An algorithm for enumerating trades in designs,
with an application to defining sets

CoLIN RaMsay!
Depts. of Computer Science and of Mathematics,
University of Queensland,
Brisbane, QLD 4072.
(email: cram@cs.uq.edu.au)

Abstract

An algorithm is presented which, when given the non-isomorphic
designs with given parameters, generates all the trades in each of
the designs. The lists of trades generated by the algorithm were
used to find the sizes, previously unknown, of smallest defining sets
of the 21 non-isomorphic 2 — (10,5,4) designs. Consideration of
trades in a design to isomorphic and to non-isomorphic designs led
to two variations on the concept of defining sets. The lists of trades
were then used to find the sizes of these smallest member and class
defining sets, for five parameter sets.

1 Introduction

Given a v-set V, a collection B of k-subsets (called blocks) of V, with the
property that each t-subset of V is in exactly A of the blocks of B, is
called a t—(v,k,A) design. The number of blocks, |B|, in the design is
denoted by b and the number of distinct blocks in B by b*. If b* = b the
design is said to be simple. We shall be concerned exclusively with simple
designs herein. Given a set of parameters for a design, the number of non-
isomorphic designs with these parameters is denoted by n. A generic design
will be denoted by D = (V, B).

A (v,k,t) trade of volume s consists of two non-empty disjoint collections,
Ty and T3, of k-subsets of a v-set V, with |T}| = |T3| = s, such that for
every t-subset of V' the number of blocks containing this subset is the same
in both T} and T,. It is a standard result that the volume s of a trade
is at least 2, see [17]. Sometimes we will speak loosely, and say that T}
(or T3) is a trade. If T} C B, we say that the design contains the trade.
Given a collection of trades in a design, if no proper subset of a trade in
the collection is also a trade in the collection, then the trades are said to
be minimal, and the collection of trades minimised.
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For some references on trades, see [17, 19, 21]. Trades have many appli-
cations in the theory of designs. See, for example, [15, 16, 20] for the use
of trades in the construction of designs with different values of b* and the
construction of non-isomorphic designs from a given design.

As a first step toward characterising the trades contained in a t—(v,k, })
design, as opposed to all the (v, k,t) trades with each t-subset of V appear-
ing at most A times and volume s < b, an algorithm to enumerate all the
trades in the designs with a given set of parameters was developed. This
algorithm is presented in Section 2. In Section 3 we show how the lists of
trades generated by the algorithm can be used to find the sizes of smallest
defining sets of designs. A defining set of a design is a subset of the blocks
of a design that can appear in no other design — formal definitions will be
given in Section 3. By considering only some of the trades in a design, the
technique used in this section leads to the new concepts of member and
class defining sets of designs. In Section 4 we discuss the results obtained
using the algorithm, with the results themselves being contained in a series
of tables in an appendix at the end of this paper.

2 Algorithm

Given parameters 2 <t < k < v, A > 1, suppose n is the number of non-
isomorphic t—(v, k, A) designs and that all n of the designs are simple. Let
D = {Dy,...,Dn_1} be a transversal of the t—(v, k, A) designs. That is,
any t—(v, k, X) design is isomorphic to precisely one D;, 0 <i<n—1. We
wish to enumerate, for each D;, the subsets of the set of blocks of D; that
are trades. :

Suppose that {T},T>} is a trade and that 73 C B;. ‘Then, by the definition
of a trade, (D; \T1)UT? is also a t—(v, k, A) design, say D’. Now D' will be
isomorphic to D;, for some j. It may be that i = j, but this is not true in
general. Note that, since T} and T3 are non-empty and disjoint, D’ # D;.
We say that T} is a trade from D; to D’ and that T3 is a trade from D’ to
D;.

Conversely, given D; and any design D' # D;, suppose that D; = BUT)
and D’ = BUT,, with T} N Ty = 0. Thus B is the set of blocks common
to both designs, while T}, T; # 0, since D' # D;. Now {T},T>} is a trade,
and D; contains T;. Note that, if D; N D’ = @, B will be empty, and the
trade will consist of the designs D; and D’ themselves.

So, we can generate all the trades in a design D; by comparing D; to every
other design with the same parameters and eliminating common blocks.



Given D, it is easy to generate all possible designs by applying all permu-
tations of V' to the designs in D. Thus we arrive at our algorithm, given in
outline below.

for all permutations of V'
foralljin0...n-1
permute design D;
foralliin0...n-1
find the trade from D; to permuted D;
store trade
end for
end for
end for
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This algorithm is obviously non-polynomial, since the outer loop 1-9 will
be executed v! times. It is possible to enumerate all permutations so that
successive permutations differ by a single transposition, see for example
[25, 27]. Such an enumeration yields a constant amortised time (CAT)
algorithm. That is, the total cost to generate all permutations, divided by
the number of permutations, is a constant. So, the overhead to generate
all the permutations of V' is O(!).

For each iteration of the loop 1-9, statement 3 will be executed n times
and statements 5, 6 will be executed n? times each. For the designs we are
concerned with, the value of v is less than 32, the word size of the computers
used. Thus, each block of a design can be stored in a single word as a bit-
set and set operations on the blocks performed in constant time. So the
complexity of statement 3 depends only on the number of blocks in the
design and will be O(b). For statement 5, we have to compare every block
in D; with every block in the permuted D; and strike out matched pairs.
Since the permuted design is not sorted, this will be O(b?).

So, the overall complexity of the algorithm will be O(v!+vin(b+n(b%+Ss))),
where Sg stands for the complexity of statement 6. The trades are stored
in binary trees, one tree to each of the n? ordered pairs of designs, with
the trades ordered lexicographically. We call the first design (D;) in the
ordered pair the initial design and the second (D;) the final design. For
ordered pairs of designs, we regard trades as distinct if the sets of blocks of
the trades in the initial designs are different, and store only the blocks of
the trades in these initial designs. We do not differentiate, in the current
version of the algorithm, between trades with different sets of blocks in the
final designs.



Since comparing trades will be O(b), searching the tree is an O(blog, NT)
operation, where NT stands for the number of trades in the tree. Insertion
of a new trade requires memory allocation and O(b) time. We shall assume
that the total time to execute statement 6 amortises to O(b?), or less, for
each call. Thus, the complexity of the algorithm reduces to O(v!n2b?). We
shall investigate the validity of this expression empirically in Section 4. As
some justification for our assumption, consider the following points, some
of which are discussed further below:

i) It is possible for the trade to be empty, in which case statement 6 can
be skipped.

ii) The number of distinct trades is much less than the number of times,
vIn?, that statement 6 is executed. So in most cases, only a partial
traversal of the tree is required in statement 6 before the “new” trade
is found and insertion proves unnecessary.

ili) The trees are kept as small as possible by there being one for each
ordered pair of designs.

iv) The trees are initially empty, so the search time is initially small and
grows as the tree grows.

Note that the running time of the algorithm is independent of the design
parameters t,k, A, except as these affect . In practice, calculating the
permutations accounts for only a minor part of the running time of the
algorithm. Profiled runs of the algorithm, using the prof [26] Unix utility,
revealed that the bulk of the time is spent building the trades in statement
5 or, to a lesser extent, comparing trades in the tree searches as part of
statement 6.

