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Abstract

The theory of lifting voltage digraphs provides a useful tool for
constructing large digraphs with given properties from suitable small
base digraphs endowed with an assignment of voltages (=elements of
a finite group) on arcs. We revisit the degree/diameter problem for
digraphs from this new perspective and prove a general upper bound
on diameter of a lifted digraph in terms of properties of the base
digraph and voltage assignment. In addition, we show that all cur-
rently known largest vertex-transitive Cayley digraphs for semidirect
products of groups can be described by means of a voltage assignment
construction using simpler groups.
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1 Introduction

One fruitful application of graph theory to communication problems is in
the design of interconnection networks, such as parallel computers, switch-
ing system architecture in LSI technology, design of local area networks,
problem of data alignment, etc. Any of these applications imposes two ba-
sic constraints on the underlying network (=directed graph): The number
of connections that can be attached to a node is limited, and a short com-
munication route between any two nodes is required. This naturally leads
to the following well known (directed version of)

Degree/Diameter Problem. Construct digraphs with the largest pos-
sible number of vertices for given maximum (in-and out-) degree d and
diameter k.

A straightforward general upper bound on the order (=number of ver-
tices) n of a digraph of maximum degree d and diameter k is the Moore
bound My for directed graphs

n< Mgp=1+d+d’+...+d°. (1)

The equality n = My holds only when d =1 or k =1 [6][16], and hence
in all other cases the upper bound can be lowered by 1.

Case k = 2. It is well known that the bound My 2 — 1 can be achieved
for all d > 2 by line digraphs of complete digraphs of order d + 1. The
existence of digraphs of My 2 — 1 vertices other than the line digraphs has
been studied in [2][3][5].

Case k > 3. In general, it is not known whether or not Mgr—1is
attainable. The existence of digraphs of degree d, diameter £ > 3 and
order My —1 has been studied and several necessary conditions have been
given in [3]-[5]. For degree d = 2, it was shown in [15] that M5 —1 is not
attainable.

Moreover, it was shown in [14] that M, — 2 cannot be attained for
many values of k > 3 (for example, if 3 < k < 107 then M3 ; — 2 cannot be
achieved for all k # 274485, 5035921).

Hence in many cases (depending on k and d) the upper bound on n is
actually 2 or 3 less than the Moore bound. But apart from that, no other
upper bounds on n are known.

A general lower bound on the largest order of n = n(d, k) for the de-
gree/diameter problem is given by Kautz digraphs K(d, k) [13] of order
d* + d*—1; these digraphs can be obtained by (k — 1)-fold iteration of the
line digraph construction applied to the complete digraph of order d + 1.
It is also known that n(2,4) = 25 (which implies that n(2, 7) > 25.2/~* for
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J 2 4 by the iterated line digraph construction); the corresponding digraph
of order 25 was found by Alegre [1].

Much effort has been spent on the vertex-transitive version of the de-
gree/diameter. problem, which asks for the largest possible vertez-transitive
digraph of given diameter k£ and maximum degree d (see e.g., [8, 7]). The
most current list of orders of largest known vertex-transitive digraphs of
degree d and diameter & for d,k < 10 can be found in [12] where most of
the values for k > d were found (by computer search) as Cayley digraphs
of semidirect products of (mostly cyclic) groups.

The purpose of this paper is to draw attention to a construction well
known in topological graph theory (and in algebraic topology), derived from
the theory of covering spaces. It enables us to “blow up” a given base di-
graph G in order to obtain a larger digraph (called a “lift”) whose incidence
structure depends on both G and a mapping (“voltage assignment”) from
the arc set of G into a finite group. Precise definitions will be given in
the next section; at this point we only note two facts. First, all Cayley di-
graphs as well as some other vertex-transitive digraphs can be obtained by
this kind of voltage construction. Second, the way lifts are defined allows
us to reduce the computing time for checking the diameter to a reasonable
minimum. Therefore, constructions involving voltage assignments appear
to be good candidates for both the vertex-transitive as well as the original
version of the degree/diameter problem.

