N\N/N \N/\N/N\Ns /I\N7T\/\
2: 14 29 6 12 18 4 10 16 2 8 14 29 7
11: 4 18 16 2 @& 12 20 & 12 18 4« 16
NANIN NN NSNS AN

1 7 13 19 5 11 17 3 9 18§ 1 7
-4
% 1 %
Figure 2.

The unwrapped (3, 10)-knight’sgraph with z¢ = 2.
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20:

1S:

18:

19:

6:
14:

y-values in half-line &(x)
8

7 23 13 3 19 9 25 15 S§ 21 11 1 17 7
NS OIN NS AN N NS SN NN S
25 1S 5 21 11 1 17 7T 23 13 3 19 9 25 1§
25 15 s 21 11 1 17 7 23 13 3 19 9 25 15
/\N N7 /N NN N2 I\ N7 I\
7 23 13 3 19 9 25 15 § 21 11} 17 7
20 16 26 16 6 22 12 2 18 & 24 11 1 26
/ 2\Ns /N N7 AN NN N2 /N NV
12 2 19 § 264 14 4 29 1Q 26 16 6 22 12 2
12 2 18 & 24 14 & 20 10 26 14 & 22 i2 2
NCONZS N AN NS 2N N NS SN
20 19 26 16 6 22 12 2 1§ 9§ 28 14 4 20
20 10 26 16 6 22 12 2 18 & 24 14 & 20
sosN s N NS SN NN N2 I\ N
12 2 18 § 24 14 & 20 1Q 26 1§ 6 22 12 2
25 15 & 2i 11 1 17 ¢+ 23 13 3 19 9 25 1s
s \N/Z /N SNAN N7 2N N/ N2/
7 23 13 3 19 9 26 15 § 21 11} 17 7
7 23 13 3 19 9 25 15 s 21 11 i 17 7
NS OAN NS AN SN NN NN
25 15 5 21 1 1 17 7 23 13 3 19 9 25 1§
12 2 18 8 24 14 4 20 10 26 16 6 22 12 2
NONAN NS AN NS SN AN NS AN
20 10 26 16 6 22 12 2 18 8 28 14 4 20
20 10 26 16 6 22 12 2 18 8 24 14 & 20
SosN e AN NS N NN N N Ny
12 2 18 8 24 14 4 20 10 26 16 6 22 12 2
12 2 18 8 28 14 4 20 10 26 16 & 22 12 2

N N\ N/ /N NS SN N NN

1
i

"~

20 10 26 1§ 6 23 12 ¢ 18 9 24 14 4 29

¥ 23 13 3 18 § 25 18 & 21 i i 1t %
\N/ SN N/ N7 /SN NZ N N/~ N\
2s 1s s 21 11 1 17 7 23 13 3 19 9 25 1S
2s 18 s =2 11 1 17 ¥ 23 13 3 19 9 25 1§

AN NS AN NN N SN N
7 23 13 3 19 9 25 1§ S 21 13} 1 17 7
7 23 13 3 15 $ 25 18 s 21 1i
NS AN N N N NS SN NN N
25 15 5 2} 11 1 17 7 23 13 3 1
12 2 18 8 28 14 4 20 10 26 16
R N Y N T Y A A 2 T N A N
20 10 26 16 6 22 12 2 18 8 24 14 4 20
20 10 26 16 6 22 12 2 318 @8 24 14 4 20
e R N N A A L A N Al UL
12 2 18 8 284 14 4 20 10 26 16 6 22 12 2
2as 18 S5 21 11 1 17 7 23 13 3 19 9 25 15§
SNONS A NS N NS AN NS SN
7 23 132 3 19 9 258 15 S§ 21 11 1 17 7

%2 % %

Figure 3.

The unwrapped (8, 13)-knight’s graph with o = 7 and z’ = 8.
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17:
14:
19:
16:
13:
18:

7:

15:

12:

The unwrapped (8, 11)-knight’s graph with zo = 7 and z’ — &,

values in half-line {(x)

1% 23 15 9 3 19 13 7 3 17 11 s
22 16 10 4 20 14 & 2 18 13 & 22 16
N N NN N VA NV
§ 2 19 12 ¢ 22 16 10 4 20 14 ¢
9 13+ 1 1% 1 & a1 gd 9 3 19

1T 5 210 15 9 3 19 13 7 1 17 11 s
11 s 21 18§ 3 19 13 § 4 37 11 s
NN N N N N N o
19 13 7 1 17 11§ 21 15 9 3 19
8 2 18 12 6 22 14 10 4 20 14 @
NN N N 7N N s ~
22 16 19 4 20 14 § 2 18 12 6§ 22 16
22 16 10 4 20 14 § 2 18 12 & 22 16
SN N /N N N/ N NS

8 2 1§ 12 6 22 16 10 4 20 14 @

19 13 % 1 b il 0§ 21 14§ 3 49

SN N N /N NS S SN N
11 5 21 15 9 3 13 7 1 17 11 s
22 16 10 & 20 14 8 3 18 12 & 22 16
SN NS AN N N AN N s

8 2 18 12 6 22 16 10 20 14 8

8 2 18 12 6 23 16 10 & 20 14 @
N NSO /SN N s SN N7 NN
22 16 10 4 20 14 B8 2 1§ 12 § 22 16
11 s 21 18§ 3 19 13 4+ { 1% i s
N Ne /AN
19 13 7 1 17
8 2 18 12 &
\

LAV AN AN
22 1¢ 10 4 20 14 s 2 18 12 & 22 14
22 16 16 & 20 1¢ & 2 18 12 6 22 16
/AN NS N N NS AN NS s
8 2 13 12 ¢ 22 16 10 & 20 14 g
19 13 % 1 1% 11 & 21 15 & 3 19
/N N NS N N s N N/

13 )5 21 1§ 9 3 19 13 7 3 17 1y s
11 s 21 18§ 3 1 13 7 | 17 11 s
N NS L AN N SN N Ny 2N\

1

19 13 7 1 17 11§ 21 15 9 3 19
8 12 & 22 146 10 4 20 14 &

1

A S A N Y Y R N \
22 16 19 4 20 14 § 2 18 12 6 22 1¢
11 4 21 15 9 3 15 13 7 | a7 11 3

NN/ N N AN N AN

19 13 7 1 17 11 5 21 1S 9 3 19

%2 % %
Figure 4.
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