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ABSTRACT. It is shown how any integral monoid can be repre-
sented as the projection of the intersection of the solution set
of a finite collection of linear inequalities, and a lattice, both
in a possibly higher dimension. This in turn can be used to
derive a known representation using Chvétal functions, in the
same dimension as the monoid. Both representations can be re-
garded as discrete analogues of the classical theorems of Weyl
and Minkowski, but applicable in non-polyhedral monoids.

1 Imtroduction

Definition. An integral monoid M is a set of integral vectors containing 0
that is closed under addition. M is finitely generated by {a1,a1,...,a,} C
Z™ if M = {Az | € Z} } where A is the m x n matrix whose columns are
the vectors a;.

" Finitely generated integral monoids are clearly a generalisation of ideals
but because of the absence of the subtraction operation they lack the struc-
ture of ideals. Sometimes they are referred to as “quasi-ideals” (eg Bostock
[2D-

Since an integral monoid lacks the richness of structure of other mathe-
matical entities we show that by possibly “lifting” it into dimension =, if
n > 1, any integral monoid can be regarded as the intersection of a polyhe-
dral cone and a lattice. Both:these types of structures have well developed
and understood properties (eg duality properties). Hopefully our treatment
will enable further results to be obtained regarding integer monoids.

Our main interest in investigating integral monoids is that the set of
feasible right-hand-side vectors for a Pure Integer Programme (which can,
without loss of generality be assumed to have integral coefficients) forms a
finitely generated integer monoid. This aspect is considered by Ryan [5].
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Integral monoids also play a part in the definition of the superadditive dual
of an Integer Programme (see eg Blair and Jeroslow [1]).

Integral monoids can be regarded as the discrete analogue of convex
cones. However, the analogues of the theorems of Weyl [8] and Minkowski
[4] for convex cones do not hold. These theorems are stated below.
Definition. A convez cone S is the set of vectors in R™ containing 0 that
is closed under the operation of taking non-negative linear combinations.
It is finitely generated if it can be generated from a finite number of vectors
(a basis).

Weyl’s Theorem. If a convex cone is finitely generated then it is the
solution set of a finite set of homogeneous linear inequalities. Such a cone
is known as polyhedral.

Minkowski’s Theorem. If a cone is defined as the solution set of a finite
set of homogeneous linear inequalities (eg it is polyhedral) then it can also
be represented as the set of non-negative linear combinations of a finite set
of vectors.

For an integer monoid there may or may not be a finite set of homoge-
neous linear inequalities for which the integer solution set is the monoid.
In the former case the monoid is said to be polyhedral.

Example 1. The (1-dimensional) integer monoid {0, 3, 6, 7,9, 10, 12, 13, 14,
... } generated by {3,7} is not polyhedral.

Trivially the associated convex cone (obtained by taking rational non-
negative combinations of the generators) is {x | z > 0} which is generated
by 1.

Example 2. The integer monoid generated by { G) , (;) , <g) } is poly-

hedral as it is the integer soldtion set of {—2z + 7y > 0,z — 3y > 0}. The
associated polyhedral convex cone is the solution set of the inequalities ob-
tained by ignoring the integrality requirements on z and y. It is generated

w{(3). ()}

It can be shown that a pointed (ie the associated convex cone has a
vertex) polyhedral integral monoid has a unique smallest set of generators
known as a Hilbert basis (see eg Schrijver [7]). The set of generators in
example 2 is such a basis.

In section 2 we show that even if an integral monoid with n generators
is not polyhedral it can be “lifted” into a space of dimension n (if n > m)
so as to become the projection of lattice points within a polyhedral cone
of dimension n. Example 1 illustrates this result, for the 1 dimensional
monoid defined there is the projection of the integer lattice within the cone
defined in example 2, onto the z-coordinate.

Ryan and Trotter [6], following Blair and Jeroslow have shown that
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Weyl’s and Minkowski’s theorems have analogues for finitely generated in-
tegral monoids if one extends the linear functions of the inequalities to
include (non-linear) Chvital [3] functions.

