Two Classes of Super-magic Quartic Graphs

B. Bača and I. Holländer Department of Mathematics Technical University Košice, Slovak Republic

Ko-Wei Lih
Institute of Mathematics
Academia Sinica
Taipei, Taiwan, Republic of China

ABSTRACT. We deal with finite graphs which admit a labeling of edges by pairwise different positive integers from the set $\{1,2,\ldots,|E(G)|\}$ in such a way that the sum of the labels of the edges incident to a particular vertex is the same for all vertices. We construct edge labelings for two families of quartic graphs, i.e., regular graphs of degree d=4.

1 Introduction and definitions

In this paper all graphs are finite, simple, undirected and connected. Let G be such a graph with the vertex set V(G) and the edge set E(G), where |V(G)| and |E(G)| are the number of vertices and edges of G.

A graph G is magic [3] if and only if there exists a mapping f from E(G) into the set of positive integers such that

- (i) $f(e_i) \neq f(e_j)$ for all distinct $e_i, e_j \in E(G)$,
- (ii) $\sum_{e \in E(G)} \alpha(v, e) f(e) = \lambda$ for all $v \in V(G)$,

where $\alpha(v, e)$ is 1 when the vertex v and the edge e are incident and 0 in the opposite case.

Magic graphs were first introduced by J. Sedláček [5]. A characterization of regular magic graphs was given by M. Dood [1]. Necessary and sufficient conditions for the existence of a magic graph can be found in [2,3].

We say that G is super-magic if and only if there exists a mapping f from E(G) into the set $\{1, 2, \ldots, |E(G)|\}$ which satisfies the conditions (i), (ii). The mapping f is called a super-magic labeling of G and the value λ is the super-magic index of the super-magic labeling f.

B.M. Stewart [8] has proved (by construction of triangle labelings) that for n > 5, $n \not\equiv 0 \pmod{4}$, the complete graph K_n is super-magic. It is easy to see that the classic concept of a magic square of n^2 boxes corresponds to the fact that the complete bipartite graph K(n,n) is super-magic for $n \geq 3$ (see also [7]).

J. Sedláček in [6] considered the graph M_{2m} (also called the Möbius ladder) and constructed its super-magic labeling for m odd, $m \geq 3$.

The present notion of super-magic labelings is different from that of magic edge labelings defined in [4]. However, a super-magic labeling of a plane graph G, in our sense, is reminiscent of a magic edge labeling of the plane dual graph G^* of G as defined in [4].

This paper describes super-magic labelings for two classes of regular graphs of degree d=4, which were obtained modifying of labeling L_{10} of the prism R_n [4].

2 Construction of graphs \mathbb{R}_n and \mathbb{Z}_n

Let $J = \{1, 2, 3, ..., n\}$ and $I = \{1, 2, 3, ..., k\}$ be index sets. We make the convention that $x_{n+1} = x_1$ to simplify the notation. Suppose that n is even, $n \ge 4$. Let the prism R_n be the Cartesian product $P_2 \times C_n$ of a path on 2 vertices with a cycle on n vertices, embedded in the plane. We insert exactly one vertex x_i , $i \in J$, into each 4-sided face of R_n .

Case 1. If n=4k and $k \geq 1$, then into the internal (external) n-sided face of R_n we insert the vertices y_1, y_2, \ldots, y_k (z_1, z_2, \ldots, z_k) and consider the graph \mathbb{R}_n with the vertex set $V(\mathbb{R}_n) = V_1 \cup V_2 \cup V_3$ and the edge set $E(\mathbb{R}_n) = E_1 \cup E_2 \cup E_3$, where $V_1 = \{x_i \colon i \in J\}$, $V_2 = \{y_i \colon i \in I\}$, $V_3 = \{z_i \colon i \in I\}$, $E_1 = \{x_i x_{i+1} \colon i \in J\}$, $E_2 = \bigcup_{j=0}^3 \{x_{jk+i} y_i \colon i \in I\}$ and $E_3 = \bigcup_{j=0}^3 \{x_{jk+i} z_i \colon i \in I\}$.

