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ABSTRACT. A star-factor of a graph G is a spanning subgraph
of G such that each component of which is a star. In this paper,
we study the structure of the graphs with a unique star-factor
and obtain an upper bqund on the number of edges such graphs
can have. We also investigate the number of star-factors in a

regular graph.

1 Introduction

For a fixed integer k, let S(k) = {K1: | 1 < ¢ < k}. An S(k)-factor
(also called a star-factor) of a graph G is a spanning subgraph of G, each
component of which is isomorphic to a member of S(k). (Note that an
S(1)-factor is simply a 1-factor.) An S(k)-factor is proper if one of its
components is isomorphic to K k. The complete bipartite graph K is
called an ¢-star (or simply a star).

In 1947, Tutte [8] gave a criterion for a graph to have a 1-factor (that
is, an S(1)-factor). This criterion was then used by many others to study
properties of graph with 1-factors. In particular, Lovész [7] showed that
a graph with a unique 1-factor cannot have large minimum degree, and
Hetyei (see [7]) proved that the largest number of edges in a graph G of
order 2m with a unique perfect matching is m2. Lovész [7] and Zaks [9)
obtained a lower bound on the number of 1-factors in n-connected graphs.
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In this paper, we focus on S(k)-factors with k > 2. A characterization
of S(k)-factor for k > 2 was given by Las Vergnas [6], Hell and Kirkpatrick
[5] and Amahashi and Kano [2] independently. In section 2, we study the
structure of the graphs which have a unique S(k)-factor, k > 2, and obtain
an upper bound on the number of edges such graphs can have, and also
constructing an extremal graph with a unique S(k)-factor which attains
that bound. In section 3, we show that any r-regular graph of order » has
at least n distinct S(k)-factors (1 <k <r).

For S C V(G), let G[S] denote the subgraph of G induced by S, I(G —-S)
denote the set of isolated vertices in G — S, and i(G - S) = |I(G - S)|.
Other notations and terminology will follow [3].

2 Graphs with a unique S(k)-factor

In order to study the structure of those graphs with a unique S(k)-factor,
we need to introduce another notation.

In the star K ;, i > 2, we call the vertex of degree i the centre, and the
vertices of degree 1 the leaves. For K, ; we arbitrarily prescribe one vertex
to be the centre and the other the leaf.

Let F be an S(k)-factor of G, and suppose that F' has m; components
which are isomorphic to Kj4, 1 < ¢ < k; implying that 3 m;(1 + i) =
|[V(G)|. We denote the centres of these m; stars by z(3, 1), z(3, 2), . . ., z(¢, ms),
1 < i < k, and the leaves of the star with centre z(3, 5) by ¥1(3,5), %2(3,3), . - -,
i(%,7)- So the components of F' can be described by {S(3,5) = {z(3,);
v1(4,3),..,%(,5)}: 1 < i < k1 < j < my}. For convenience we write
z(1,7) = z; and y:1(1,5) = y;. Finally, we let S denote the set of all
centres, that is, S. = {z(4,7): 1 <1< k,1 < j <my}.

For k = 1, an S(1)-factor is simply a 1-factor. Hetyei (see [7]) determined
that the largest number of edges in the graph G of order 2m with a unique
1-factor is m2. Hence, we may now restrict our attention to the case k > 2.

Lemma 2.1. If G has a unique S(k)-factor F (k > 2), then there exists
aset S, S C V(G), so that I(G — S) = V(G) — S, and the number of
components in F is |S].

Proof: We will show that the centres of the stars K ;’s in the S(k)-factor
can be chosen so that S, satisfies the requirement. First we choose the
centres of the K ’s arbitrarily and let S be the resulting set S.. Since
F is unique, the only possible edges in G[V — S] are those joining leaves
of stars K1,;. Suppose we have such an edge, say y;%:. Then z; and z,
have no other neighbors in {y1,...,%j—1,¥j+1, -2 Yt—1,Ye41s-- -1 Ym, } OF
we get a path of length 5 and hence two K o’s instead of the three K} ;’s.
It is clear that z;z, ¢ E(G). Moreover if k > 3, then z;y: ¢ E(G) and
zy; € E(G) since otherwise the edges z;y;, z:y. are replaced by a K 3.
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Finally z;jz; € E(G). Exchange the centre-leaf roles of z;y; and z.y., and
let 8" = (S — {z;,z}) U {yj,ue}. Then |E(G[V - 5'))| < [E(C[V - S])I.
Now we may proceed inductively to complete the proof. a

From now on, we assume that S, satisfies I(G — S;) = V(G) — S.. The
following lemma is easily proven.