As given, the algorithm takes no account of the automorphism groups of
the designs. Let A; denote the order of the automorphism group of D; and
let N; denote the number of distinct designs isomorphic to D;. Note that
vl = AiN;, 0 <i<n—1. Let N = Y0 v!/A; be the total number of
distinct designs, then the maximum number of trades from D; is N — 1.
The maximum number of trades from D; to designs isomorphic to D;,
i # j, is Nj, and each of these will be enumerated at least A; times. The
maximum number of trades from D; to isomorphic designs is N; — 1 and,
if the permutation is an automorphism, the trade will be empty.

Since trades to distinct designs must be different, the upper bounds given
for the number of trades are always achieved, if we distinguish trades on
the basis of the blocks in both 77 and T,. However, although trades from
D; to distinct designs are different, the sets of blocks of different trades



in D; itself may be the same. Since we store only that part of the trade
which lies in D;, the number of trades in D; will, in general, be less than
the bounds given.

Thus the algorithm may do much redundant work, generating empty trades
or trades already listed. We can turn the empty trades to advantage by
counting their number, for each of the initial designs. Since empty trades
only arise when the permutation leaves the set of blocks of a design un-
changed, this count is, in fact, the order of the automorphism group, A;,
of the design. Of course, this value is available from other sources, but its
calculation here is convenient and provides a check on the operation of the
algorithm.

3 Defining Sets

Given a t—(v,k, A) design D, a subset of the blocks of D that occurs in
no other t—(v,k, ) design is called a defining set of D, and is denoted
dD. A defining set, no proper subset of which is also a defining set, is
called a minimal defining set, denoted d, D. A defining set for which no
other defining set has a smaller cardinality, is called a smallest defining set,
denoted d, D. We are interested here in the size, |d, D|, of d, D.

The concept of defining set was introduced in the series of articles [6, 7, 8].
The close connection between defining sets and trades is illustrated by the
following two results, drawn from [9]. See also [29]. For further results on
defining sets, see [10, 11, 14, 28].

Lemma 1 Every defining set of a design D = (V, B) contains a block of
every possible trade Ty C B. a

Lemma 2 If D = (V,B) is a t—(v, k, A) design and S C B contains a block
of every minimal trade in D, then S is a defining set of D. a

Given a collection C of k-subsets of V', any design D which contains C is
said to be a completion of C, and C is said to complete to D. If C is in only
one design D, and is thus a defining set, C is said to complete uniquely, and
D is said to be the unique completion of C. Previous theoretical results
have given lower bounds on |d,D|. Consideration of the smallest volume
trades in a design yields the following result.

Theorem 3 Let D = (V,B) be a t—(v, k, A) design with |B| = b, and let s



denote the size of a smallest volume irade in D. Then any collection, B*,
of more than b— s blocks from D completes uniquely.

Proof: If B* = B, the result is trivial. Let B* be a collection of blocks from
B, with b — s < |B*| < b, and suppose that B* completes to two distinct
designs Dy and D;. Now B; \ B* # By \ B*, By \ B* # 0 and B> \ B* # 0.
Thus {B, \ B*, B3\ B*} contains a trade with volume less than s, which is
not possible. (m]

Corollary 4 (i) |[d,D| <b-s+1,
(ii) For any du D, |dyD| < b— s+ 1.

Suppose that, given a design D, we have enumerated the family of distinct
trades T = {Ti}ier in D using our algorithm, and that |7| = d. This
family can be represented by a d x b incidence matrix M = {m;;}, with
m;; = 1 if trade T; contains block b; and 0 otherwise. In a similar manner
to [18], each row of M can be thought of as a linear inequality

miobo + - -+ mip_1bp—1 > 1.

Here the b;, 0 < i < b—1, are our unknowns, and they stand for the blocks
of D. They are restricted to be either 0 or 1. In view of Lemma 2, since
T contains all trades in D, any solution to this system of d inequalities is
a defining set for D. Further, in view of Lemma 1, any defining set for D
will be a solution to the system of inequalities.

So we formulate the integer linear programme (ILP): minimise

b—1
Zbil

1=0

subject to the system of inequalites represented by M, with b; = 0 or 1,
0 <i < b—1. Any optimal solution to this ILP yields a smallest defining
set, and thus the value of |d,D|. As a practical matter, to reduce the
number of inequalities, we may choose to minimise 7 before solving the
system, but this does not affect the validity of our argument.

To motivate what follows, consider the problem of identifying a unique
design D among the N t—(v, k, ) designs. To do so, we need to supply
information about D. If the information consists solely of blocks of D
then it is a defining set. If the information also includes block intersection
numbers then it is a specifying set, see [24]. An arbitrary collection of
information about a design, sufficient to identify it uniquely, will be called



an establishing set. If the establishing set includes information about D
that is invariant under isomorphisms, then we may be able to partition D
into two or more parts and say which part D lies in. In the limiting case,
the invariants may be sufficient to identify uniquely the isomorphism class
to which D belongs. Examples of design invariants include whether or not
the design is simple and the order of the automorphism group of the design.
An example of establishing information about D that is not an invariant is
the knowledge that the design does not contain a particular k-subset of V.

Given an element D; of D, let D} denote the set of N; distinct designs iso-
morphic to D;. For each isomorphism class D} the algorithm to enumerate
the trades gives the number of trades in D to designs in D}. Each such set
of trades represents an ILP. An optimium solution of this ILP represents
the smallest number of blocks of D required to ensure that no completion
lies in D}, or in D* \ {D} if D} = D*.

If D} = D*, then the trades in D are all to another member of the class D*.
Such trades will be called member trades, or m-trades, and any solution, not
necessarily optimal, to the ILP that the collection of such trades represents
is a member defining set. A member defining set of D is denoted mD, and
we note that, while it may have more than one completion, exactly one of
these completions is in D* and this completion is D. Just as we can define
minimal and smallest defining sets, we can define minimal and smallest
member defining sets. These are denoted m,;, D and m, D respectively.

If D} # D*, then the trades in D are all to designs in another isomorphism
class. Such trades will be called class trades, or c-trades. If we form the
collection of all c-trades in D then any solution, not necessarily optimal, to
the ILP that the collection of such trades represents is a class defining set.
A class defining set of D is denoted cD, and we note that, while it may
have more than one completion, all of these completions are in D* and one
of them is D. Just as we can define minimal and smallest defining sets,
we can define minimal and smallest class defining sets. These are denoted
¢m D and ¢, D respectively.

Note that a set of blocks that is a class defining set is a class defining set
for every design to which it completes. Also, it is possible for a set of
blocks to be a member defining set for more than one design, in different
classes. For example, if a set of blocks S completes in only two ways, to
two non-isomorphic designs Dy and Ds, then S = mD; and S = mD,.

Obviously, any defining set is also a member and a class defining set and a
member and a class defining set together constitute a defining set, so

Im, D, e, D| < |d,D| < |m,D| + |es D).