Case 2. If n=4k+2 and $k\geq 1$, then into the internal (external) n-sided face of R_n we insert the vertices y,y_1,y_2,\ldots,y_k (z_1,z_2,\ldots,z_k) and consider the graph \mathbb{Z}_n whose vertex set is $V(\mathbb{Z}_n)=V_1\cup V_2\cup V_3\cup \{y\}$ and the edge set is $E(\mathbb{Z}_n)=E_1\cup \{x_iy_i\colon i\in I\}\cup \{x_{k+i}y_i\colon i\in I\}\cup \{x_{2k+1+i}y_i\colon i\in I\}\cup \{x_{3k+1+i}y_i\colon i\in I\}\cup \{x_{2k+2+i}z_i\colon i\in I\}\cup \{x_{3k+2+i}z_i\colon i\in I\}\cup \{x_{2k+2+i}z_i\colon i\in I\}\cup \{x_{3k+2+i}z_i\colon i\in I\}\cup \{x_{2k+2+i}z_i\colon i\in I\}\cup \{x_{2k+2+i}z_i\colon$

The \mathbb{R}_n and \mathbb{Z}_n are regular graphs of degree d=4; let their vertices be labeled as in Figure 1 (if n=4k) and Figure 2 (if n=4k+2).

3 Super-magic labelings of graphs \mathbb{R}_n and \mathbb{Z}_n

If $n = 4k \ge 8$, we construct an edge labeling f_1 of the regular graph \mathbb{R}_n in the following way.

$$f_{1}(x_{i}x_{i+1}) = \begin{cases} 3i+2 & \text{if } 1 \leq i \leq 2k-2, \\ 6k & \text{if } i = 2k, \\ 4 & \text{if } i = 2k, \\ 18k-1-3i & \text{if } 2k+1 \leq i \leq 4k-2, \\ 6k+1 & \text{if } i = 4k-1, \\ 12k-3 & \text{if } i = 4k, \end{cases}$$

$$f_{1}(x_{i}y_{i}) = \begin{cases} 2 & \text{if } i = 1, \\ 12k-3i & \text{if } 2 \leq i \leq k, \end{cases}$$

$$f_{1}(x_{k+i}y_{i}) = \begin{cases} 9k-3i & \text{if } 1 \leq i \leq k-2, \\ 6k+2 & \text{if } i = k-1, \\ 12k & \text{if } i = k, \end{cases}$$

$$f_{1}(x_{2k+i}y_{i}) = \begin{cases} 12k-1 & \text{if } i = 1, \\ 3i+1 & \text{if } 2 \leq i \leq k, \end{cases}$$

$$f_{1}(x_{3k+i}y_{i}) = \begin{cases} 3k+1+3i & \text{if } 1 \leq i \leq k-2, \\ 6k-1 & \text{if } i = k-1, \\ 1 & \text{if } i = k, \end{cases}$$

$$f_{1}(x_{2k+i}z_{i}) = \begin{cases} 3k+1-3i & \text{if } i \in I, \end{cases}$$

$$f_{1}(x_{2k+i}z_{i}) = \begin{cases} 3i & \text{if } i \in I, \end{cases}$$

$$f_{1}(x_{3k+i}z_{i}) = \begin{cases} 3k+1-3i & \text{if } 1 \leq i \leq k-2, \\ 6k+4 & \text{if } i = k-1, \\ 6k-2 & \text{if } i = k, \end{cases}$$

$$f_{1}(x_{3k+i}z_{i}) = \begin{cases} 3k+3i & \text{if } 1 \leq i \leq k-2, \\ 6k-3 & \text{if } i = k-1, \\ 6k-3 & \text{if } i = k-1, \\ 6k+3 & \text{if } i = k. \end{cases}$$

Lemma 1. f_1 is a bijection from the set $\{1, 2, ..., |E(\mathbb{R}_n)|\}$ onto the edges of \mathbb{R}_n if n = 4k and $k \geq 2$.

It is not difficult to check that the labeling f_1 uses each integer $1, 2, \ldots, |E(\mathbb{R}_n)|$ exactly once.

We denote by $\lambda(v)$ the sum of the labels of the edges incident to the vertex v.