The paper is organised as follows. In Section 2 we introduce new con-
cepts and give the corresponding background. Section 3 is devoted to prov-
ing a general lower bound on the diameter of a lifted digraph. A way of
controlling transitivity of the lift is presented in Section 4. Finally, Section 5
focuses on the known Cayley digraph constructions for the vertex-transitive
degree/diameter problem from the voltage assignment perspective.

- 2 Voltage assignments on directed graphs

Let G be a digraph and let D(G) be the set of arcs (= directed edges) of G
(we allow loops as well as parallel arcs). Let I' be an arbitrary group. Any
mapping o : D(G) — T is called a voltage assignment. The lift of G by
«, denoted by G, is the digraph defined as follows: V(G*) = V(G) x T,
D(G*) = D(G) x T, and there is an arc (z, f) in G* from (u, g) to (v, h)
if and only if f = g,  is an arc from u to v, and h = ga(z). For example,
Figure 1 shows digraph G and the lift of G with I' = Z5 and the voltage
assignment « in Z5 given by a(a) = a(b) =0, a(c) = 1 and a(d) = 4.
Intuitively, voltage assignments are a tool for “blowing up” small di-
graphs in order to obtain large ones. Since the lift is completely determined
in terms of the original base digraph G and the voltage assignment «, this
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Figure 1: Digraph G and its lift G“.

type of construction is suitable for handling large digraphs in terms of the
properties of the base graph and the assignment.

The theory of voltage assignments on undirected graphs was introduced
in the early 70’s [9] as a dualisation of the theory of the so-called cur-
rent graphs; the latter played a key role in proving the famous Map Color
Theorem [17]. Most of this theory (summarised in [10]) can be immedi-
ately transferred to digraphs, and in what follows we outline the basic facts
concerning voltage assignments on digraphs and properties of lifts.

Let G be a digraph and let G* be a lift of G obtained by means of
a voltage assignment « in a group I'. Let # : G* — G be the natural
projection which erases the second coordinates, that is, 7(u,g9) = u and
7(z,9) = z for each u € V(G), z € D(G) and g € I'. Clearly, v is a
digraph homomorphism; the sets #~1(u) and #~1(z) are called fibres above
the vertex u or above the arc z, respectively.

The most important tool for understanding properties of a lift is the
examination of walks in the base digraph. Let o be a voltage assignment
on a digraph G in a group I'. Let W =eje;...€,, be a walk in G, that is,
for each 7, 2 < 7 < m, the terminal vertex of the arc e;_; coincides with
the initial vertex of the arc e; (we allow an arc to be used repeatedly). The
number m is the length of the walk W. The walk W is closed if the initial
vertex of e; and the terminal vertex of e,, are the same. The net voltage
of W is the product a(W) = afey)a(es)...a(em). For convenience, at
each vertex we also admit a trivial closed walk of length 0 and of unit net
voltage.
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It is easy to see that for each walk W in G with initial vertex « and for
each g € T there exists a unique walk W (also often denoted by W) in the
lift G* which starts at the vertex (u,¢) and such that #(W) = W. Indeed,
if W = ejez...€y, is a walk i in G emanating from u and if a(e;) = =,
1<i<m, t.hen the walk W = (e1, 9)(ez,9%1) .. .(em, 92122 - .. Tm_1)
emanates in the lift G* from the vertex (u,g) and has the property that
7(W) = W; its uniqueness is obvious. Note also that if the walk W ends
at the vertex v of G, then W terminates in G* at the vertex (v ga(W)).
The walk W is often called a lift of W. Thus, each walk W in the base
graph, emanating from a fixed vertex u, has |T'| different lifts — for each
g €T there is a lift of W in G* which starts at the vertex (u,g) € 7~1(u).

Some properties of the lift G* may be deduced immediately from the
base digraph G and the voltage assignment o : D(G) — I'. For example, let
G be a strongly connected digraph. Then the lift G* is strongly connected
if and only if there is a vertex u in G such that for each g € T' there is
a closed walk W emanating from u with a(W) = g. In fact, if the latter
holds, then it holds for an arbitrary vertex u of G; such a voltage assignment
on a strongly connected digraph will be called proper.

