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ABSTRACT. A holey perfect Mendelsohn design of type A7 h3?
-+~ hg* (HPMD(hT'h3? - -- h¥) with block size four is equiva-
lent to a frame idempotent quasigroup satisfying Stein’s third
law with the same type, where a frame quasigroup of type
h3'h32---hi* means a quasigroup of order n with n; miss-
ing subquasigroups (holes) of order k;,1 < i < k, which are
disjoint and spanning, that is ), .;<, nihi = n. In this paper,
we investigate the existence of HPMD(2"3') and show that an
HPMD(2"3!) exists if and only if n > 4. As an application,
we readily obtain HSOLS(2"3!) and establish the existence of
(2,3,1) [or (3,1,2)]-HCOLS(2"3") for all n > 4.
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1 Introduction

A quasigroup is an ordered pair (Q, -), where Q is a set and (-) is a binary
operation on @ such that the equations

a-z=bandy-a=b 1)

are uniquely solvable for every pair of elements a,b € Q. A quasigroup is
called idempotent if the identity

zT-zT=2% (2)
is satisfied for all = in Q. If the identity

(=) (z-y)=2 ®3)

holds for all z,y € @, then we say that the quasigroup satisfies Stein’s third
law. An idempotent quasigroup satisfying the Stein’s third law is denoted
by IQST. The order of the quasigroup is |Q].

Let (Q,-) be a quasigroup where the multiplication table of () forms a
Latin square indexed by Q. The (3, j, k)-conjugate of (Q,-) is (Q,*i jk),
where (4,4, k) is a permutation of (1,2,3) and z; *;jk z; = zx if and
only if z; - z» = z3. Following the convention (see [5]), we also call @
a Latin square. A Latin square is said to be (3, j, k)-conjugate-orthogonal
((%,3, k)-COLS for short) if -y = z-w and = *;jx ¥y = 2 *ijk w im-
ply £ = z and y = w. We will use (i,j,k)-HCOLS(h}* - - - h*) to denote
the type of holey (i, 4, k)-COLS of order 3%, hin;, that have n; holes of
size h;, 1 < i < k, and all the holes are assumed to be mutually dis-
joint, and each of them corrgsponds to a missing sub-Latin square. It is
well-known that there does not exist any (1,2,3)-HCOLS(hT* - - - hi*) for
order n > 1; a (3,2, 1)-HCOLS(hT" - - - hz*) exists if and only if a (1,3, 2)-
HCOLS(h]" - - - hp*) exists; a (2,3,1)-HCOLS(A]" - - - hi*) exists if and only
if a (3,1,2)-HCOLS(AT" - - - hi*) exists. A (2,1,3)-HCOLS(AT" ---hp*) is
also called a holey self-orthogonal Latin square and denoted by HSOLS(A}*
- h).

We shall discuss the existence of some kinds of HCOLSs in Section 4.
Now we turn our attention to Mendelsohn designs.

The existence of IQST is equivalent to the existence of perfect Mendel-
sohn design with block size four (see for example [5]).

Let v, k be positive integers. A (v, k, 1)-Mendelsohn design, briefly
(v,k,1)-MD, is a pair (X,B), where X is a v-set (of points) and B is a
collection of cyclically ordered k-subsets of X (called blocks) such that every
ordered pair of points of X are consecutive in exactly one block of B, where
a cyclically ordered block (a1,a2, -+ ,ax) means a; < a2 < --- < ax < a1.
Ifforallt=1,2,---,k—1, every ordered pair of points of X are {—apart in
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exactly one block of B, then the (v, k, 1)-MD is called perfect and is denoted
by (v, k,1)-PMD.

Suppose (Q, ) is an IQST.'Let B = {(z,z - ¥,%,¥ - z) : 2,y € Q,x # y}.
Then (@, B) is a perfect Mendelsohn design of block size four. For the
: existence of PMDs of block size four, we have the following theorem from
[4, 11, 7).

Theorem 1.1 A (v,4,1)—PMD exists if and only if v= 0,1 (mod 4) and
. vF#4,8.