In the case n = 1, |[m,D| = |d,D| and |¢,D| = 0. In the case n > 1,
for each of these inequalities, examples are given in the tables at the end
of this paper where equality holds and where it does not, except that no
example is known where |d,D| = |m;D|+|c; D|. The examples in the table
also show that |m,D| < |e;D|, |m,D| = |¢;D| and |m,;D| > |c,D| are all
possible.

The case |m,D| < |d,D| is particularly interesting, since we can find |m, D]
given only the design D, by using the list of m-trades in D generated by a
slightly modified version of our algorithm. We do not need a transversal of
all the n classes and, in fact, need not know what n is. Since |m,D| = |d,D|
in at least two cases where n > 1, [m, D| is a potentially tight lower bound
on |d;D]. In general, |¢; D} is a better lower bound for |d, D|, being tight
in many of the examples given, but it is not so readily calculable.

Suppose now that we wish to estimate the value of |m, D|. That is, given a
design D € D}, what is the smallest number of blocks of D that uniquely
identifies it among all the designs in D;? The total number of blocks in
the N; designs in Dj is bNV;, and the total number of k-subsets of V is (}).
So, each k-subset of V' appears in an average of bN;/(}) designs of Dj. Let
the factor f = (})/b. Then 1/f is the average proportion of the designs in
D; that contain a given k-subset.

Now all designs in D} are the isomorphic, differing only in the labelling of
the elements. If we assume that the k-subsets of V' are randomly distributed
among the N; designs of D}, then f is the reciprocal of the probability that
a particular k-subset of V appears in a given design. So, the knowledge
that a design contains a particular k-subset of V means that the design is
one of N;/f designs from the N; designs in D;. If we assume further that
the blocks in a design are independent of each other, then the knowledge
of 2 blocks of a design means that the design is one of N;/f* designs from
the N; designs in D;. To specify D uniquely, this value must be at most
1, that is, N; < f°. Taking logarithms to base f yields z > log, N;. The
value log; N; is thus the expected value of |m,D|, under the assumptions
stated. We will discuss the validity of this expression in Section 4.

4 Results

The algorithm was run on five sets of parameters, where n > 1 and all
the designs are simple. The results for each of these parameter sets are
described briefly in the first five subsections of this section. These results
are presented in tabular form as part of the appendix at the end of this
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paper, with three tables per parameter set. Space precludes listing the
blocks of the all designs or the trades in the designs. Instead, we content
ourselves with listing the numbers of distinct trades and distinct minimal
trades in each design of our transversal.

The first table (which is sometimes split into two tables, due to space limi-
tations) lists the number of distinct trades in each design, where “distinct”
means “having a different set of blocks” in the given design. The first col-
umn of this table gives the label of the design, as given in the reference
from which the transversal is drawn. The next n columns list the number
of distinct trades from each design to each of the other designs, that is, to
designs in the given isomorphism class. The number of m-trades in D; can
be obtained from column D; of this n x n array of values. The ¢ column
lists the total number of distinct trades in the design to non-isomorphic
designs, that is, the number of c-trades. The final column lists the total
number of distinct trades in the design.

Note that the number of trades listed in these last two columns can be less
than the sum of the number of trades in the appropriate columns from the
first n. This is due to the fact that a trade in a design can be traded in
more than one way, to both isomorphic and non-isomorphic designs, and
to each of these in more than one way. This last point also explains why
the n x n array of values is not symmetric.

The number of distinct c-trades in D; is bounded below by the maximum
number of c-trades from D; to each of the non-isomorphic designs. The
total number of distinct trades in D; is bounded below by the maximum
of the number of m-trades and the number of c-trades. The tables contain
examples where the number of c-trades and the total number of trades are
equal. However, there are no examples where these numbers match those
for a particular initial/final pair of designs.

There appears to be no obvious pattern to the numbers, although there
seems to be a correlation with the order of the automorphism groups of
the final designs, and thus the number of distinct designs in each class.
Recall that the algorithm only stores the blocks of a trade in one of the
designs, not both. Thus, information about how many ways a particular
set of blocks can be traded is not available, although some indication of its
average value can be obtained by comparing the number of distinct trades
with the number of distinct designs isomorphic to the final designs, that is,
the N;.

The second table (which again is sometimes split into two tables) lists the
sizes of the collections of trades in the same manner as the first, but here
the collections of trades have been minimised. That is, any trade which
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is a proper superset of another trade in the collection has been removed.
Note the significant, but very variable, reduction in the number of trades
after minimisation.

Since trades in one collection may, or may not, be minimal with respect to
trades in another collection, there is no obvious relationship between the
number of distinct minimal c-trades, the total number of distinct minimal
trades and the number of distinct minimal trades between pairs of designs.
There also seems to be no relationship between the number of distinct
minimal m-trades, c-trades and trades and the values of |m,D|, |¢,D| and
|d, D).

The final table for each parameter set gives the order of the automorphism
group, A;, for each of the designs and the number of distinct designs,
N; = v!/A;, in each isomorphism class. The next column gives the loga-
rithm of this, to the base f. Recall that this logarithm gives the expected
value of |m, D|, under the assumption that the blocks in a design are ran-
domly distributed and independent. This value will be discussed briefly in
Subsection 4.8.

The values of |m,D|, |c,D| and |d,D|, found by solving the ILP optimi-
sation problems represented by the lists of appropriate trades, are given
in the final three columns. The values of |m,D| and |¢,D] are all new.
The values of |d,D| for four of the parameters sets have previously been
calculated. Our results match the published results, except in one case,
which is discussed in the relevant subsection. The values of |d, D| for the
21 2—(10,5,4) designs are new.

No attempt was made to enumerate or analyse all optimal solutions, and
thus all smallest defining sets, to the ILP. Two interesting questions for
further investigation are whether or not a smallest defining set always con-
tains a smallest member defining set and a smallest class defining set, and
the converse question. That is, whether or not a smallest member defining
set or a smallest class defining set can always be embedded in a smallest
defining set.

4.1 2-(8,4,3)
There are four non-isomorphic 2—(8,4,3) designs. The transversal used
here is that given in [6], which also gives |d,D| for each design.

Note that there are 30 distinct designs isomorphic to v* and that there are
30 distinct trades from 6* to designs isomorphic to 4*. So the upper bound
on the number of trades given in Section 2 can be attained, for distinct
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trades, and all the designs isomorphic to 4* can be generated from §* by
trading different sets of blocks of §*.

4.2 2-(10,4,2)

There are three non-isomorphic 2—(10, 4, 2) designs, with each design being
a residual design of a 2—(16, 6, 2) design. The transversal used here is that
given in [12], which also gives |d, D|, and enumerates all smallest defining
sets, for each design.

4.3 2-(9,4,3)

There are 11 non-isomorphic 2—(9, 4, 3) designs. The transversal used here
is that given in [23], which also gives |d,D|, counts the number of distinct
smallest defining sets, and lists several examples, for each design.

Note that the 11 designs can be divided into the groups M; /My, M3/ M,
Ms/ Mg/ Mz, Mg/ Mg and M;o/My;. Within each of these groups, the
total number of distinct, or minimal distinct, trades is the same. These
groupings match the possible extensions to 3—(10,5,3) designs, see [23].
For example, a 2—(9, 4, 3) design extends to the 3—(10, 5, 3) designs N; or
N> if and only if it is design M, or M. Interestingly, Mg and My have
more than twice as many distinct minimal c-trades and trades as any of
the other designs, but they have the lowest values of both |¢, D| and |d;D|.

