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ABSTRACT. Both the bandwidth and additive bandwidth of a
graph supply information about the storage requirements of a
representation of the graph. In particular, the bandwidth mea-
sures how far 1’s must be from the main diagonal of the graph'’s
adjacency matrix while the additive bandwidth yields the same
information with respect to the main contradiagonal. Thus
storage can be significantly reduced from that required by the
full adjacency matrix if at least one of the two types of band-
widths is small, which is most likely to occur for sparse matrices.
Alternatively, one could store a representation of the comple-
ment of the graph if one of its two bandwidths is small. We
relate the additive bandwidth to other graphical invariants and
then concentrate on Nordhaus-Gaddum type results to show
there are graphs for which both the bandwidth and the addi-
tive bandwidth of both the graph and its complement are large.
In other words, some graphs require near maximum storage.

1 Imtroduction

Sparse graphs often can be represented efficiently by retaining only a por-
tion of the graphs’ adjacency matrices, for example, only the diagonals, or
contradiagonals (diagonals composed of elements a;; where ¢ + j is a con-
stant), containing non zero entries. The bandwidth and additive bandwidth
are graphical invariants which specify the minimum number of diagonals
and contradiagonals needed. Let G = (V, E) be a graph on p = |V/| vertices
and e = |E| edges. A numbering f is a bijection f: V — {1,2,...,p}. The
bandwidth of G under numbering f is B(G, f) = max{|f(u) — f(v)|: wv €
E}; the bandwidth of G is B(G) = min{B(G, f): f is a numbering}; and an
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J which achieves B(G) is called a bandwidth numbering. The value of B(G)
can range from 1 to p — 1. An excellent survey of many of the properties
of bandwidth can be found in Chinn, Chéitalové, Dewdney, and Gibbs [3].
The adjacency matrix of G when the vertices are numbered according to a
bandwidth numbering has all the 1’s within B diagonals of the main diago-
nal, meaning all the defining information about the graph is stored in the B
diagonals which lie above the main diagonal. In a similar manner Bascufi4n,
Ruiz, and Slater [1] defined the additive bandwidth of G under numbering
f as B¥(G, f) = max{|f(u) + f(v) — (p+ 1)|: wv € E(G)}, and the addi-
tive bandwidth of G as B*(G) = min{B*(G, f): f is a numbering}. The
quantity p + 1 is called the target and the edge sum of edge e = uv under
numbering f is f(u) + f(v). A numbering which achieves B is called an
additive bandwidth numbering. An additive bandwidth numbering places
all the 1’s of the adjacency matrix within Bt contradiagonals of the main
contradiagonal (composed of elements a;; where i+ j = p+1), and thus all
the defining information about the graph is stored in that portion of those
contradiagonals which lie above the main diagonal. The value of B+(G)
can range from 0 to p — 2. We shall need the facts that B+(C,) =1 [2]
and B*(K,) = p — 2, where C,, is the cycle and K, is the complete graph
on p vertices. Depending on the graph, either of B(G) or B*(G) can be
smaller. Results about additive bandwidth can be found in [1,2,5,6,8].

Section 2 relates the value of Bt to other graphical invariants. Sections
3 and 4 yield Nordhaus-Gaddum type results, one for Bt in Section 3
and a mixed theorem involving both B and Bt in Section 4. In Section
5 it is noted that there are graphs for which all of B(G), B*(G), B(G),
and B*(G) are large, where G is the complement of G, meaning neither
bandwidth nor additive bandwidth is useful for such graphs in reducing
storage requirements.

2 Relations Between Additive Bandwidth and Other Graphical
Invariants

Previous work (1,2] has found some invariant relations involving additive
bandwidth, and they are listed here for completeness, where A(G) is the
maximum degree of graph G and Gy (G) is the vertex independence number.

Theorem 1.

(a) B¥(G) > 2G=L,
() p—1- |22 > B+(G) 2 p - 260(G).
() B*(G) 2 22
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Here we present a series of additional relationships where §(G) is the
minimum degree of G, x(G) is its chromatic number, and x; (G) is its edge
chromatic number.

Proposition 2. For any graph G, B*(G) > 6(G) — 1 and this bound is
sharp.

Proof: In an additive bandwidth numbering, vertex 1 has degree at most
B*(G) + 1. Sharpness is shown by cycles and complete graphs. O
Proposition 3. For any graph G, BY(G) > x(G) — 2 and this bound is
sharp.