Let Q be a set and H = {51, S2,--- , Sk} be a set of subsets of Q. A holey
IQST having hole set H is a triple (Q,H, -), which satisfies the following
properties:

1. () is a binary operation defined on Q. However, when both points a
and b belong to the same set Sj, there is no definition for a-b,

2. the equations (1) hold when a and b are not contained in the same
set S5;,1 <1<k,

3. the identity (2) holds for any z ¢ Ui<i<sS;,

4. the identity (3) holds when z and y are not contained in the same set
S5;,1<i<k.

We denote holey IQST by HIQST(n; s1, 82, - -« , 8), where n = |Q] is the
order and s; = |S;|,1 < i < k. Each S; is called a hole. When H = @, we
obtain an IQST, and denote it by IQST(n).

From the definition of HIQST, we can obtain the definition of frame
IQST as follows. If H = {S1,S2,---,Sk} is a partition of Q, then a holey
IQST is called frame IQST. The type of the frame IQST is defined to be
the multiset {|S;| : 1 < i < k}. We shall use an “exponential” notation
s7! sh?cdotssy* to describe the type of n; occurrences of s;,1 <7 < tin
the multiset. We briefly denote a frame IQST of type s]?s3?---si* by
FIQST(s7's5? - - - s7*).

Corresponding to FIQST (s]*s3? - - - s7't), we can define holey perfect Men-
delsohn design, denoted by HPM D(s7's3? - - - s¢t) as follows. A holey per-
fect Mendelsohn design is a triple (X,H, B) which satisfies the following
properties:

1. H is a partition of X into subsets called holes,

2. B is a family of cyclically ordered k-subsets of X (called blocks) such
that a hole and a block contain at most one common point,
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3. every ordered pair of points from distinct holes are t— apart in exactly
one block fort =1,2,--- ,k—1.

The type of the HPMD is the multiset {|H| : H € H} and it is also
described by an exponential notation.

In graph theoretic terminology, an HPMD is a decomposition of a com-
plete multipartite directed graph DKy, n,,... ,n, into k—circuits such that
for any two vertices x and y from different components, there is one circuit
along which the directed distance from x to y is ¢, where 1 <t <k -1.

Another class of design reldted to HPMD is GDD. A GDD is a triple (X,
G, B) which satisfied the following properties:

1. G is a partition of X into subsets called groups,

2. B is a family of subsets of X (called blocks) such that a group and a
block contain at most one common point,

3. every pair of points from distinct groups occurs in exactly A blocks.

The type of the GDD is the multiset { |G| : G € G}. We also use the
notation GD(K, M; X) to denote the GDD when its set of block sizes is K
and set of group sizes is M.

If M ={1}, then the GDD becomes a PBD. If K = {k}, M = {n} and
the type n*, then the GDD becomes TD(k,n). It is well known that the
existence of a TD(k,n) is equivalent to the existence of k — 2 MOLS(n).

It is easy to see that if we ignore the cyclic order of elements in the
blocks, the HPMD becomes a GDD with block size four and A = 3. But
the converse may be not true. It is proved in [6] that such a GDD of type
h* exists if and only if h%u(u — 1) = 0 (mod 4). However, for the existence
of HPMDs of block size four with equal - sized holes, [3] gives the following
complete solution.

Theorem 1.2 An HPMD(h*) ezists if and only if h2u(u—1) =0 (mod 4)
with the ezception of types 2¢,18 and h* for odd h.

In this paper, we consider the existence of HPMDs of type 23! with
block size four. We shall use HPMD to denote HPMD of block size four
throughout this paper. The main result of this paper is the following the-
orem.

Theorem 1.3 An HPMD(2"3!) ezists if and only if n > 4.
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2 Constructions

In this section, we display some direct and recursive constructions of HP-
MDs. To construct HPMDs directly, we usually use starter blocks. Suppose
the block set B of an HPMD is closed under the action of some Abelian
group G, then we need to list only part of the blocks (starter or base blocks)
which determines the structure of the HPMD. We can also attach some in-
finite points to an Abelian group G. When the group acts on the blocks,
the infinite points remain fixed. For HPMD(2"3!), we use Z», U {z, y, z}.
In the following example z, y, 2 are infinite points.