Lemma 2. If $n = 4k \ge 8$ then the labeling f_1 of \mathbb{R}_n has the same value $\lambda(v)$ for all vertices of \mathbb{R}_n .

Proof: For $i \in I$ we have

$$\lambda(y_i) = f_1(x_i y_i) + f_1(x_{k+i} y_i) + f_1(x_{2k+i} y_i) + f_1(x_{3k+i} y_i) = 24k + 2,$$

$$\lambda(z_i) = f_1(x_i z_i) + f_1(x_{k+i} z_i) + f_1(x_{2k+i} z_i) + f_1(x_{3k+i} z_i) = 24k + 2,$$

and analogously for $i \in J$ the $\lambda(x_i)$ is equal to 24k+2.

Our previous results lead to the following theorem.

Theorem 3. If n = 4k and $k \ge 1$ then \mathbb{R}_n is super-magic.

Proof: If n = 4, then \mathbb{R}_n is the octahedron from the platonic family. The octahedron is super-magic and Figure 3 shows one of its super-magic labelings.

If $n=4k\geq 8$ then from Lemma 1 and Lemma 2 it follows that the edge labeling f_1 is a super-magic labeling of \mathbb{R}_n with the super-magic index $\lambda=24k+2$. Hence the proof is complete.

In the sequel we shall deal with the regular graph \mathbb{Z}_n if n=4k+2 and $k\geq 1$. Define the edge labeling f_2 of \mathbb{Z}_n as follows.

$$f_2(x_ix_{i+1}) = \begin{cases} 3i+2 & \text{if } 1 \le i \le 2k-1 \text{ except } i=2, \\ 3n-7 & \text{if } i=2 \text{ and } k \ge 2, \\ n+2k+2 & \text{if } i=2k, \\ 4 & \text{if } i=2k+1, \\ 4n+2k-3i & \text{if } 2k+2 \le i \le 4k \text{ except } i=2k+3, \\ 8 & \text{if } i=2k+3 \text{ and } k \ge 2, \\ n+2k+1 & \text{if } i=4k+1, \\ 3n-3 & \text{if } i=4k+2, \end{cases}$$

$$f_2(x_iy_i) = \begin{cases} 2 & \text{if } i=1 \text{ and } k \ge 1, \\ n & \text{if } i=2 \text{ and } k=2, \\ 15-3i & \text{if } 2 \le i \le 3 \text{ and } k \ge 3, \\ 3n-3i & \text{if } 4 \le i \le k \text{ and } k \ge 4, \end{cases}$$

$$f_2(x_{k+i}y_i) = \begin{cases} 2n-1 & \text{if } i=1 \text{ and } k=1, \\ (5k+1)i-2k-1 & \text{if } 1 \le i \le 2 \text{ and } k=2, \\ 2n+k-1 & \text{if } i=1 \text{ and } k \ge 3, \\ 2n+k+3-3i & \text{if } 2 \le i \le k-1 \text{ and } k \ge 3, \\ 6k+6 & \text{if } i=k \text{ and } k \ge 3, \end{cases}$$

$$f_2(x_{2k+1+i}y_i) = \begin{cases} 3n-1 & \text{if } i=1 \text{ and } k \ge 1, \\ 3n-15+3i & \text{if } 2 \le i \le \min\{3,k\} \text{ and } k \ge 2, \\ 3i & \text{if } 4 \le i \le k \text{ and } k \ge 4, \end{cases}$$

$$f_2(x_{3k+1+i}y_i) = \begin{cases} 3n-5 & \text{if } i=1 \text{ and } k=2, \\ 3k+1+3i & \text{if } 1 \le i \le k-1 \text{ and } k \ge 3, \\ 6k+2 & \text{if } i=k \text{ and } k \ge 1, \end{cases}$$

$$f_2(x_1y) = \begin{cases} 3n-2, \\ f_2(x_{2k+2}y) = \begin{cases} 3, \\ 3n-2, \\ f_2(x_{2k+1}y) = \begin{cases} 3n, \\ 3n-2i-4 & \text{if } 1 \le i \le k \text{ and } k \ge 3, \\ 3n-3i-2 & \text{if } 1 \le i \le k \text{ and } k \ge 3, \end{cases}$$