4.4 3—(10,5,3)

There are seven non-isomorphic 3 — (10, 5, 3) designs, all of which are ex-
tensions of 2 — (9, 4, 3) designs. The transversal used here is that given in
[23], which also gives |d,D|, counts the number of distinct smallest defin-
ing sets, and lists several examples, for each design. Note that the total
number of distinct minimal c-trades in design N, is less than the number
of such trades from Ny to any of the non-isomorphic designs individually.

The value calculated for |d,D]| for design N does not match the value of
6 given in [23]. The blocks of design N}, after sorting into lexicographic
order, are:

01247, 01259, 01268, 01346, 01358, 01379, 01489, 01567, 02348,
02357, 02369, 02456, 02789, 03459, 03678, 04578, 04679, 05689,
12345, 12367, 12389, 12469, 12578, 13478, 13569, 14568, 14579,
16789, 23479, 23568, 24589, 24678, 25679, 34567, 34689, 35789.
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The underlined values are an optimal solution of the ILP, in five blocks.
That this putative defining set of five blocks from A} completes uniquely
was checked by performing partial completions by hand and then using the
complete utility (see [3]) to find all completions.

First note that each pair of elements of V occurs in Ay = 8 blocks of the
design, that each element of V' occurs in r = 18 blocks of the design, and
that the design has b = 36 blocks. Consider the five underlined blocks.
Now, the triple 345 has not yet appeared, so the block 345xx must be
in any completion three times. Each of the pairs 34, 35 and 45 has now
appeared four times. Thus the blocks 34xxx, 35xxx and 45xxx must appear
four more times each. The elements 3, 4 and 5 have now appeared 13, 14
and 13 times each respectively. Thus the blocks 3xxxx, 4xxxx and 5xxxx
must appear 5, 4 and 5 more times each respectively. This gives, in partial
form, all but two of the blocks of the design.

The element 8 has appeared four times, so must appear in fourteen other
blocks. Each of the triples 348, 358 and 458 has appeared once, so each
must appear twice more. We distinguish three cases, with the block 3458x
occuring zero, one or two times. Taking the value of A; into account, we
obtain the three respective partial completions:

02348,04679,16789,23568,24589, 345, 345, 345, 348, 348, 34, 34, 358, 358,
35, 35, 458, 458, 45, 45, 38, 38, 3, 3, 3, 48, 48, 4, 4, 58, 58, 5, 5, 5, 8, 8;
02348,04679,16789,23568,24589, 3458, 345, 345, 348, 34, 34, 34, 358, 35,
35, 35, 458, 45, 45, 45, 38, 38, 38, 3, 3, 48, 48, 48, 4, 58, 58, 58, 5, 5, 8, -;
02348,04679,16789,23568,24589, 3458, 3458, 345, 34, 34, 34, 34, 35, 35, 35,
35, 45, 45, 45, 45, 38, 38, 38, 38, 3, 48, 48, 48, 48, 58, 58, 58, 58, 5, -, -.

These three partial completions were used as input to the complete utility.
The first of them completed uniquely, to A;. The other two have no com-
pletions to 3—(10, 5, 3) designs. Thus, the set of blocks found by solving
the ILP generated from the trades is a defining set, and |d,N;| = 5. This
being the case, the comment at the end of [23] regarding a case where the
unique extension of a design has a smaller smallest defining set than the
design itself does not apply.

4.5 2-(10,5,4)

The 21 non-isomorphic 2—(10, 5, 4) designs have been enumerated in [4, 31].
Each of these designs is embeddable in a 2—(19,9,4) Hadamard design, see
[24, 31]. The transversal used here is that given in [31], with the bracketed
numbers in the first column of Table 17 giving the numbering used in [4].
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The values of |d, D| for these designs have not previously been given. For
convenience, the blocks of these designs are given in Tables 18 & 19, in
lexicographic order. Sample smallest member defining sets, class defining
sets and defining sets are marked in these tables. The defining sets are
indicated by “flagging” the blocks in them with a ‘-’ symbol. The position
of this symbol - bottom, middle, top - indicates which type of smallest
defining set — member defining set, class defining set, defining set — the
block is in. These defining sets were those obtained from optimal solutions
to the binary ILPs. No attempt was made to find smallest member or class
defining sets which were subsets of smallest defining sets, or to find smallest
class defining sets which were distinct from smallest defining sets.

Note that, in most cases, |c; D| = |d,D| and that the smallest class defining
set given is also a smallest defining set. However, this is not always the case.
For example, for design number five, |c,D| = |d,D| = 6 and the smallest
class defining set found differs from the smallest defining set. Further, the
smallest class defining set is a proper class defining set, in the sense that it
has more than one completion. In fact it has two distinct, but isomorphic,
completions. One of these is Dy, the fifth design, and the other is:

{01269, 01357, 01456, 01789, 02348, 02358, 02479, 03469, 05678,
12359, 12367, 12478, 13468, 14589, 24567, 25689, 34579, 36789}.

Note that the pairsof designs 1 & 2,3 & 4,6 & 7,8 & 9,10& 11,12 &
13 and 16 & 17 are complementary pairs, with the blocks of one member
of the pair being the complement of the blocks of the other. Designs 20 &
21 are isomorphic to each others complement. The remaining five designs
are isomorphic to their own complements. The values of |m,D|, |c; D| and
|ds D| are the same for these complementary pairs, as are the numbers of
m-trades, c-trades and trades. Let D; & D;y; and D; & Dj4y be two
distinct pairs of complementary designs and suppose that D; is one of the
non-paired designs. Then we observe from the tables that the number of
trades from D; to D;4; is the same as the number from D;y; to D;, the
number of trades from D; is the same to both D; & D;,, the number of
trades to Dy from both D; & D;4; is the same, and the number of trades
from D; to D; is the same as the number from D;y; to Dj4,, as are the
number from D; to Dj4; and the number from D;y, to D;.

Note that the values of |m, D| are not monotonic with the expected value
log,4 N;, with the values for designs 16 & 17 being too low for this to be
the case.
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4.6 Some n =1 examples

Although the intended use of the algorithm is in the case where n > 1, it
can be run where n = 1. We can obtain a count of the number of distinct
and minimal distinct trades in these designs, all of these being m-trades.
If |d, D] is not known, it can be calculated from these lists of trades. Since
|msD| = |d,D|, this provides further test data for the expression for the
expected value of |m,D|. Additionally, it provides a wide range of v!n2b?
values on which to perform timing tests, for complexity analysis.

Accordingly, in Table 20, we present the results of some runs in the n = 1
case, where the unique design is simple. The parameters of the design
are listed in the first column, with the order of the automorphism group
and the number of distinct designs listed in the following two columns.
The next two columns contain the value of f and then the expected value
of |m;D| (= |dsD]). The next two columns list the number of distinct
trades and the number of distinct minimal trades respectively. The final
column lists the value of |d,D)|, obtained by solving the ILP optimisation
problems represented by the trades. These values match those available in
the literature [2, 12].