Example 2.1 An HPMD(283!):
points: Z16U {z,y, z}
holes: {{i,i+8}:0<i <7}V {z,y, 2}
starter blocks: (z,0,7,6), (y,0,13,1), (2,0, 14,9), (0, 2, 12, 15), (0, 9, 5, 11).

In this example, the whole set of blocks is developed from the starter
blocks by Zje, i-e., adding 1 (mod 16) to each point of the starter blocks.
But when = is odd, it is impossible to use Z,, to develop the blocks. So
for odd n, we use a different method as stated in the following lemma. We
refer this as the “+2 method”.

Lemma 2.2 Suppose there exist blocks A = (w, a,,a9,a3) and B = (by, bs,
b3, bs), where w € W is the infinite point, a;,b; € Zsn, A€ A and B € B.
Let D(-D = {as — ary1,bs —bsy1 1t =1,2, s =1,2,3,4 (mod 4), A €
A,B € B} and D2 = {a; — azy2,bs — bsy2 : t = 1,3 (mod 4),s3 =
1,2,3,4 (mod 4),A € A, BeB}. If

(1) every element of Zoy, \ {0,n} appears twice both in D(~1) and D(—2);

(2) em — cnycp — ¢g € DD, ey — e = ¢ — ¢ (mod 2n) implies ey #
cp(mod 2), wherei = 1 or 2;

() each infinite point w is contained in two blocks A, A® such that
o # a{P(mod 2),5 =1,2,3,

then there exists an HPMD(2™u'), where u = |W]|.

Proof Develop the blocks A € A and B € B by adding 2 to every element
modulo 2n. It is readily checked that these blocks form an HPMD(2"x!)
on set Z,, UW. a

The following HPMD is copstructed by the 42 method.

Example 2.3 An HPMD(273!)
points: Zj4U {z,y, 2}
holes: {{t,i+7}:0<i<6}U{z,y,2}
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starter blocks: (z,0,9,10), (z,1,10,13), (y,0,1,11), (y, 1,12, 10), (z,0, 2, 8),
(2,1,3,7),(0,4,3,6),(0,5,13,4), (0, 11,9, 1).

In general, if we cannot find any starter blocks of the HPMD, we often
list the FIQST’s multiplication table which corresponds to the HPMD. The
Table 2.1 is an FIQST(2°1') which corresponds to an HPMD(2511).

Next, we state several recursive constructions of HPMDs, which are com-

monly used in other block designs. The following construction comes from
the weighting construction off GDDs [9)].

Construction 2.4 (Weighting) Suppose (X,H,B) is a GDD with A = 1
and let w: X — Z+U{0}. Suppose there ezist HPMDs of type {w(z): z €
B} for every B € B. Then there exists an HPMD of type {3, .4 w(z) :
H e H}.

The next construction, called “filling in holes”, is quite standard in con-
structing designs.

*| 01 2 3 45 6 7 8 9 x
0| 7 3 9 8 2 x 4 1 6
1] 4 8 x 2 7 9 0 5 3
2| 9 x 4 310 6 8 5
3] 6 91 7 x 4 5 2 0
4] 1 3 6 5 2 x 0 7 8
5 | 8 9 1 x 7 3 2 6 4
6| 8 x 2 5 3 4 9 0 7
71 3 0 6 1 4 8 5 x 9
8l x 4 0 6 9 5§ 1 7 2
9 7 2 85 0 8 3 6 x 1
x| 2 6 &4 7 6 9 8 1 3

Table 2.1 An FIQST(251!)

Construction 2.5 Suppose there exist an HPMD of type { s; :1 < i < k}
and HPMDs of type { hi; : 1 < j < m} U {a}, where 372 by, = s; and
1 <1< k-1, then there exists an HPMD of type { hy; 11 < j <mn;1 <
i<k-1}U{sg+a}.

Construction 2.6 If there exist an HPMD(2"t') and an HPMD(2™u!),
where 2m + u =1, then there exists an HPMD(2"™ul).

To use the previous constructions, we need some small HPMDs which
are provided in the following lemma.
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Lemma 2.7 There exist HPMDs of type 2°,25,2511,2531, 2541,

Proof The HPMDs of type 25, 26 come from Theorem 1.1. An HPMD(2%1?)
is displayed in Table 2.1. HPMDs of type 253!,254! are constructed in the
Appendix. O

Now we are in a position to state the following main recursive construc-
tion of this paper.