Lemma 2.2. If a graph G has a unique S(k)-factor F. Then the only
vertices that the leaves of any component K,; (2 < i < k) of F can be
adjacent to are their own centres and the centres of k-stars.

We next show that for k > 2, a graph with a proper unique S(k)-factor
(that is, the graph has a unique S(k)-factor, and that unique S(k)-factor
is proper) has at least k vertices of degree one. Note that this result does
not hold for k = 1.

Theorem 2.3. If G has a unique proper S(k)-factor F (k > 2), then the
leaves of one of k-stars in F are vertices of degree one in G.

Proof: The leaves of k-stars cannot be adjacent to any other vertices except
centres of these k-stars. So if the S(k)-factor has only one k-star, we are
done. Otherwise, we assume that for each k-star there is an edge from
one of its leaves to the centre of another k-star. Construct a digraph H
with V(H) = {a; | 1 < i £ ms} and (ai,a;) € A(H) if there is an edge
from a leaf of S(k, 1) to the centre of S(k, 7). If H has a directed cycle of
length at least two, we exchange edges between the k-stars on this cycle to
get another S(k)-factor. So we assume that H is acyclic. Then H has a
vertex with outdegree 0 meaning that there are no edges out of the leaves
of the corresponding k-star and so the leaves of this k-star are the vertices
of degree one in G. (]

Corollary 2.4. If G has a proper S(k)-factor (k > 2) and §(G) > 2, then
G has at least two S(k)-factors.

Proof: It follows from Theorem 2.3. a

Remark 2.5. At this point it is helpful to provide the reader with a
description of what we now know of graphs with a unique S(k)-factor F,
as shown in Figure 1 (the centres are at the top). We describe the other
edges which may lie in the graph.

From the leaves of the k-stars we have edges to centres of k-stars so that
the digraph H of Theorem 2.3 is acyclic. Leaves of i-stars, 2 < i < k, can
only be adjacent to centres of k-stars. Any two centres can be adjacent,
but if the centre of a 1-star in F is adjacent to another centre then its leaf
can not be adjacent to the same centre unless it is the centre of a k- or
(k — 1)-star. By Lemma 2.1 no leaves are adjacent.

In order to obtain an upper bound on the number of edges in a graph
G with a unique S(k)-factor F (k > 2), we associate G and F with two
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graphs G; and F; defined as follows.

T Aj'/\ /]\i/[\‘“

Figure 1

Without loss of generality, suppose that my # 0 and let S(k,1) be the
k-star whose leaves are vertices of degree 1 in G (as described in Theorem
2.3).

Let V(G,) = V(G), where the edges of G, are those of G except that if
both z(1, 7)ys(i2,7) € E(G) and z(1,5)z(i2, ) & E(G), then z(iy, 5)z(i2,7)
€ E(Gh) and (i1, j)ys(i2,7) & E(G1). So |E(G)| = |E(Gh)|-

Define F; as follows:

V(R)=V(F)=V(G)
E(F1)={z(i, s)z(4,7) | (3, 9) #2(4,7),1 £ 4,5 < k,1 < s <my, 1 <7 < my}
U {z(k, 8)yr(i,h) | s=1,2,...,my; if i=k, then s+1 < h <my,
1<r<kjandifl1 <i<k, thenl <h<m;1<r<i}UE(F).

That is, F; contains all edges of the S(k)-factor F,.a complete subgraph
on the vertex-set S., and contains edges from leaves to centres of k-stars.
It is easy to see that F is the unique S(k)-factor of the new graph Fi.

Lemma 2.6. For a given graph G with a proper unique S(k)-factor F (k >
2), we define G, and Fy as mentioned above. Then |E(G1)| < |E(F1)| + ¢
where if k=2 and my =2o0r3,orif mg1=1and m; 21, thene =1,
and in all other cases e = 0.

Proof: We prove the lemma by constructing a one-to-one mapping f from
E(G,) or E(G,) — {e}, e € E(G)) (as appropriate), into E(F}).