Note that, for the 2—(6, 3,2) design, the number of distinct non-minimal
trades is equal to the upper bound of Ng —1 = N —1 = 11. Thus, any
2—(6, 3,2) design can be generated from a given design by trading a different
set of blocks.

The 3—(8, 4, 1) design is an extension by complementation of the 2—(7, 3, 1)
design. Hence, apart from Ap, all the values in the table are the same for
both designs. The 4—(11,5,1) and 4—(11, 6,3) designs are complements of
each other. Hence all the values in the table are the same for both designs.

4.7 Timing Information

" In an effort to validate the expression for the complexity of the algorithm,
and to establish whether or not the cost of processing the trees of trades
did, in fact, amortise to no more than O(b?), timing data was recorded for
runs of the programme. This data is presented in Table 21, and covers all
the parameter sets (for both n > 1 and n = 1) previously discussed. The
first column gives the parameters of the design, with the next two columns
giving n and b. The next two columns give the value of v!n%b? and this
value normalised to that for the 2—(8, 4,3) designs. The final two columns
give the running time to generate all the trades in all the designs, both
actual time and normalised.

16



The running time is the amount of actual CPU time used by the pro-
gramme, and does not include system (that is, I/O) time. These times
are on a Sun-4m SPARC-based server, with a 100MHz clock. Note that
the time does not include the time to process the list of trades — say to
extract and minimise a particular collection of trades - nor the time to
solve any ILP problem. These additional times can be significent. Times
significantly less than 1 second should be interpreted with care, being close
to the resolution of the Unix time [30] command used to obtain the running
times.

The normalised running times are in good agreement with the times ob-
tained using the expression for the complexity, with the maximum dis-
crepancy being a factor of 2. So, tree processing times can be ignored in
assessing the complexity of the algorithm and v!n2b?, suitably normalised,
can be used to predict running times with high confidence.

4.8 Expected value of |m,D|

To obtain an expression for the expected value of |m,D|, we assumed that
blocks in a design are independent. This assumption is obviously incorrect,
given that the collection of blocks in a design is t-balanced. Despite this,
log; N; turns out to be a good estimate of |m,D| for the simple designs
considered here, being within 1 in all but two cases where n > 1 and one
case where n = 1. The estimate is neither consistently above nor consis-
tently below the actual value, even within a set of designs with the same
parameters. Unfortunately, as already noted, log, N; is not monotonic with
|m, D] for the 2—(10, 5, 4) designs.

Note that, the more “structure” a design has, the lower we would expect
our prediction to be in relation to the actual value, since additional blocks
in a defining set do not provide as much information as the initial block.
As an example, where n = 1 and |m, D| = |d,D|, consider the 2—(11,5,2)
design. This design is linked, with a linkage of 2, and the actual value of
|m, D) is greated than the predicted value by more than 2.

5 Conclusions

The algorithm presented here, despite its simplicity, has proved effective
in practice, as evidenced by the results obtained. However, due to its high
complexity, extending its reach to other parameter sets will require sub-
stantial efficiency improvements, if running times are to be acceptably low.
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One possible approach would be to take into account the automorphism
groups of the designs. Consideration of only the distinct designs in each
class would replace the n?v! term in the expression for the complexity by
the term n)_;_, v!/A; = nN. This represents a reduction in the amount
of work by a factor of n/(3"._, 1/4;).

i=1

This is a potentially significant reduction, with the actual value depending
on the automorphism group orders. Parameter sets where one or more
of the designs has automorphism group order of 1 will yield only small
reductions. For the five parameter sets with n > 1 used, the amount of work
would be reduced by factors of 26.2, 47.0, 3.0, 19.1 and 2.7 respectively.
However, to realise this reduction we would have to generate a set of coset
representatives of the automorphism group in the group of permutations
of V. Whether or not the complexity of doing this would be outweighed
by the reduction in the number of executions of statements 5 and 6 of the
algorithm has not been investigated.

In cases where the running time would be too long, a modified version of
the algorithm could be used to generate partial lists of trades. This could
be done by imposing a limit on the time of a run or the number of trades
generated, or by generating only some of the permutations. Imposing a
time limit may be particularly effective, since a large number of the distinct
trades are found early in the run, with the trades produced towards the
end of the run being mainly duplicates of previously found trades. These
partial lists of trades can be used to find lower bounds for |m,D|, |¢, D| and
|ds D], in the manner discussed in [18], or to help eliminate sets of blocks
from consideration as defining sets, as discussed in [2, 12, 13).

Currently, the complete sets of trades for all designs are dumped to data
files. Separate, specially written, utilities then extract, count and minimise
the required set of trades and generate the ILP optimisation problem. As
the results indicate, the number of trades can be very large, and this can
cause memory or disk-space problems. To overcome these it may be nec-
essary to modify the algorithm to generate only the required set of trades
when it is run, and to minimise this set of trades as it is generated.

The algorithm only stores, for each design, the blocks of the trade in the
design under consideration (that is, the initial design) and does not store
the full trade. This is done partly to reduce the size of the data structures
needed to store the trades, and partly because, since our intended appli-
cation is finding the size of defining sets, we do not need the discarded
information. Similarly, distinguishing trades on the basis only of the sets
of blocks in the initial design cuts down the number of “distinct” trades
generated, since a set of blocks in a design may be tradable in many ways.
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If the full trades are required, the algorithm could easily be modified to
generate and store them.

Currently, no analysis of the set of distinct trades per se in a design has
been done. Some questions raised by the results so far are:

i) In how many ways can a set of blocks be traded, and how many
designs can thus be obtained from a given design by trading a given
set of blocks?

ii) What proportion of (v, k,t) trades, with each t-subset occuring no
more than ) times and with volume s < b, are represented in one, or
all, of the t—(v, k, A) designs? (Note that full designs, that is, designs
that consist of all k-subsets of V, obviously contain all trades.)

iii) What structure, if any, can be put on the collection of (v, k,t) trades
in a design, in a class of designs, or in all designs?

iv) How does this structure relate to the module structure (see [5]) of all
(v, k,t) trades?

One area that has not been addressed in this paper is that of non-simple
designs. In this case, the design and the trades in a design are not sets, but
multisets. The algorithm presented generates a representative of each trade
which uses blocks repeated in the design, but does not generate a full list
of these trades. Note that, where the trade contains blocks which are also
contained in the untraded portion of the design, these duplicated blocks of
the trade cannot be used to distinguish between the initial and the final
designs. Given a set of parameters with n > 1 it is often the case that
some of the designs are simple and some are non-simple. The algorithm
generates a full list of trades in the simple designs, enabling |m, D], |c,D|
and |d, D] to be calculated for these designs. For the non-simple designs,
the partial list of trades generated could be used to find lower bounds for
these values.
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The computations were performed, using programmes developed by the au-
thor, on Sun servers and workstations in the Departments of Computer Sci-
ence and of Mathematics at the University of Queensland, on the Queens-
land Parallel Supercomputer Facility’s SP2 supercomputer, and on the Sil-
icon Graphics’ Power Challenge array supercomputer at the University of
Queensland’s High Performance Computing Unit. nauty [22] was used to
check the automorphism group orders obtained from the algorithm and to
cross-reference the design labellings of the 2—(10,5,4) designs in [4] and
[31). The utility opbdp [1] was used to find optimal solutions of the binary
ILP optimisation problems represented by the collections of trades.
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Appendix

initial final design

design a* B v 8° c all
o’ 981 343 27 819 983 | 1508
' 710 251 22 535 | 1088 | 1203
¥ 428 154 15 478 | 1046 | 1053
5 1172 379 30 848 | 1214 | 1599