An another easy example is consider the cycle lengths in the lift. Let C
be a (directed) cycle of length & in G. Let u be a vertex of C and let Cy be
the closed walk of length & starting at v whose arcs are precisely the arcs
of C. Let g = a(C,) be the net voltage of Cy and let n be the order of
the element g in the group I'. Then Cy lifts to |I'|/n cycles of G*, each of
length kn. Again, it is easy to see that these considerations do not depend
on the chosen vertex u in C.

When trying to construct voltage assignments with specified properties,
one may prescribe a certain amount of voltages without loss of generality.
To be more precise, we say that two voltage assignments « and G of a
digraph G in the same group T are eguivalent if the lifts G* and G* are
isomorphic. Now, if ¢ is a voltage assignment on a connected digraph G in
a group I' and if T is any spanning tree of G, then there is an equivalent
voltage assignment 8 on G such that 8(z) = id for every arc z in the tree
T [10].

3 The diameter of lifted digraphs

A frequent goal in constructions of large digraphs with given properties is
to keep the diameter as small as possible. We now present an upper bound
on the diameter of lifted digraphs, applicable to a fairly general class of
base digraphs and general groups. We start with a quick observation.

Lemma 1 Let « be a voltage assignment on a digraph G in a group T.
Then diam(G*) < k if and only if for each ordered pair of vertices u,v of
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G (possibly u = v) and for each g € T there ezists a walk of length < k
from u to v whose net voltage is g.

Proof. This is obvious since for any two distinct vertices (u, g), (v, k)
in V(G?) there exists a path W of lengt.h at most k from (u, g) to (v, k) if
and only if the projection W = 7r(W) is a walk in the base digraph G of
length at most k from u to v with a(W) = g~1h. 0

Next, we introduce some more concepts and notation. Let I be a (finite)
group and let X be a generating set for I'. The Cayley digraph C(T, X) has
vertex set I', and for any ordered pair of vertices g,h € I' there is an arc
emanating from g and terminating at h whenever gz = h for some z € X.
We observe that C(T, X) is a vertex-transitive digraph of degree | X|.

Let G be a digraph and let w € V(G). Let r} be the largest distance
from w to a vertex in G; similarly, let r; be the largest distance {0 w from
a vertex in G. Let r(G) = min{r} +r_} where the minimum is taken over
all vertices w € V(G); any vertex w for which the minimum is attained will
be called central. Also, let §(G) be the largest ¢ such that the outdegree
and the indegree of each vertex of G is at least t.

Theorem 1 Let H = C(T', X) be an arbitrary connected Cayley digraph
and let G be a strongly connected digraph such that §(G) > | X|+ 1. Then
there erists a voltage assignment oo : D(G) — T such that

diam(G*) < r(G) + diam(H) .

Proof. Let w be a central vertex of G and let T;} (T;) be a directed
spanning tree of G rooted at w such that dp+(w, u) dg(w,u) (and, re-
spectively, dp—(u, w) = dg(u, w)) for each vertex u of G. (Loosely speak-
ing, T} (T ) 1s a spanning tree rooted at w and directed outward from
(inwa,rd to) w, of depth at most r(G).) Define now a voltage assignment
a: D(G) — T as follows. Set a(e) = id for each arc e in the spanning tree
T, . For each u € V(G) let ut denote the set of all arcs emanating from
u which have not yet been assigned a voltage; since 6(G) > |X|+ 1, we
have [u*| > | X|. Now, we may define o on the remaining arcs of G (that
is to say, on D(G) \ D(T;)) in such a way that, for each u € V(G), the
restriction of a to u* is an arbitrarily chosen surjection from u*+ onto X.

Note that in the lift G* we have |I'| vertex-disjoint copies T, of the tree
T, with V(Ty) = {(v,9); v € V(G)} for each g € T".

We shall now provide an upper bound for the distances dge in the lift
G?. In order to simplify the notation, we write u, instead of (u,g) when
referring to vertices of the lift. Thus, let v, and v, be an ordered pair of
distinct vertices of G°.
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We start with taking the (unique) w — v path R in the “w-outward”
spanning tree T,}; let the net voltage of R be a(R) = gq. Let R* denote
the lift of R in G* which emanates from the vertex wy,~1 and terminates
at the vertex vy (note that h = hg~la(R)).