Proof: Let the vertices be labeled by an additive bandwidth numbering.
Vertices 1,2,..., 2—”—.f—+-| are independent since (p+1)— [(I-%B’L] - 1) +

[2=2]] > B. similarly, vertioes p - [2=2%| +1,p - |22 ] +2,..0p
are independent. The graph thus can be colored by employing one color
for each of these two independent sets and a separate color for each of the
p—2 [?:.f—i'-l < Bt remaining vertices. Therefore x(G) < B*(G) + 2.
Complete graphs achieve the bound. a
Proposition 4. For any graph G = (V, E), B*(G) > x‘—(%)_—l and this
bound is sharp.

Proof: Assume f is an additive bandwidth numbering. Then, for —-B*(G) <
i < B*(G), the sets E; = {e=w € E: f(u)+ f(v) —(p+1) =i} are a
partition of E. Any two edges in the same E; are independent, for other-
wise the non adjacent end vertices of two edges with a common endpoint

would have the same label. Thus all edges in E; can be colored the same
and the result follows. Equality occurs for odd cycles. a

The following lemma and subsequent theorem relate the additive band-
widths of a graph G and its complement, G, with the number of edges e
of G.

Lemma 5. For any graph G with p vertices, e > I..(Pi(;-g‘);l):_l .

Proof: Let f be an additive bandwidth labeling of G, A be the adjancy ma-
trix of G induced by f, and consider isuchthat 1 <i <k = I.LB%(Q_—IJ .

Then each of row i and column p—i+1 of A contains at least p— B+ (G) —2i
ones (corresponding to edges of G) which are not counted for any other

i, Thus, e 2 25%,(p - B*(©) - 2) = 2 [k(p - B+(@)) - 2242)] =

2k(p— B*(G)—k—1). The result follows by substitution for k and straight-
forward manipulation. (]

Theorem 6. For any graph G, B¥(G) 2p—1— \/p(p—1)—2e+1.
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Proof: In Lemma 5 interchange the roles of G and G and solve for B*(G)

to obtain B+(G) > p—1— 1/2¢(G) + 1 where e(G) is the number of edges
in G. Now replace e(G) by &;—Q -e O

3 A Nordhaus-Gaddum Result for Additive Bandwidth

In this section we prove the following Nordhaus-Gaddum result for the
additive bandwidth.

Theorem 7. For any graph G, p—4 < B¥*(G)+ B*(G) < 2p -3 —clogp
where c is a positive constant independent of p. Moreover, the lower bound
is sharp and the upper bound is best possible to within the choice of c.

The theorem is proven by the next four lemmas. We first attack the
upper bound with an approach motivated by the corresponding work for
bandwidth given by Chinn, Chung, Erdds, and Graham [4].

Lemma 8. For any graph G, B*(G) + B*(G) < 2p— 3 — clogp.

Proof: It is well known (see Lovész [7, p. 84] among others) that the
Ramsey number r(k, k) < 4F. It follows that any 2-coloring of the complete
graph K, contains a monochromatic K with k& > clogp where c is a
positive constant independent of p. Equivalently, for any graph G of order
p, either G or G contains.a K with k > clogp. Without loss of generality
assume it is G. Then fp(G) > clogp. Using Theorem 1(b), B(G) <
p—1—clogp. Since B*(G) < p—-2, B*(G)+B*(G) < 2p—3—clogp. O

The next lemma shows that the previous result is best possible by using
the graph employed by Chinn, Chung, Erdés, and Graham [4] to show a
corresponding statement for bandwidth. The fact that it is the same graph
will be important in Section 5.

Lemma 9. There is an infinite family of graphs such that each member G
has the property that B*(G) + B*(G) > 2p — 3 — clogp.

Proof: It is known [4] that the edges of K, can be 2-colored in such a
way that the largest monochromatic K . has z < ¢, logp for some positive
constant c; independent of p. For given p, let G be the subgraph of K,
which contains the edges of one of the colors. For any additive bandwidth
numbering of G, let y = [c;logp] and consider the set of vertices labeled
1,2,...,y and the set labeled y + 1,y + 2,...,2y. Since K, , is not a
subgraph of G, at least one edge between a vertex with a label in the first
set and a vertex with a label in the second set must lie in G and it will have
an edge sum of at most 3y. It follows that B¥*(G) >p+1-3y>p—-15—
3[cilogp]. An identical argument starting with an additive bandwidth
numbering of G leads to the same lower bound for B*(G). The result
follows. a
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We now turn our attention to the lower bound of Theorem 7. It will
be convenient to identify the contradiagonal containing adjacency matrix
elements a; ; for which i + j = s by the symbol d,.

Lemma 10. For any graph G, Bt (G)+ B*(G) >p —4.