Construction 2.8 If there exists a TD(6,m), then there exists an HPMD
(25™u!), where 0 < u < 4m.

Proof Give weight 2 to each point of the first five groups of a TD(6,m)
and give weight 0, 1, 2, 3 or 4 to the points of the sixth group such that the
total weights of all points of this group is u. Since there exist HPMDs of
type 25,2511,26,253! 254! by Lemma 2.7, we obtain an HPMD((2m)%ul).
Filling in holes of size 2m with HPMD(2™) which exist from Theorem 1.2,
we obtained the desired HPMD. O

To use Construction 2.8, we need some results of the existence of TD(6,m).
The following results about T"D(6, m) come from the existence of 4 MOLSs

(see [1]).
Lemma 2.9 Form >5 and m ¢ {6,10, 14, 18,22}, there exists a T D(6, m).

We can also give weight to the points of an HPMD to construct a new
HPMD. The following construction is obtained in this way.

Construction 2.10 If there exists an HPMD(hT'h3? ---h;*), then there
exists an HPMD((mhy)™ (mhg)™2 - - - (mhy)™), where m # 2, 6.

Proof Give weight m to each point of the HPMD(h}'h3? - - - h*). For
every block B of this HPMD, construct a TD(4, m) such that the blocks in
the TD are cyclically ordered in the same way as B. The resulting design
is an HPMD((mhy )™ (mhg)™2 - - - (mhg)™ ). a

3 Existence of HPMD(2"31)

In this section, we shall prove our main result. First we construct some
HPMDs of type 2"3! for small values of n. Most of these designs are found
by computer using the direct construction methods provided in Section 1.

Lemma 3.1 There exist HPMDs of types 273! for 4 <n < 15.

Proof The types 273! and 283! are constructed in Section 2. For other
types see the Appendix. a

Combining Constructions 2.6, 2.8 and Lemma 3.1, we can handle most
cases of the existence of HPMD(2"3!).
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Lemma 3.2 There exists an'HPMD(2"3') forn > 25 and n # 26,27,28, 36,
37,38.

Proof Let m = 5 and u = 3, 11, 13, 15, 17, 19 in Construction 2.8 to
obtain HPMDs of type 2%u!. As there exist HPMDs of type 2°3! for
8 = 4,5,6,7,8 by Lemma 3.1, we then obtain HPMDs of type 2"3! for
n = 25,29, 30, 31, 32, 33 by Construction 2.6. Similarly, we can let m =
7 and u = 3,11,13,--- ,27 in Construction 2.8 to obtain HPMDs of type
2"3! for n = 35,39,40,---,47. For n > 49, we let m> 9, m odd and u
= 11,13,-..,33 in Construction 2.8 to obtain the desired HPMDs. The
existence of TD(6,m) comes from Lemma 2.9. O

Lemma 8.3 There exists an HPMD(2"3') for n =0 (mod 4) and n > 16.

Proof There exist HPMDs of type 8"8! for n > 3 from Theorem 1.2. Now
let a = 3 in Construction 2.5. Since an HPMD(243) exists from Lemma
3.1, we obtain HPMD(24(*+131) for n > 3. m]

Lemma 8.4 There ezists an HPMD(2"3!) for n = 22, 26, 38.

Proof From an HPMD(2*3!) we obtain an HPMD(8%12!) by Construc-
tion 2.10. Let a = 3 in Construction 2.5, we obtain an HPMD(2223!),
since HPMDs of types 23!,2%3! exist. Similarly, from the HPMD(253!)
we get an HPMD(8512!) and then add 3 points to get an HPMD(22631).
Finally, from an HPMD(283!) We get an HPMD(8%12!) and then obtain
an HPMD(2%83!) by adding 3 new points. 0

Lemma 8.5 There exists an HPMD(2"3') forn = 17,18,19,21, 23,27, 37.