Table 1: The number of distinct trades in the 2—(8, 4, 3) designs.

initial final design

design o By 8 c | al
a' 136 6 5 68 62 | 28
B 120 72 2 112 | 122 | 32
~7* 112 56 7 16 56 | 56
§* 14 35 16 133 14 | 70

Table 2: The number of minimal trades in the 2—(8, 4, 3) designs.

design Ai N; | logg Ni | |msD| | |c.D]| | |dsD]|
at 12 | 3360 5.05 5 6 6
B 48 840 4.18 4 6 6
~* 1344 30 2.11 3 6 6
5* 21 | 1920 4.70 5 6 6

23

Table 3: Smallest defining set sizes of the 2—(8,4, 3) designs.




initial final design
design || H, H> H; c all
Hy 66 546 1401 | 1461 | 1461
H> 133 900 1879 | 1882 | 2049
H3 228 1268 2102 | 1279 | 2363

Table 4: The number of distinct trades in the 2—(10, 4, 2) designs.

initial final design
design H] Hz Hs [+ all
H, 15 45 255 |45 45
H, 11 135 18] 21 21
H3 23 9 221 | 9| 105

Table 5: The number of minimal trades in the 2—(10,4,2) designs.

design A; Ni | log,y Ni [ |m,D| | |c.D] [ |d,D]
H, 720 5040 3.23 4 8 8
H, 48 75600 4.26 5 6 6
H; 24 | 151200 4.51 5 5 5

Table 6: Smallest defining set sizes of the 2—(10, 4, 2) designs.



initiall| My My Mz My Mg Mg M7 Mg Mg My My

c all

994 4423 12616 7981 17638 17134 9256 6412 3016 21076 5737
1071 4506 14266 6641 21996 15262 8894 6704 3248 20722 7017
1107 4967 15583 6869 21646 15163 8968 7089 3335 21563 7175
1082 4912 14647 7524 19791 15894 9300 6852 3278 21686 6466
1119 5065 15803 6975 21894 15354 9054 7214 3333 21392 7251
1131 5053 15302 7322 21066 15774 9231 7061 3325 21481 6866
1146 5026 15306 7309 20937 15693 9070 7084 3336 21447 6306

980 4492 15274 6816 21449 14972 8821 7152 3234 20524 7141
1000 4492 14204 7652 19532 16596 8956 7048 3268 20940 6455
1143 5122 15857 7247 21292 15414 9099 7156 3326 21663 7083

3529335293
3527735293
34164|35821
35267|35821
32087|35889
3402635889
35319/35889
33324134228
33908[34228
32388[36002

1081 5092 16144 6766 22036 14935 8941 7351 3361 21490 7409

35596[36002

Table 7: The number of distinct trades in the 2—(9,4, 3) designs.

initialfl My My Msz My My Mg M7z Mg Mg Mg My,

[

all

M; || 342 342 2592 54 3168 1080 1032 828 486 2844 828[378
M2z || 214 536 64 510 1136 1248 944 644 558 2676 896378
M3 || 213 551 1204 770 330 933 838 627 522 1114 587|298
M; || 107 663 1340 620 2046 300 604 720 390 1140 894|298
Ms || 218 699 742 832 1142 894 765 648 528 441 457|282
Mg || 148 748 1100 371 1117 885 714 696 474 343 708|286
Mz [ 164 717 972 459 1047 885 958 687 477 339 625]|294
Mg || 228 616 1400 824 1596 1418 1122 295 402 1592 972|978
My |1 192 512 1280 624 1648 1456 1024 312 718 1632 752|808
Mjo || 183 762 1025 627 417 511 646 681 506 993 564|288
M;iy || 267 756 990 1134 189 1476 945 639 540 936 871|288

378
378
298
298
294
294
294
757
757
298
298

Table 8: The number of minimal trades in the 2—(9,4, 3) designs.

design A N; | logz Ni | ImsD| | lcs D] | [ds D]
My 144 2520 4.03 4 8 8
M2 16 22680 5.15 5 8 8
M3 2 | 181440 6.22 5 8 8
My 8 45360 5.51 5 8 -8
Msg 1 | 362880 6.58 6 8 8
Mg 2 | 181440 6.22 5 8 8
Mz 6 60480 5.66 5 8 8
Mg 8 45360 5.51 5 4 6
Mg 32 11340 4.80 5 4 6
Mio 1 | 362880 6.58 6 8 8
Mi 9 40320 5.45 5 8 8

Table 9: Smallest defining set sizes of the 2—(9, 4, 3) designs.
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initial | M M2 Nz Ny Ns Ns M7 c[ all
M [[3765 20151 130561 280051 9487 38296 200371]446232 448287
Nz [[4311 4723 15541 27418 7138 7456 21634| 46245 46263
N3 ||4455 5291 17243 26764 8170 7792 22548| 46113] 48171
N, [|4549 5393 17514 26991 8581 7915 22421| 42006| 48735
N: [|3755 8856 62192 107907 7928 20752 81667149986 ]156932
Ns [|3763 4724 16708 26500 7692 7940 21516| 44422| 45590
Nz ||4627 5458 17830 26962 8731 7945 22637| 44998| 49070

Table 10: The number of distinct trades in the 3—(10, 5,3) designs.

initialf Mi. N2 ANz N Ny Ne M c| all
M [[1619 5300 23760 34560 2556 9540 36480 ]24056 (25271
Nz [|1664 522 54 1248 2124 630 2868) 380| 380
MN: ||1632 598 1362 264 2316 606 1176| 306 306
N: |[1466 749 876 1475 2352 624 357| 352| 370
Ns |[1184 3200 8480 12000 3326 10 10560| 858 951
Ns [|1568 616 1584 1936 2234 149 1600| 1562| 759
N7 |[1518 807 1107 234 2358 639 1048 402| 412

Table 11: The number of minimal trades in the 3—(10, 5, 3) designs.

design || A Ni | log; Ni | I[m,D| | |e.D| | |d,D|
M 720 5040 | 4.38 5 4 5°
N2 144 | 25200 | 5.21 5 8 8
N3 16 | 226800 | 6.34 6 8 8
A 6 | 604800 | 6.84 6 8 8
N 320 | 11340 | 4.80 5 4 6
Ne 64 | 56700 | 5.63 5 4 6
Ny 9 | 403200 | 6.63 6 8 8