Proof: We may assume B*(G) < p — 5; otherwise the lemma is trivially
true. We also may restrict attention to Bt(G) > 2. To see this, suppose
Bt(G) < 1 and the vertices of G are labeled according to an additive
bandwidth numbering. Then, with this same numbering, the adjacency
matrix for G has ones in every position except possibly in the 2BT(G) +1
central contradiagonals and on the main diagonal. This means 5(G) >
p—1—[2B*(G) +1]. From Proposition 2, we have B¥(G) > §(G) —1 >
p—2B*(G) — 3. Thus B*(G)+B*(G) >2p—B*(G)-32p—-4.

Let t = p— B*(G)—1. In the adjacency matrix for G discussed in the pre-
vious paragraph, all off diagonal elements of contradiagonals d3, ds, . . . , d¢11
and dgp—t+1, d2p—t42,---,d2p—1 are ones. Let H be the subgraph of K,
whose edges are precisely those indicated by the ones in these contradiag-
onals. Then H is a subgraph of G and clearly B*(H) < B*(G).

The contradiagonals ds,dy,...,d:+1 show that vertex ¢ is adjacent to
vertex j if i+ j < t+ 1. Hence vertices 1,2, ..., [4] induce a complete
subgraph, M, of H. Similarly, H also contains a complete subgraph, N,
on vertices p— [552] +1,p —*[42] +2,...,p. Furthermore, M and N are
vertex disjoint since [&1] = [ﬂﬂ?ﬂ] <[22] <2and M and N
have the same order.

Consider an additive bandwidth numbering of H. Each of M and N
requires [££1] of the labels, leaving p — 2 [44] labels for other vertices.
Of these latter vertices, either at most || — [£51] have labels at most
|2], or at most |2] — [£5}] have labels at least [2] + 1. Without loss
of generality we assume the former. Consider the labels 1,2,...,|2] —
[£51], 18] - [452]+1, [8] - [41]+2, and |§] —[4*]+3. Since [47] =
I—i(-gtli-l- > ﬂ;—’—sfl = 3, all of these labels are |B] or less. At
least three of these labels must be assigned to vertices of M or N, and of
these at least two must be in one of M or N. Thus there is an edge sum of

at most (|3] - [42]+2) + (18] - [4%] +3) = 23] -2 [=B 2] 4.
Hence B(G) > B+(H) > (0 +1) - (2[3] —2[e=5@] +5) 2p-4-
p+p— B*(G) implying B+(G)+ B*(G) 2p - 4.

The proof of Theorem 7 is completed by the sharpness result of the next
lemma.

Lemma 11. There is an infinite family of graphs such that each member
G has the property that B¥(G)+ B*(G)=p—4.
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Proof: We restrict attention to p and B*(G) even, and values of B*(G)
in the range £ —1 < B*(G) < p— 8 (p must be at least 14 for this to make
sense). Consider the graph H define in the proof of Lemma 10 and observe
t =p—B*(G)~1< § for the given range of B+(G). Thus, H is composed
of p — 2¢ isolated vertices and two isomorphic non trivial components, one
of which, M, is induced by vertices labeled 1,2,...,¢ and the other, N,
by vertices labeled p —t +1,p—t +2,...,p. By symmetry, M and N are
isomorphic. In M, vertices labeled 1, 2,..., ‘—'il;—l- induce a complete subgraph
as discussed earlier, and each vertex labeled 51 +4, 1 < i < 451, is adjacent
only to the vertices labeled 1,2, ‘—;l +1 —4. The following figure illustrates
M when t = 11 and p 2 22. The numbers indicate the vertex labels
associated with the additive bandwidth numbering of G.

The next step is to define a numbering of H. The p — 2t isolated vertices
are labeled with 1,2,...,5 —¢, 5+t + 1,2 +¢t+2,...,p. The subgraph
M is labeled as follows. The vertices not in the K1 are labeled in order
of increasing degree by £ —t+ 1,5 -t +2,...,5 - %‘—1 The unicliqual
vertex of K g1 is labeled with & — % The remaining vertices of K 1 are
labeled in order of decreasing degree by & + 451, 5+ 452 —1,..., 8 + 1.
Finally a vertex v of N is labeled with p + 1 minus the label of the vertex
of M which corresponds to v in the isomorphism between M and N. Thus
the differences between p + 1 and edge sums for edges in N will be the
same as such differences for edges in M. The following figure illustrates
this labeling when p = 30 and ¢t = 11 (B*(G) = 18).