The mapping f acts as the identity on (1) the edges of the S(k)-factor
F = US(,3); (2) the edges z(k, s)y-(i,h) € E(G1); and (3) the edges
z(i,8)z(j,r) € E(Gy).

By Lemma 2.2 all that remains is to define the action of f on the edges
ysz(i,5) € E(G1), 1 i < k—1. (Recall that z(1,5) = =; and vi(1,7) =
y;-) Ifysz(3,5) € E(G1), then, by the construction of G, z,z(4,7) € E(G1)
and so both y,z(i, ) and z,z(3, 5) are edges of G. If 2 < i < k —2 we then
obtain another S(k)-factor in G. Hence y,z(i,5) € E(G,) implies that
i € {1,k — 1,k}. We have already defined f(ysz(k,j)) so only two cases
remain. Consider first y,z(k — 1,5) € E(G1), k—1#1s0k 2 3.
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Ifmgy =1, let I = {s| ysz(k —1,1) € E(G1)}. It is easy to see
that if s,r € I, s # r, then z,z, ¢ E(G,). Provided that |I| > 3, we
can extend the one-to-one map f by mapping {y,z(k —1,1) | s € I'} into
{zsz, | 5,7 € I,8 # r}. If 0 < |I| < 3 such an extension is only possible
from {y,z(k —1,1) | s € I — {j},j € I} into {z,z, | r,8 € I,r # s} and
we have ¢ = 1. Consider the case of mg—; > 2 next. Since y,z(k—1,7) €
E(G,) implies that y,z(k — 1,7), z;z(k — 1,7) € E(G) and F is unique,
it follows that y,z(k — 1,t), z,z(k — 1,t) & E(G) where t # j. So we put
fysz(k - 1,5)) = z,x(k — 1,1).

Finally we consider the edges y:z; € E(G1), i # j. Clearly m; > 2 (or
there are no such edges).

Case 1. k > 3. Since yiz; € E(G1) (i # j), it follows that z;z; € E(G)
and both y;z;, z;z; are edges of E(G) and thus we can construct a 3-star
instead of two 1-stars, a contradiction.
Case 2. k = 2. If m; = 2 or 3 then either there are no edges of type y:x;,
1 # j, or the subgraphs spanned by the 1-stars are isomorphic to one of the
four shown in Figure 2 (a) (b) (c) (d).

X1 X2 X1 X2 X3 X1 X2 X3 X1 X2 X3
N Y2 Y1 Y2 y3 ¥1 y2 y3 Y1 ¥a y3
@ (®) © d)
Figure 2

In case (a) the edge y;z2 has no image, but cases (b) and (c) the edge y;1z2
has an image z,z3, and in the fourth (Figure 2 (d)) put f(ysz2) = z1z3
(z1z3 € E(G,)). (Observe that if mg_; =1 and |I| is 2 or 3, then ¢,5 € I
yiz; € E(G1) and no conflict can arise.)

What now remains is the case £ = 2 and m; > 4. Let G| be a subgraph
of G; induced by vertices z,...,Zm1, ¥1,--.,Ym1 and F{ be a subgraph
of Fy induced by vertices z1,...,Zm1, ¥1,---:Ym1. If we can show that
|E(GY)| < |E(FY)|, then we will be able to define f on these remaining
edges and so obtain the described one-to-one mapping.

The proof is by induction on m;. Calculation shows that the claim
is valid when m; = 4. Suppose now that the claim holds for m; < m
and consider the case m; = m. Without loss of generality, we suppose
that y1z2 € E(G)), implying that z1z2 € E(G1), 213 € E(G1), 2 <
i < m, z1z; € E(G)) and y1z; ¢ E(G1), 3 < j < m. Thus |E(G})| =
|E(G1 — {z1,51})|+3. But |E(F])| = |E(F] —{z1,51})|+m+1 and by the
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induction hypothesis |E(G] — {z1,11}| £ |E(F] - {z1,11})| so |E(G})| <
[(G(F])| + 3 — m —1 < |E(F})] as required.

Thus we have described the required mapping f and the proof is com-
plete. a

With Remark 2.5 and Lemma 2.6, we now are able to describe exactly the
graphs with maximum number of edges which have F' as a proper unique
S(k)-factor.

Corollary 2.7. If a graph G has the subgraph F as a proper unique
S(k)-factor (k > 2), then |E(G)| < |E(Fy)| + 1.