Table 12: Smallest defining set sizes of the 3—(10, 5, 3) designs.
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initial 1 2 3 4 5 6 7 8 9 10 11 12
1 18373 18487 18791 18750 13111 14098 14256 13859 14064 8553 8603 4816
18487 18373 18750 18791 13111 14256 14098 14064 13859 8603 8553 4762
3 18679 18685 18957 18945 13305 14313 14628 13610 13776 8458 8648 4783
4 18685 18679 18945 18957 13305 14628 14313 13776 13610 8648 8458 4721
5 18603 18603 18922 18922 12315 14267 14267 13749 13749 8614 8614 4543
6 18405 18497 19044 19320 13315 14537 13844 13852 13542 8744 8379 4623
7
8

18497 18405 19320 18044 13315 13844 14537 13542 13852 8379 8744 4852
18443 18655 17940 18156 12876 14016 13690 14137 13959 8715 8486 4758
9 18655 18443 18156 17940 12876 13690 14016 13959 14137 8486 8715 4869
10 ||18457 18495 17853 18526 12979 14329 13093 14467 13609 8782 8419 4642
11 |{18495 18457 18526 17853 12979 13093 14329 13609 14467 8419 8782 5026
12 {18508 18132 17568 16684 11838 11828 13444 14424 14404 8308 8916 4974
13 |/18132 18508 16684 17568 11838 13444 11828 14404 14424 8916 8308 4449
14 |{18352 18352 17100 17100 11424 13044 13044 14492 14492 8644 8644 4710
15 |[|16684 16684 15388 15388 11878 10576 10576 14299 14299 8275 8275 5140
16 |[18103 18016 16870 17496 12572 13232 12521 14449 14036 8681 8425 4825
17 |[18016 18103 17496 16870 12572 12521 13232 14036 14449 8425 8681 5008
18 ||18676 18676 19165 19165 12345 14192 14192 13940 13940 8578 8578 4521
19 [118236 18236 18601 18601 13382 13891 13891 13426 13426 8479 8479 4596
20 ||18448 18460 19594 19900 13426 14368 14830 13309 13552 8320 8563 4759
21 ||18460 18448 19900 19594 13426 14830 14368 13552 13309 8563 8320 4594

Table 13: The number of distinct trades in the 2—(10, 5, 4) designs.

initiall| 13 14 15 16 17 18 19 20 21 c all
1 4762 5200 2229 7242 7255 10674 8041 7514 7464|35474|36677
2 4816 5200 2229 7255 7242 10674 8041 7464 7514|35474|36677
3 4721 5148 2075 6956 7034 10729 8190 7729 7645|35724|37192
4 4783 5148 2075 7034 6956 10729 8190 7645 7729(35724;37192
5 4543 4966 2007 6965 6965 10095 7799 7825 7825|36066|37103
6
7
8
9

4852 5072 2007 7009 6946 10704 7950 7653 7893|36281|36964
4623 5072 2007 6946 7009 10704 7950 7893 7653|36281|36964
4869 5272 2330 7391 7325 10574 7978 7173 7260[35479|36082
4758 5272 2330 7325 7391 10574 7978 7260 7173|35479|36082
10 |[5026 5197 2303 7405 7231 10483 7841 7102 7509(36034|36241
11 [[4642 5197 2303 7231 7405 10483 7841 7509 7102|3603436241
12 [{4449 5224 2460 7528 7636 9710 7252 6875 6363|34823|34905
13 ||4974 5224 2460 7636 7528 9710 7252 6363 6875|34823|34905
14 ||4710 5091 2416 7620 7620 10070 7308 6899 6899|35196|35253
15 ||5140 5026 2965 7819 7819 8602 6385 5509 5509|34069|34069
16 ||5008 5223 2487 7558 7624 10158 7541 6489 6912|35017|35209
17 ||4825 5223 2487 7624 7558 10158 7541 6912 6489|35017|35209
18 ||4521 5092 1966 6942 6942 10071 7656 7830 7830|36819|37263
19 ||4596 4996 1953 6881 6881 10442 7435 7692 7692|36533|36605
20 [j4594 5209 1930 6766 6859 10933 8206 7739 7834|37888|38060
21 [|4759 5209 1930 6859 6766 10933 8206 7834 7739|37888|38060

Table 14: The number of distinct trades in the 2—(10, 5, 4) designs, cont.
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1 2 3 4

5 6 7 8

9 10 11 12

1415 1272 924 991
1272 1415 991 924
1023 1074 1509 1460
1074 1023 1460 1509
2061 2061 1991 1991
1687 1585 1362 830
1585 1687 890 1362
739 858 1524 1340
858 739 1340 1524
1656 513 1371 1452
513 1656 1452 1371
2104 2192 1768 2448
2192 2104 2448 1768
1440 1440 1880 1880
2196 2196 2826 2826
1484 1252 1832 2360
1252 1484 2360 1832
2238 2238 1853 1853

1476 1449 1782 297

1064 1317 1217 942
1064 1217 1317 1006
1053 1397 960 1365
1053 860 1397 1191
385 1648 1648 1616
1059 1218 1379 1097
1059 1379 1218 1667
966 1101 1489 1227
966 1489 1101 997
1230 777 1737 1245
1230 1737 777 1071
736 1936 1208 1960
736 1208 1936 1176
840 1796 1796 1688
1998 1638 1638 828
1234 1102 1586 682
1234 1586 1102 684
186 1503 1503 1826

1089 954 1368 1485

1006
942
1191 959
1365 895
1616 1265
1667 845
1097 1222
997 858 882 636
1227 882 858 532
1071 937 1248 750
1245 1248 937 489
1176 1272 736 246
1960 736 1272 279
1688 1080 1080 170
828 660 660 468
684 314 1208 553
682 1208 314 464
1826 1212 1212 568

990
775

775 638
990 669
895 676
959 743
1265 576
1222 790
845 585

2436 2436 1592 1592 862 462 462 1560 1560 1154 1154 617
1449 1476 297 1782 1089 1368 954 1800 1485 1008 945 702

1800 945 1008 801

Table 15: The number of minimal trades in the 2—(10, 5, 4) designs.

initial[] 13 14 15 16 17 18 19 20 21| ¢} all
1 ||669 736 260 821 815 1321 1192 929 990|437|442
2 ||638 736 260 815 821 1321 1192 990 929|437|442
3 ||743 776 286 918 1032 1182 1082 778 1056(482|495
4 ||676 776 286 1032 918 1182 1082 1056 778|482]|495
5 ||576 737 312 1054 1054 437 1148 1168 1168|953|463
6 }|585 848 280 818 982 1078 876 1054 925(512|490
7 ||790 848 280 982 818 1078 876 925 1054|512|490
8 |[1532 746 230 631 693 1421 1111 1023 953401401
9 ||636 746 230 693 631 1421 1111 953 1023|401|401
10 |[|489 723 230 342 1089 1158 1065 921 898|372|372
11 ||750 723 230 1089 342 1158 1065 898 921|372|372
12 ||279 250 224 888 520 1202 1040 1128 1252|759|513
13 ]|246 250 224 520 888 1202 1040 1252 1128759513
14 ||170 457 256 760 760 824 1272 1140 1140|544|545
15 [|468 684 270 27 27 990 486 1242 1242|378|378
16 ||464 685 159 772 836 1246 883 1028 1186|330|330
17 [|553 685 159 836 772 1246 883 1186 1028|330[330
18 ||568 720 292 1048 1048 802 1210 1192 1192|552|497
19 ||617 900 278 843 843 1166 922 1264 1264|434|418
20 {1801 900 330 1152 1152 1224 1143 1114 1035[495|496
21 ||702 900 330 1152 1152 1224 1143 1035 1114|495|496
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Table 16: The number of minimal trades in the 2—(10, 5, 4) designs, cont.