Proof For n = 19, add one point to an HPMD(10%) to obtain an HPMD
(215111) by Construction 2.5, then use Construction 2.6 to obtain HPMD
(21931). For n = 27, from an HPMD(243') we obtain an HPMD(1015) by
Construction 2.10. Let a = 2 in Construction 2.5 and fill in holes with HP-
MDs of type 2521, 273! to obtain an HPMD(2%73!). For n = 37, first delete
5 points from a block of a TD(6,7) to obtain a {5, 6}-GDD of type 657!.
Then give weight 2 to each point of that GDD to obtain an HPMD(125141).
An HPMD(2%73!) can be constructed by adding 3 points to this HPMD
by Construction 2.5. HPMDs of types 213111, 214111216131 218131 gre
constructed in the Appendix, so we can obtain HPMDs of type 2"3! for
n = 17,18, 21, 23 by Construction 2.6. O

Theorem 3.6 There exist HPMDs of type 2"3! if and only if n > 4.

Proof The conclusion comes from Lemmas 3.1-3.5 directly. a
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4 Application to HCOLSs

As we indicated in Section 1, the multiplication table of a quasigroup defines
a Latin square. So a holey quasigroup defines a holey Latin square. From an
HPMD(2"3!) one can obtain a holey Latin square of the same type which is
self-orthogonal ((2, 1, 3)-HCOLS) from its correspodence with Stein’s third
law. A (2,1,3)-HCOLS is also denoted as HSOLS or FSOLS. In (8], an
almost complete solution of the existence of HSOLS(2"3!) is given. And
[10] gives a complete solution. As a corollary of Theorem 3.6, we also have
the following result about the existence of (2,1, 3)-HCOLS.

Theorem 4.1 A (2,1,3)-HCOLS(2"3!) ezists if and only if n > 4.

On the other hand, Stein’s third law (y - z) - (z - y) = z is conjugate-
equivalent to the identity (z - (y - z)) - ¥ = =z, using (1,3,2) - conjugate
operation. This means that the (1, 3,2) - conjugate of an FIQST satisfies
the identity (z-(y-z))-y = . It is not difficult to check that an idempotent
quasigroup satisfying (z - (y - )) - y = =z is orthogonal to its (2,3,1) -
conjugate. So Theorem 3.6 implies the following new result.

Theorem 4.2 A (2,3,1)/or (3,1,2) J-HCOLS(2"3) ezists if and only if
n>4.

We wish to indicate that (3,2,1) [or (1, 3,2)]-HCOLS(2"3!) also has been
investigated and the problem of existence has been settled with six possible
exceptions of n, namely, n = 17, 18, 19, 21, 22, 23. The interested readers
are referred to [2].
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Appendix

Here we list the starter blocks of some HPMDs which are used in the
previous sections. Most of them are obtained by computer. In the following
list, the point set of an HPM D(2"u!) are Z,, and v infinitive points which
are denoted by alphabet.
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Some HPMDs of type 2"3!

n =6 (+1 mod 12):
0,2,5,4), (a,0,1,11), (b,0,5,9), (¢,0,7,4).

n=9 (+2 mod 18):
(a,0,10,7), (a,1,5,6), (b,0,4,2), (b,1,7,3), (c,0,2,3),
(c,1,3,0), (o0,3,10,4),(0,5,4,12),(0,7,15,13),(0,11,5,15)
(0,13,6,5).

n = 10 (+1 mod 20):
(0,2,16,19), (0,15,7,13), (0,17,8,16), (a,0,9,14),
(b,0,18,11), (3,0,19,15).

n = 11 (+2 mod 22):
(2,0,14,18), (a,1,13,11), (b,0,3,6), (b,1,16,9), (c,0,2,3),
(c,1,3,0), (0,5,15,21), (o0,6,5,1), (0,7,2,10), (0,9,14,2),
(0,13,21,15),(0,16,13,4), (0,17,9,13).

n = 12 (+1 mod 24):
(0,2,20,23), (0,10,8,17), (0,13,10,18), (0,19,6,20),
(a,0,15,11), (b,0,16,15), (c,0,17,22).