We next determine the maximum of |E(F})| over all S(k)-factors F with
n vertices. Given n and k > 2 we denote by f(n, k) the maximum number
of edges in a graph of n vertices which has a proper unique S(k)-factor.
Hence for any graph G of order n which has a proper unique S(k)-factor
we have |E(G)| < f(n, k).

Theorem 2.8. If a graph G of order n has proper unique S(k)-factor
(k 2 2), then

(2ndl) 4 q ifk=2andn=0,2 (mod 3)
(-)(nt2) ifk=2andn=1 (mod 3)
(U4 1) fk=3andn=1 (mod4)

fln k)= q oD% 4y ifk=3andn =3 (mod 4)
&8*'—21 if k=3 and n is even
(noky=0 4 ifk>4 andn# k (mod 2)
| e=RB-kD 4 ifk>4andn=k (mod 2)

Proof: As mentioned in the beginning of this section we assume k > 2.
Suppose that G has a proper unique S(k)-factor F which has m; compo-
nents isomorphic to K; ;. Then n = |V(G)| = Zf=1 mi(1 + 1)). Thus,
letting m = ZL, m;, the number of edges in F; is given by

k k k
|E(F)| = |B(Km)| + Y imi + O imy — k) + (O _ imy — 2k)) + ...
i=1 i=1 i=1

k
+ (z im; — kmy))

k
m(m—1)+ (mg+1)Y_im; — (k+2k+ -+ + kmy)

i=1

1
2

k
- .;.(m(m =~ 1)+ (ma +1)(2 3 s — kma))

i=1
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Let
9(F) = 2|E(Fy)| = m(m — 1) + (mix + 1)(2n — 2m — kmy), (2.1)

where m = Y5, m; and n = SF  mi(i+1). Setting m* = Y5, m, we
obtain

g(F) = (m* + mg)(m* — my — 3) + (mi + 1)(2n — kmy)
= (m*)? — 3m* — mi(mi + 3) + (mx + 1)(2n — kmy).

If my is fixed, then g(F) is a quadric function about m* and reaches its
maximum value when m* is maximized. Hence, in order to maximize g(F)
one should take as many components as possible in F. Hence mz=my =

c-=mg_1 = 0and my = 0 or 1. Therefore determining 5 1 f(n, k) now
beoom& an integer programming problem as follows:

%f(n, k) =ma.x{(m1+m2)2 —3(m1+m2) —mk(mk+3)+(mk+1)(2‘n—kmk)}

Subject to 2mi+3mg+(k+1)me=n
my, mg, mp > 0 integers.

We now start to determine the solutions for this problem.

If n — (k + 1)my is even, then mp =0 and m; = .f,(n (k + 1)my), and
if n — (k + 1)my is odd, then mz = 1 and m; = 3(n — 3 — (k + 1)my).
Moreover, in order to obtam the value of my, whlch maximizes g(F) we
consider following cases.

(1) Suppose that n — (k + 1)m, is even, that is n = (k+1)m, +2m, and
m=mi+ mg.

Suppose that k + 1 is even (so k > 3) and m; > 2. Let F’ be an
S(k)-factor with |[V(F)| = |V(F)|, m} = me — 1, m{ = m; + &} and
m;=m;=0,2<j<k-1 So

9(F) = (m1 +mi)(my + me — 1) + (mg + 1)(kmg + 2my)
and

k
9(F") = (my +mi +

k—
(m1 +mg—1 +—+mk(kmk+2m1 +1).
2 (22)

Thus

(k—1)(k—3)

9(F') — g(F) = (k- 3)m1 + 1 >0. (2.3)

So g(F') 2 g(F) and the maximum number of edges is obtained when we
have only one k-star in F.

7



Suppose that k + 1 is odd and my > 2. Let F’ be an S(k)-factor with
mj = my — 1 k-stars and therefore one 2-star and m{ = m; + £;2 1-stars.
So m’ =m +my + 52 and

k— k—
g(F')=(m1+m+ —)(m1 +my+ —) + my(kmg + 2my +2).
(2.4)

Thus, from (2.2) and (2.4), we have

g(F')—g(F)= (k- 4)m +w

>0ifk>4. (25)

So for k = 2 we expect to have as many 2-stars as possible. This case will
be considered in more detail later.