Definition. The set of Chvital functions C is the smallest class of functions
F such that

(i) flinear = fe F
(i) f,g€ Fand o, € Qs = (af +Bg) € F
(iii) feF=>\|fleF

where | f| (z) = | f(z)], “L]” being the “integer round-down” operation.

We adopt the definition of Chv4tal functions given by Blair and Jeroslow
to include linear functions with negative coefficients but only allow the
combination of functions by non-negative linear combinations. (Any neg-
ative coefficients therefore apply to variables at the “deepest” level within
a rounding) eg |—2z| + 3y is a Chvétal function. This is in contrast to
the treatment of Schrijver. Chvital functions are also used to derive cuts
for Integer Programmes. Wheén all the constraints are of the “<” form the
Chvital functions will contain no negative coefficients.

This result of Ryan and Trotter also follows from our result by eliminat-
ing the extra variables from the inequalities and congruences to produce
inequalities involving Chvétal functions. The explanation is given in sec-
tion 3. We illustrate the result by giving such a representation for the
integral monoid of example 1.

Example 3. The non-polyhedral integer monoid generated by {3, 7} is the
solution set of {|3z| + |-2=z] > 0}.

A third way of representing a non-polyhedral monoid by inequalities
is also possible. This follows from applying an integer generalisation of
Fourier-Motzkin Elimination due to Williams [9] (and further explained in
Williams [10]) to eliminating the extra variables from the linear inequal-
ity representation. The resulting representation can be viewed as either
the solution set of a finite disjunction of inequalities together with linear
congruences in the variables or, equivalently the solution set of a finite
set of linear inequalities and congruences involving extra bounded integer
variables. Example 4 illustrates this representation for the non-polyhedral
monoid used in example 1.

Example 4. The non-polyhedral monoid generated by {3, 7} is the integer
solution set of the finite disjunction

V,e{o,1,2}‘($ >7sx=s (mod 3))
or, equivalently, the integer solution set of
{x—7820,0<s<2,x—s=0 (mod 3)}.
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2 Lifting Integral Monoids to Create Polyhedral Monoids

We consider the integral monoid M generated by the columns of the m xn
integral matrix A = ||a;;|| of rank 7, ie M = {Az | z € Z} }. For convenience
we assume the rows of A have been permuted, so as to make the first r rows
linearly independent (over Q).

If A is not of full row rank we append any non-singular (m —r) x (m—r)
matrix U to the last (m —r) rows of A by appending (m —r) extra columns
to create _ 0

Clearly A is of full row rank. Also we can express M by

iez= (f,) is an (n+m —r) nonnegative integer vector whose last (m —r)

components are set to zero.

While any non-singular (th — ) x (m — r) matrix U will suffice it is
convenient to take U = I,,,_,.
Lemma. 3 an (n +m - r) x (n 4+ m — r) non-singular rational matrix B
such that AB = [I,, | 0].

Proof: Since A is of full row rank we can apply elementary column oper-
ations to A to create an identity matrix in the first m columns. Applying
these elementary column operations to the identity matrix I, m—, gives B.

Theorem. Let N = {g | B (z') >0,B (;) =0 (mod Q(%.(:)..)),QE Q™,

y € Q*"} then M = N, where 1(™) is an n-vector of 1s and 0(™~") an
(_m —r)-vector of 0s. “ mod »” signifies equivalence of the corresponding
expressions to the appropriate component of v. If a component is 0 then
the corresponding expression is constrained to be 0.

Proof: Suppose z € M. Then 3z € Z}, 2’ € 0™=7) such that z = fiz

when Z = (f,) .

Define

N
[~ [

) = B~!Z where s is an m-vector, ¢ an (n — m)-vector and u

an (m — r)-vector.

s
4

B = 2. Since z € Z} and 2’ = Q(’""), s satisfies the conditions in

Ly
the definition of N. Therefore s € N.
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Conversely if z € N, Jy € Q"~" such that (

2
=

Hence z € N.

2 1o+ |t

) =B @ and s € ZT,
teZy ™, u=0m"

Zi():ﬁB@):[Imlo]@:g.