n = 13 (+2 mod 26):
(a,0,7,5), (a,1,0,6), (b,0,15,6), (b,1,4,9), (c,0,2,3),
(c,1,3,0), (0,3,22,12), (0,4,25,6), (0,8,7,16),(0,9,19,25),
(0,11,16,14),(0,17,11,15),(0,18,15,4),(0,19,9,5),(1,9,21,13).

n = 14 (+1 mod 28):
(0,2,24,27), (0,10,22,21), (0,13,9,20), (0,17,5,9),
(0,18,27,5), (a,0,15,12), (b,0,20,18), (c,0,21,26).

n = 15 (+2 mod 30):
(a,0,4,28), (a,1,19,25), (b,0,6,26), (b,1,17,15), (c,0,2,3),
(c,1,8,26), (0,3,11,5), (0,5,16,13),(0,7,6,14), (0,9,21,12),
(0,10,8,27),(0,11,25,21),(0,12,7,11),(0,13,18,17),(0,14,10,3),
(0,17,9,29),(0,21,1,8).
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Some HPMDs of type 2"u!

n=5, u=4 (+1 mod 10):
(a,0,1,3), (b,0,3,9), (c,0,4,2), (4,0,7,6).

n =13, u=11: (+2 mod 26):
(a,0,5,24), (a,1,22,25), (b,0,17,22), (b,1,8,23),
(c,0,10,21), (c,1,23,22), (4,0,8,20), (d,1,9,21),
(e,0,9,19), (e,1,16,20), (£,0,24,18), (£,1,21,19),
(g,0,25,17), (g,1,4,18), (h,0,19,16), (h,1,18,15),
¢(i,0,6,1), (i,1,15,16), (j,0,16,12), (j,1,5,11),
(x,0,2,3), (x,1,3,12), (0,7,23,8).

n =14, u= 11 (+1 mod 28):
0,2,24,27), (a,0,9,17), (b,0,10,6), (c,0,11,18), (4,0,13,8),
(e,0,15,21), (£,0,16,13),(g,0,17,1), (h,0,18,16), (i,0,19,23),
¢(,0,20,19), (k,0,21,26).

n =16, u = 13 (+1 mod 32):
(0,1,31,30), (a,0,7,13), (b,0,9,22), (c,0,12,23), (d,0,14,24),
(e,0,15,2), (£,0,17,26), (g,0,18,12),(h,0,20,15), (i,0,21,26),
(G,0,22,18),(x,0,23,27), (1,0,24,21),(m,0,25,28).

n =18, u = 13 (+1 mod 36):
(0,1,27,33), (0,5,35,34), (a,0,9,13), (b,0,11,21), (c,0,13,2),
(d,0,14,26), (e,0,16,3), (£,0,16,24),(g,0,17,8), (h,0,19,11),
(i,0,20,16), (j,0,21,14), (k,0,22,17),(1,0,23,30),(m,0,34,31).

FIQST of types 243! and 253!

| 01 2 3 4 5 6 7 a b c
0| c 3 2 7 a b 5 6 1
i] 3 4 a b c 2 07 6
2] a b c 5 4 17 0 3
3] ¢ 4 5 6 a b 2 1 0
4 | 3 a b c 7 6 1 2 5
5| b c 6 7 0 a 4 3 2
6| 1 0 5 a b c 3 4 7
71 2 a b c 0 1 6 5 4
al 7 6 1 0 3 2 5 4
bl 5 2 7 4 1 6 3 O
cl 67 01 2 3 4 5
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0 | 2 3 6 b c 8 7 a 4 9 1
1] a 9 ¢ 3 7 5 4 b 0 8 2
2] b 5 9 ¢ a 3 6 8 1 4 0
3] 9 0 b a ¢ 7 1 5 6 2 4
4| 6 ¢ 1 7 b 2 a 0 8 5 3
5| 3 8 ¢ 2 b c ail 9 7 6
61 2 a b 8 4 9 ¢ 3 6 0 7
71 4 b 5 0 9 a i ¢ 3 6 8
8] ¢ a 4 7 6 5 b 0 219
9] 1 8 ¢ a 2 0 6 b 7 3 5
al 7 9 0 2 1 3 8 4 5 6

b|] 8 7 5 0 6 1 4 3 9 2

c|l 3 4 6 1 56 8 9 0 2 7
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