$$f_2(x_{k+i+1}z_i) = \begin{cases} 2n & \text{if } i=1 \text{ and } k=1, \\ 3n-2i-4 & \text{if } 1 \le i \le k \text{ and } k \ge 3, \\ 2n-2k+1 & \text{if } i=k-1 \text{ and } k \ge 3, \\ 2n-2k+2 & \text{if } i=k-1 \text{ and } k \ge 3, \\ 2n-2k+2 & \text{if } i=k-1 \text{ and } k \ge 1, \end{cases}$$

$$f_2(x_{2k+2+i}z_i) = \begin{cases} 2i+5 & \text{if } 1 \le i \le k \text{ and } k \le 2, \\ 3i+4 & \text{if } 1 \le i \le k-1 \text{ and } k \ge 3, \\ 3k+3 & \text{if } i=k \text{ and } k \ge 3, \end{cases}$$

$$f_2(x_{3k+2+i}z_i) = \begin{cases} 3k+3+3i & \text{if } 1 \le i \le k-2 \text{ and } k \ge 3, \\ 6k+1 & \text{if } i=k-1 \text{ and } k \ge 2, \\ n+2k+5 & \text{if } i=k \text{ and } k \ge 1. \end{cases}$$

Theorem 4. If n = 4k + 2 and $k \ge 1$ then \mathbb{Z}_n is super-magic.

Proof: It is enough to show the existence of a super-magic labeling of \mathbb{Z}_n .

It is simple to verify that the labeling f_2 is a bijection from the set $\{1, 2, \ldots, |E(\mathbb{Z}_n)|\}$ onto the edges of \mathbb{Z}_n . Furthermore, by direct computation, we obtain that for every vertex $v \in V(\mathbb{Z}_n)$ (under the labeling f_2) the sum of the labels of the edges incident to the vertex v is equal to 6n + 2.

This implies that the labeling f_2 is super-magic and the proof is complete.

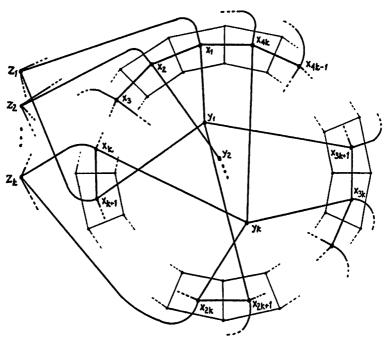


Figure 1. The labeled graph \mathbb{R}_n when n=4k

References

- [1] M. Doob, Characterizations of regular magic graphs, J. Combin. Theory, Ser. B 25 (1978), 94-104.
- [2] R.H. Jeurissen, Magic graphs, a characterization, Europ. J. Combinatorics 9 (1988), 363-368.
- [3] S. Jezný and M. Trenkler, Characterization of magic graphs, Czechoslovak Math. J. 33 (1983), 435-438.
- [4] Ko-Wei Lih, On magic and consecutive labelings of plane graphs, *Utilitas Math.* 24 (1983), 165-197.
- [5] J. Sedláček, Problem 27, in: Theory of graphs and its applications, Proc. Symposium Smolenice (June 1963), 163-167.

- [6] J. Sedláček, On magic graphs, Math. Slov. 26 (1976), 329-335.
- [7] B.M. Stewart, Magic graphs, Can. J. Math. 18 (1966), 1031-1059.
- [8] B.M. Stewart, Supermagic complete graphs, Can. J. Math. 19 (1967), 427–438.

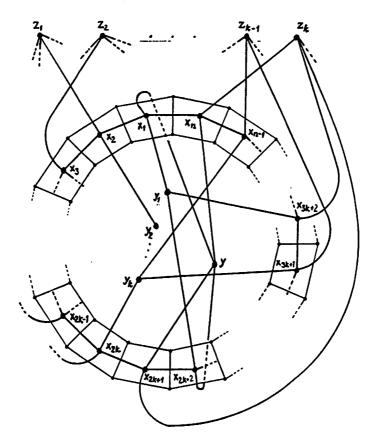


Figure 2. The labeled graph \mathbb{Z}_n when n=4k+2



Figure 3. Super-magic labeling of octahedron