Hence z € M. Therefore M = N. O

The import of the theorem is that an integer monoid with n generators
can be viewed as the projection of the intersection of an n dimensional
lattice and cone. We illustrate this firstly for the monoid of example 1 and
then for a more complicated example.

Example 1A. Let M be the non-polyhedral integer monoid generated by
{3,7}. It can be verified that, using the definitions of the lemma A=A=

3,7), B= [‘2 7].

e+ ta

3

1 -3
Hence the monoid is the projection of the solution set of {—2z + 7y >
0,z — 3y > 0,z,y € Z} (the polyhedral monoid of example 2) onto the z
axis. The associated lattice i$ the integer lattice. Figure 1 illustrates this.

In figure 1 the “x”s represent the lattice points lying within the cone
defined by the inequalities and the “x”’ the projection of these points giving
the monoid.

Example 5. Let M be the non-polyhedral integer monoid generated by

{ (g) ) ({42) , (g) } It can be verified that

After simplifying the resultant inequalities and congruences M can be seen
to be the solution set of

2y —zo+4z23 20
z3>0 71=0 (mod 2),1‘2, z3=0 (mod 1).
-3z1 4222 — 1223 >0
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Example 6. Let M be the integer monoid generated by 21,15] ;.
1 3
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It can be verified that A is of rank 2 and that therefore

(220 %—%o
fide-l Y
131 F -5 1

After some simplification of the resultant inequalities and congruences M
can be seen to be the solution set of

5y — 229 >0 z; =0 (mod 2),z; = (mod 1)
—z1+21 20 1 —4x2+623 =0

38 Representing Internal Monoids by Chvital Inequalities

It has already been shown by Blair and Jeroslow and Ryan and Trotter that
a finitely generated integral monoid can be represented as the solution set of
a series of inequalities involving Chvétal functions, in the same dimension
as the monoid, (and conversely). We use the result of section 2 to give an
alternative proof of the theorem.

Theorem. Let m be an integer monoid generated by the columns of the
m X n integer matrix A. Then there exist m-dimensional Chvétal functions

f1, f2y ..., fp such that
M={zgeZ"| filz) 20,i=12,...,p}

and conversely.

Proof: Define A and B as in section 2. Then introducing an integer vector
s

(z), M is the solution set z of the integer programming polytope

zeQ™, yeQ* ", s€Z™, teZ™.

For a given z the above inequalities define a mixed integer programme in
variables y, s and ¢. From results in [1] the Consistency Tester is a set
of Chvétal inequalities in z. M is then the solution set of those Chvétal
inequalities. a

In general it is difficult to calculate specific Consistency Testers except
when n—r = 1 or when m = n—r by a method described in Williams [11].

93



This result is illustrated by further considering example 2 to give the
result in example 3 and also further considering example 4.

Example 2A. It is shown in example 2 that the monoid generated by
{ (:1‘) , (;) , (g) } is the projection, onto z-space, of the integer solutions

—2z+4+Ty>0 1)
r—3y>0 )
From (1)
v<-Jo—y<|-Zof ®)
From (2) A
ys%zﬂySBxJ 4

Adding (3) and (4) gives the feasibility condition on y

1 2
- —Zz|>
l 3zJ + l 7 J >0 (5)
The congruence relation (integrality) on z can be represented by

|z —z=0 (6)

(5) is the Chvétal inequality given in example 3.
Example 4A. For the monoid, defined in example 5, we have

221 — 29 +423 >0 (7)
z3 >0 (8)
-3z, + 229 — 1223 >0 (9)
zy =0 (mod 2),z2,z3 =0 (mod (1)) (10)
Hence
1 1
—z3 < lﬁzl - 4—:1:2J (11)
—-z3 <0 (12)
1 1
x3 S —le + 6562 (13)
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Adding (11) to (13) and (12) to (13) gives

1 1 1 1
l§$1 - sz} + l—zz1 + gng >0 (14)
1 1
[—le + Esz Z 0 (15)
The congruence relations involving z; and z3 can be represented by
3] AN _
l 2 J 2~ ° (16)
|z2) —2z2=0 (17)
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