e ow
Ne e+

In view of the earlier comment, we investigate only edge sums in M. To
achieve our goal, all must lie in the interval [p+1 — (p — 4 — BY(G)),p +
1+ (p-4-B*(G))] = [B*(G) +5,2p — B¥(G) — 3]. For edges in the
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Ky, the largest edge sum is Pyl ++‘25 +45-1=2p-B*(G) -3.
The smallest is & — 51 + & 41 = EX4B7(G) which is at least BY(G) + 5
when Bt(G) < p —6. The smallest edge sum involving a vertex not in
Kep is P—t+14+E+52 = M’_f_ﬂﬂ which is at least B+(G) +5 when
B*(G) <p—8. The largest such edge sumis 5 — 41 + 2+ &5l =p—1
which is at most 2p — BT(G) — 3 when B*(G) < p — 2. All of the stated
restrictions are met by our initial assumptions. a

4 A Nordhaus-Gaddum Type Result involving Bandwidth and
Additive Bandwidth

Theorem 7 shows the sharp bound Bt(G) + B*(G) > p — 4. Similarly,
Chinn, Chung, Erdés, and Graham [4] prove B(G) + B(G) > p — 2, which
also is sharp. Thus the following theorem, in which both bandwidth and
additive bandwidth appear, is somewhat surprising.

Theorem 12. For any graph G, B*(G) + B(G) > gﬂ;—zl. Moreover, this
bound is sharp for an infinite family of graphs.

Proof: In any additive bandwidth numbering of G, the vertex labeled
1 is not adjacent to the vertex labeled j, for 2 < j < p — B*(G) -1,
meaning A(G) > p — B¥(G) — 2. Since B(G) > &) (see [3)), B(G) >
P—'fﬂzg)i. Now consider a bandwidth numbering of G. Examining the
resultant adjacency matrix shows that the degree in G of the vertex labeled
1is at least p— B(G)—1. Using Theorem 1(a), we have B*(G) > lﬂg)_—z.
Thus, B*(G) + B(G) > E=BL)=2 4 p=BYG)=2 o 3(B+(G) + B(C)] >
2(p — 2).

To see sharpness, let G be a graph with 3m — 1 vertices, additive band-
width B*(G) = m —1, and having the maximum possible number of edges.
Thus vertices labeled : and j in an additive bandwidth numbering are ad-
jacent if and only if i +j — (p+1)| = |¢ + 5 ~ 3m| < m — 1. Identify a
vertex by its label under this,numbering. Define a numbering f for G by

m+1—-i ifl<i<m
f@=<i ifm+1<i<2m-1.
5m—1—-1 if2m<i<3m-1

Now, B(G) > gg:;_—"'Z—B“’(Cr‘) = 2(m—1)—(m~1) = m—1. We complete the
proof by showing equality occurs, that is, by showing |f(3) — f()| < m -1
whenever f(i) and f(j) are adjacent. Suppose, for some i and j, f(i) and
f(4) are adjacent but |f(z) — f(§)| = m. Without loss of generality we may
assume f(i) > f(j), so f(i) = f(4) +m.
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Case 1: 1 < f(j) < m, meaning 1 < j < m, f(j) = m+1-j, and
J(2) > m+1. Suppose, first, that m+1 < f(i) < 2m—1so0 f(i) =i. Then
F(3) —f(j) =1i+j—m—12m or, equivalently, i + j — 3m > —(m — 1).
Since ¢ < 2m — 1 and j < m, we have |i + j — 3m| < m — 1. This implies ¢
and j are adjacent in G and, hence, are not adjacent in G, that is () and
f(7) are not adjacent in G, a contradiction. Alternatively, we may have
2m < f(3) <3m—1,s02m < i < 3m—1. Since 1 < j < m, we have
2m+1<i+j $4m—1 or [i+j — 3m| < m —1 and, again, f(i) is not
adjacent to f(j) in G.

Case 2: m+1 < f(j) £ 2m — 1. Thus f(j) =3, f(i) = 5m —1 —i, and
f@)—f(G)=5m —1—1i—3j > m or, equivalently, i + j —3m < m — 1.
Sincem+1<jand2m <i,wehave l1=2m+m+1-3m <i+j—-3m
and |i+ j — 3m| < m — 1. Once again, f(i) is not adjacent to f(j) in G. O

5 Concluding Remarks

When this study began, we hoped to show that, for any graph G, at least
one of B¥(G), B*(G), B(G) por B(G) would be small so efficient storage of
G could occur. Unfortunately, this is not the case, as can be seen for the
graph G described in the proof to Lemma 9. For this graph, B*(G) and
B*(G) both exceed p — clogp for some positive constant c. In [4], B(G)
and B(G) are shown to have similar values. Nevertheless, for many graphs
at least one of the four values is small. Further research to determine when
this occurs seems worthwhile.
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