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Abstract
The “characteristic” of a graph—the number of vertices, minus
the number of edges, plus the number of triangles, etc.—is a little-
studied, overtly combinatorial graph parameter intrinsically related
to chordal graphs and common neighborhoods of subgraphs. I also
introduce a sequence of related “higher characteristic” parameters.

1 The characteristic of a graph

For any graph G, let char G denote the (Euler) characteristic of G, defined
by )
char G = k1(G) — k2(G) + k3(G) — ka(G) + - - -,

where each k;{G) denotes the number of subgraphs of G that are isomorphic
to K;; thus k1(G) is the order of G, k2(G) is the size, and so on. Previous
work with this parameter occurs in [3 4,5, 6, 8]. See [2] for any undefined
notation or terminology.

Let comp G denote the number of components of G. Recall that a graph
is chordal whenever when it contains no induced cycle of length greater
than three. Reference [1] contains a thorough survey of the theory and
applications of chordal graphs (called “trianglulated graphs” there); [5]
is a more recent survey, from a different point of view. As observed in
[3, 5, 8] and as is easily proved by induction, every chordal graph G satisfies
char G = comp G. Many nonchordal graphs do too, including all wheels,
but it is observed in 5] that G is chordal if and only if char H = comp H
for all induced subgraphs H of G.

Agree always to use the symbol @ to denote a complete subgraph of G
and N(Q) to denote the common neighborhood of G, meaning the subgraph
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induced by those v € V(G) that are adjacent to every vertex in Q. Notice
that this makes N(Q) N Q@ = 8. The following lemma is proved in [6],
primarily by manipulation of binomial coefficients.

Lemma 1 For every graph G,
) "[1 - char N(Q)] = char G. o
Q

Realize that this formula,

char G = ) [1 - k1(N(Q)) + k2(N(Q)) — ks(N(Q)) + ka(N(Q)) — - -,
Q

is not meant to be used to compute the characteristic, but rather is a step
toward understanding what it means—how it relates to other parameters.
Contrast this formula with

char 6= 3[1 - SEN @) + 3R (N (W) = Ths(N () + gha(N (@) ~ -]

from [4].

The following provides another view of char G in a special, but non-
chordal context. Recall that a set of cycles is dependent if one is, when
viewed as a set of edges, the symmetric difference of some of the others. A
cycle basts is a maximal independent set of cycles and always consists of

k2(G) — k1(G) + comp G (the cycle rank of G) cycles.

Theorem 1 Suppose G has no dependent set of triangles. Then comp G —
char G is the number of induced cycles of length greater than three needed
to use with the triangles to make a cycle basis.

Proof. Suppose G has no dependent set of triangles. Thus G is Ky-free
and so k;(G) = 0 for all i > 4. The cycle rank equals k2(G) - k1(G) +
comp G + [k1(G) — k2(G) + k3(G)] — char G = k3(G) + [comp G — char GJ.
The theorem then follows. o

The following lemma is proved in [7], primarily by manipulating sum-
mations.

Lemma 2 For every graph G,
> [t - comp N(Q)] < comp G,
Q

with equality holding if and only if G is chordal. a
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It is sometimes useful to allow the null subgraph—the Ky subgraph—as
a complete subgraph of G. Agree always to use the symbol R to denote
a complete or null subgraph of G, noting that N(R) = G when R is null.
Any summation y_p is then over all complete or null subgraphs of G. This
allows the equality in Lemma 1 to be rewritten as ) z[1 — char N(R)] = 1
and the inequality in Lemma 2 to be rewritten as 3 p[1 — comp N(R)] < 1.

Theorem 2 For every graph G,
Z char N(R) < Z comp N(R),
R

R

with equality if and only if G is chordal.

Proof. This follows directly from the )_ 5 reformulations of Lemma 1 and
Lemma 2. o

2 Higher characteristics
Define char; G = char G, chars G = ka(G)—2k3(G)+3k4(G)—- - -, charz G =

k3(G) — 3k4(G) + 6ks(G) — - - -, and so on. In general,
char; G = Z( 1)'+J( )k (G).
ji2i

The following observation is a handy check when finding the various
char; values.

Theorem 3 For every graph G, }_,; char; G = k1(G).

Proof. ZchariG - ZZ( —1)i+ ( )L (G)

i 21528

> T (i) se

157 18i%)

which, by the Binomial Theorem, equals 3~ (1 — 1)/ ~1k;(G) = k1(G). O

Lemma 3 For every graph G and every i > 1,
char; G = char; (G — v) + char(;_1) N(v) — char; N(v).
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Proof. Define kg of any graph always to be one. Then for every v € V(G)
and j > 1, kj(G) = k(G — v) + k(j—1)(N(v)). Therefore char; G

= Z(-1)"+f( )k(G—v)+Z )'*’( ;)k(j-l)(N(v))

j2i j2i

= char; (G-v)+ Z (1)~ ””( zl)kj(N(v))

j2i=-1
= char; (G—v)+ Z (=1)i-t+i (] )L (N (v))

j2i-1

+ ¥ 07 (17 Do
j2i-1
= char; (G —v) + char;_1) N(v) - Z( —1)i+ ( 11) kj(N(v)),
j2i
which equals char; (G — v) + char(;_;) N(v) = char; N(v). a

Define the 1-blocks of G to be the components of G, the 2-blocks of G to
be the nontrivial blocks (i.e., blocks—maximal nonseparable subgraphs—
that are not isolated vertices) of G, and in general the i-blocks of G to be
the maximal subgraphs of G that are either i-connected or isomorphic to
K;. Let b;(G) denote the number of i-blocks in G.

Theorem 4 For every chordal graph G and every i > 1, char; G = b;(G).

Proof. Suppose G is chordal. By a standard result in chordal graph
theory, Theorem 4.1 in [1], V(G) can be ordered vy,...,v, such that each
open neighborhood N(v;) is complete or null in the induced subgraph G; of
G induced by vj,...,vs. Let N;(v;) denote this open neighborhood in G;.
By Lemma 3, char; G; = char; (G; — v;) + char(;_y) N;(v;) — char; Nj(v;).
Set d = |N;(v;)| = degv; in G;. Then

0 if d<i

char.-(Nj(vj))=Chari(Ka)={ 1 if d>i °

char; (G; — v;) if d#i-1

char; (Gj —v;)+1 if d=i-1 "~

Notice that if d < i—1, then v; is in no i-block and char; G; = char; G(j 41).
If d > i—1, then N;j(v;) U{v:} is in every i-block that contains N;(v;) and
char; Gj = char; G(j.,_l). If d =1i-1, then Nj(vj) U {vj} = Ky is an i-
block. Hence the count of i-blocks increases by one exactly when char; G;
increases by one as j runs from 1 to n. Thus char; G = 4;(G). a

and so

char; G; = {
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Indeed, G is chordal if and only if char; H = b;(H) for every induced
subgraph H of G, since G is not chordal if and only if it contains an induced
Ci, with k > 4, and char; C; = b;(C}) only when n =3 (and ¢ < 3).

The following are open questions, part conjecture and part ignorance.

Query 1. Is G chordal if and only if char; G = b;(G) for every i?
The next extends (reversing) Theorem 2, which says that 3 g char; N(R) <

L r01(N(R)).

Query 2. When i > 1, must ) pchar; N(R) > 3" p bi(N(R))? (And if so,
for which graphs are they equal?)

Query 3. Must, for every G, ) ; char; G > >, b;(G)?

Theorem 3 shows that this can be phrased without mentioning charac-
teristics: Must the order of G always be at least ), b;(G)?
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