design Ai Ni | log,, Ni | [m.D| | |csD] | |dsD]
1(XV) 1 | 3628800 | 5.72 5 7 7
2 (XI) 1 | 3628800 | 5.72 5 7 7
3 (XII) 1 | 3628800 5.72 5 7 7
4 (XIV) 1 | 3628800 | 5.72 5 7 7
5 (XVI) 2 | 1814400 | 5.46 5 6 6
6 (XIX) 2 | 1814400 5.46 5 7 7
7 (VI) 2 | 1814400 | 5.46 5 7 7
8 (XVII) 2 | 1814400 5.46 5 7 7
9 (III) 2 | 1814400 | 5.46 5 7 7
10 (XX) 6 | 604800 | 5.04 5 7 7
11 (V) 6 | 604800 | 5.04 5 7 7
12 (Vi) | 16 | 226800 | 4.67 5 6 7
13 (XVIII) 16 226800 4.67 5 6 7
14 (X) 16 | 226800 | 4.67 5 7 7
15 (II) 72 50400 4.10 4 8 8
16 (IV) 8 | 453600 | 4.94 4 7 7
17 (I) 8 | 453600 | 4.94 4 7 7
18 (IX) 4| 907200 | 5.20 5 6 6
19 (VII) 8 | 453600 | 4.94 5 7 7
20 (XIII) o | 403200 | 4.89 5 7 7
21 (XXI) 9 | 403200 | 4.89 5 7 7

Table 17: Smallest defining set sizes of the 2—(10, 5,4) designs.
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1 2 3 4 5 6 7 8 9 10 11
01234/201268|01234|-01268(°01234(°01234]|:01267[-01234[:01279[Z01234[%01267
01235|201369| 01235/301369| 01235/ 01235 01389 01235| 01368| 01235{:01368
01567 01459| 01567|.01459( 01567|.01567|°01459( 01567|01459| 01578| 01459
*01789|°01478| 01789 01478| 01789|°01789| 01468|01789|°01468|°01789|01469
02467| 02379( 02479)°02379|02479(°02478|.02379|202478| 02367 02467| 02389
102689|302458|°02689| 02458/:02689|302689( 02458| 02689(.02458/.02689|302458
‘03489| 02579| 03468/°02567/303469| 03469(302569(.03469{°02569(°03479/.02579
03578| 03467|:03578| 03467| 03578| 03568 03467(303589|303479|303569| 03478
04569.03568|.04569|303589{204568| 04579] 03578 04567| 03578|204568| 03567
12479} 12378|312467|.12378|:12478(12469| 12368(.12469| 12389(.12489|312379
12589| 12469] 12589(312469| 12569]°12589|°12479| 12568 12467| 12569/|°12478
13468(°12567|°13489| 12579|:13468):13478]°12578|°13478|.12578| 13468|°12568
$13679(313457| 13679(°13457| 13679 13679|313457(.13679] 13457(°13679| 13457
14568| 13589 14568| 13568| 14589).14568(°13569}°14589(313569( 14567| 13589
*23569(°23456| 23569 23456| 23589 23579 23456| 23579|°23456| 23578| 23456
23678| 23489|.23678( 23489| 23678 23678|.23489(°23678] 23489| 23678| 23469
324578| 46789|324578| 46789(~24567| 24567 46789| 24579| 46789 24579| 46789
-34579| 56789|°34579| 56789|-34579|.34589| 56789| 34568| 56789|°34589| 56789

Table 18: The blocks, with defining sets, of the 2—(10, 5, 4) designs.

12 13 14 15 16 17 18 19 20 21
:01234|701267 (201234 |501234 [01234[=01279[201234 [.01234 |01234 01234
01235201389 (01235201235 | 01235]°01368("01235| 01235 01259/°01389
01468| 01569301468 | 01467 (201468 01567 (.01469 [ 01468 |°01378|01478
01479) 01578|°01479| 01489 01479/|°01589/-01478.0147901679| 01569
02568702389 | 0256902569 | 02569302367 | 02568 |°02578] 02457302358
02579 02469|.02578 502689 | 02689 02458].02789 (02689 |.02689| 02469
03678 02478|.03678.03578| 03578|°02478|703589 | 03569 03456 |.02579
03679] 03456 0367903789 03789| 03459| 0367903789 03489| 03467
04589|-03457°04589.04567|.04567| 03469| 04567 [.04567 | 05678|.05678
“12689(:12367( 12689 | 1257812578 (.12389] 12567 | 12569 |*12367 | 12357
"12789(.12458| 12789 12678 | 12678| 1245612689 12678 |.12468 12456
$13569(-12459| 1356913569 13569| 12469|"13579(13578| 13589] 12678
13578|313468 | 13578 | 13679 13679| 1345713678 | 13679 |*14569/°13679
14567 (*13479| 14567 | 14589 |314589| 13478| 14589 |.14589|.14578| 14589
*23469[-23568 [ *23468 |*23468 | *23467 23568 [-23469 | *23467 | 23568] 23689
$23478|323579.23479 (23479 | *23489 223579223478 |*23489 | 23579] 24789
-24567| 46789| 24567 |.24579|24579| 46789.24579 [.24579 |324789|.34568
34589 | 56789134589 | 34568 |.34568| 56789|-34568 | 34568 | 3467934579

Table 19: The blocks, with defining sets, of the 2—(10,5,4) designs, cont.
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Ao No | f [log; No | #dist #min | |d,D]
3,2) 60 12 2 3.58 11 10| 3
3,1) 168 30 5 2.11 15 7 3
2-(9,3,1) 432 840 7 3.46 188 36 4
5,2) 660 60480 | 42 2.95 298 66 5
4,1) 1344 30 5 2.11 15 7 3
1) || 1440 2520 7 4.02 1526 415 4
1) || 7920 5040 7 4.38 4181 3465 5
3) || 7920 5040 7 4.38 4181 3465 5
Table 20: Some simple designs, with n = 1.

n b vinb* norm time norm

1 10 72000 0.00057 0m00.03s 0.00072

1 7 246960 0.00195 0mo00.10s  0.00239

1 14 7902720 0.06250 0mo01.73s  0.04138

1 12 52254720 0.41327 0m16.42s 0.39273

4 14 126443520 1.00000 Om41.81s  1.00000

1 30 3265920000 25.8291 11m28.90s 16.4769

1 1 4829932800 38.1983 21m42.70s  31.1576

3 15 7348320000 58.1154 33m46.09s  48.4595

11 18 14226347520 112.511 1h44m01.72s  149.288

1 66 | 173877580800 1375.14 Th56m14.11s  683.428

1 66 | 173877580800 1375.14 8h05m24.27s 696.586

7 36 | 230443315200 1822.50 | 14h26m53.62s 1244.05

21 18 | 518497459200 4100.63 | 64h10m47.71s 5526.14

Table 21: Running times to generate all trades.
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