(2) Suppose that n — (k + 1)m; is odd, that is n = (k + 1)m + 3 +2m,
and m = my + my, + 1.

Suppose that k + 1 is even and m; > 2. Let F’ be an S(k)-factor with
my=mr—1,mh=mag=1m)= 'm.1+—+—andm =my +my + &L
So

g(F) = (my + me + 1){my+ mi) + (mi + 1)(kmy + 2m1 +4)  (2.6)
and

1
) + mi(kmi + 2my + 5).

k+1 k—
g(F’) = (my +mi + -—;—)(ml + mp + 3

Thus

9(F") = g(F) = (k — 3)m; + w

If k = 3, then we expect to have many k-stars. This case will be considered
in detail later.

Suppose that k + 1 is odd and mg > 2. Let F’ be an S(k)-factor with
my, =mg —1, my =0, mj =m1+£;i a.ndm’=m1+mk+ﬁ‘2. So

>0ifk>5  (27)

k
g(F') = (m1 + mu + )(m1 +m + ) + mi(kmy + 2m; +4)

(2.8)
Thus, from (2.6) and (2.8), we have

. k(k +2
8(F") = g(F) = (k = 2)my + ZEL2)
If k = 2, then it is better to have more k-stars.

From the above discussion we conclude that, except when (1) k£ = 2; and
(2) k = 3 and n is odd, if G has a unique proper S(k)-factor F and as many

—4>0ifk>4  (29)
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edges as possible, we should choose F' to have exactly one k-star, at most
one 2-star and all other components 1-stars.

So if k > 4 we easily obtain

n—k)2-9 .
|E(Fy)| = ﬁ-—J——n_k n_k-i_-2n ff n # k (mod 2)
g +n ifn=k (mod 2),

If k = 3 and n is even, then mg = 1, mp = 0 and m; = 25%. Thus we have
|B(Fy)| = 252

We now study the exceptional cases.

When k = 2, from (2.5) and (2.9), we see that g(F) attains its maximum
if my is maximized. So, with fixed n, F; has the most edges if the S(k)-
factor F has as many 2-stars as possible. Hence, if n = 0 (mod 3), then
m; =0, mg = § and |E(F)| = 5"%12; if n = 1 (mod 3), then m; = 2,
mg = 254 and |E(F)| = &A1 and if n = 2 (mod 3), then my =1,
mg = 5—3_—2 and |E(F1)| = J——” ns+1 .

When k = 3 and n is odd, we see from (2.7) that g(F) is an increasing
function of m3. So, with fixed n, F; has the most edges if F’ has as many 3-
star as possible. Hence, if n =1 (mod 4), then m; = 1, mp = 1, mg = 22
and |E(F,)| = &=+ and if n = 3 (mod 4), then m; = 0, mp = 1,
ms = 253 and |B(Fy)| = &£,

Summarizing the above conclusions, we obtain

( nlntl) if k=2and n=0,2 (mod 3)
ﬁﬂs"” . ifk=2and n=1 (mod 3)
(n=L)(n+3 if k=3 and n=1 (mod 4)
|E(Fy)| = { ) if k=3 and n=3 (mod 4)
ﬁl’:—zz if k=3 and n is even
@RP9 4, ifk>4andn#k (mod?2)
| (o=kMak-2) \ n ifk>4 and n=k (mod 2)

But, by Lemma 2.6, we have that f(n, k) = |E(F})| + ¢ where if k = 2 and
m; = 2or 3, or if mg_; = 1, then € = 1, and otherwise ¢ = 0. From the
calculation, this implies that if k =2 and n=0,1 (mod 3), or if k = 3 and
n =1 or 3 (mod 4), then € = 1; otherwise ¢ = 0. Therefore, we obtain the
desired f(n,k). a

Corollary 2.9. If a graph H of order n has an S(k)-factor and |E(H)| >
f(n, k), where f(n, k) is defined as in the Theorem 2.8, then H has at least
two S(k)-factors.
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3 The number of S(k)-factors in an r-regular graph

For graphs H; and Hp, the join of Hy, and H,, denoted by H; + Hj, is
obtained from H; U H; by joining all vertices in V/(H}) to those in V(Hy).
Let e¢(S1, S2) denote all edges in G which have one end in S; and the other
in Sg.

The following characterization will be needed in this section.

Theorem 3.1. (Las Vergnas [6]; Hell and Kirkpatrick [5] and Amahashi
and Kano [2]) For k > 2, the graph G has an S(k)-factor if and only if

i(G-S)<k|S| forall $CV(G).

Theorem 3.2. Let G be a connected r-regular graph (r > 4) of order n
which is not isomorphic to K .. Then G has at least n star-factors each of
which is either a proper S(r)-factor or a proper S(r — 1)-factor.

Proof: We shall show that either G is a special graph which has at least n
proper S(r)-factors or S(r — 1)-factors, or that for every vertex z of G, G
has an S(k)-factor having exactly one K x-component whose center is z,
for some k € {r,r — 1}.

Let z € V(G) and the neighbors of = be denoted by Ng(z) = {¥1,%2,. ..,
yr}. Let Gz = G[V(G) —{=z} — Ng(z)] and I(Gz) = {21, 22, ..., zn} (Recall
that I(G.)is the set of isolated vertices in G;). Obviously, we have h < r—1.
We study the structure of G by considering several cases.

(i) Suppose |I(G:)| = 0. In this case we claim that G, has an S(r — 1)-
factor or G & K,y1,r41 — F, where F is a 1-factor in K,41,41. If
G has no S(r — 1)-factor, then by Theorem 3.1 there exists a set S
in V(Gz) so that i(G; — S) > (r — 1)|S|. Since Ne(I(Gz - S)) C
S U Ng(z), by counting edges between S U Ng(z) and I(G; — S) we
have r|I(G;—8)| < r|S|4+r(r—1) or |S|4r—1 > i(G—S) > (r—1)|S].
Simplifying it we get [S| = 0or 1 as r > 4. But I(G;) = 0, so
S # 0 and thus |S| = 1. Let S = {s}. Then (G, — {s}) < r.
But i(G: ~ {s}) > (r — 1), and thus i(G; — {s}) = r. Moreover, as
Ti(Gz —{s}) = r2 = ec(I(Gx —{s}, {s}UNg(z)) and G is connected,
it follows that G ¢ K, 1,41 — F and the claim is proved.

(ii) If |[I(Gz)| = r — 1, it is easy to see that G = K,.,, which has been
excluded.

(iii) If 0 < |I(Gz)] < r =1 and V(G) = I(G:) U {z} U Ng(z), then
G={z,2,...,2n} +G[{y1,...,¥r}] and we can easily see that G has
n S(r)-factors.
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(iv) Suppose that 0 < |I(Gz)| <r —1and V(G) # I(Gz) U {z} U Ng(z).
Let G, = G[V(G)—{=z,21,..-,2h, ¥1,- .-, ¥r}]- Then [V(GL)| =2 2and
I(G.) = 0. We will show that G has an S(r — 2)-factor. In fact, if
G’ has no S(r — 2)-factor, then by Theorem 3.1 there exists a set S’
in V(G.) so that i(G, — §") > (r — 2)|S’|. Moreover, as I(G;) = 0,
S’ is nonempty. Counting edges we have

(r-2)|8'| <i(G, -85 <|S'|+r—h -1

or
1< < (r—h—l)/(r—3)=l+§Tg.

Since r > 4 and h is a positive integer, A = 1. This implies that |[S’| =
1. Thus we have i(G’, — S') = r — 1. Now each vertex of I(G, — ') is
adjacent to the one vertex of S’ and to r—1 vertices of {y1,2,...,%r}
But as z and z; are each adjacent to all of {y1,2,.-.,¥%r}, we have at
least 2r + (r —1)2 = r2 + 1 edges incident with {y1,%2,...,%-} which
is impossible.

Thus we conclude that G must be as described in (i),(ii) and (iv) and we
now study these graphs.

G2 Ky i1 —For G2 {z,21,20,...,20} + Gl{y1,92, ..., ¥r}], it is
not hard to find n proper S(r — 1)-factors in G. In case (i), each vertex u
of G is the centre of an r-star which is easily extended to an S(r)-factor
and this S(r)-factor has the only r-star centred at u; thus giving n distinct
proper S(r)-factors in G. In (iv), each vertex is the centre of the only
(r —1)-star of the S(r —1)-factor. Thus we obtain n proper S(r —1)-factors
and each of these S(r — 1)-factors has only one (r — 1)-star centred at the
different vertices. We have the required factors. a
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