Now we invoke our Cayley digraph H in which there exists a path
from the vertex id € V(H) to the vertex g~thg~! € V(H) of length at
most diam(H). That is, there exist zj,...,2; € X such that g~thg~! =
z122...2; and I < diam(H).

Since our voltage assignment « restricted to arcs emanating from an
arbitrary vertex s of G is a surjection from s™ onto X there exists a walk
P in G emanating from u of the form P = eje5...e; such that for the arcs
e; we have a(e;) = z;, 1 <i <. Let v’ be the terminal vertex of the walk
P. The lift P* of P which starts at our u, € V(G®) terminates at the
vertex ug, where ¢’ = ga(P) = 9(9~thg™1) = hqg~!. Consequently, P* is a
ug — w1 walk in G* of length /.

Finally, let @ be the (unique) v’ — w path in the “w-inward” spanning
tree T, . Let Q% be the lift of Q in G* emanating from the vertex u;'q_,;
observe that Q* terminates at wy,-1 because o(Q) = #d. It remains to put
the pieces together: The path P*Q*R? in the lifted digraph G* starts at
the vertex u,y, terminates at the vertex vy and therefore

dga(ug,vs) <+ 715 +r} < diam(H) +r(G) .

This completes the proof. m]

Corollary 1 Let T’ be a group and let G be a strongly connected digraph
such that §(G) > |T|. Then there ezists a voltage assignment a : D(G) — T
such that

diam(G*) < r(G)+1.

Proof. Let X =TI'\{id} and let H = C(T', X). Clearly, H is a complete
digraph and so diam(H) = 1. The assertion now follows directly from
Theorem 1. a

The preceding two results are in general the best possible, as can be
seen from the following infinite family of digraphs.

Example. Let T be the unique undirected tree of radius r, maximum
degree d > 2 and order 1 +d+d(d—1)+d(d—1)> +...+d(d—-1)"1.
The tree T has a unique central vertex, which we denote w. Let G be the
digraph which arises from T by replacing every edge by a pair of oppositely
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directed arcs and attaching d — 1 directed loops at each pendant vertex of
T. Then G is a digraph of degree d such that r} = r7 = r = r(G)/2. Let
I’ be an arbitrary group of order < d and let X =T'\ {id}. We claim that
diam(G*) > r(G) + 1 for each voltage assignment « : D(G) — I'. Indeed,
if u, v are distinct vertices of G both incident to a loop and dg(u,v) = r(G)
then there is exactly one directed path from u to v in G of length r(G).
Invoking Lemma 1, this shows that the diameter of the lift G* must be at
least »(G) + 1, as claimed. o

On the other hand, improvements to Theorem 1 (and Corollary 1) are
certainly possible for some special base digraphs. For example, let G be
the digraph obtained from the complete digraph K, of degree n — 1 by
attaching a (directed) loop to each of its vertices. Clearly, G has degree n
and r(G) = 1. By Corollary 1, there exists a lift G* of order n? vertices,
degree d = n and diameter k = 2; moreover, the voltage assignment « can
be taken in any group of order n. However, we may obtain a lift with more
vertices by taking voltages in an arbitrary group I' of order n + 1. To begin
with, we may wlog assume that V(G) =T \ {id}. The voltage assignment
B : D(G) — T is described by the following simple rule: If z is an arc of
G emanating from the vertex g € '\ {id}, then B(z) = g. It is a matter of
routine to check that the lift G? is, in fact, isomorphic to the line digraph
of a complete digraph K41 (note that the latter is true independently of
what group of order n + 1 has been used). This line digraph serves as an
example of a largest possible digraph of degree d = n and diameter k = 2
(its order is d® + d). The fact that this extremal graph can be obtained
as a lift indicates the usefulness of voltage assignment constructions in the
degree/diameter problem.

Improvements to Theorem 1 are possible also by choosing assignments
in special groups; this will be the case with assignments considered in the
last section of this paper. At this point we just note that, for example,
the largest known digraph of degree 2 and diameter 4 (Alegre’s digraph
of order 25) can be obtained as a lift of a digraph of order 5 with voltage
assignment in the group Zs, as indicated in Figure 2.

4 Symmetries of lifts

In many cases one would like to guarantee the existence of some automor-
phisms in the lift; this is particularly interesting if a lift which is vertex-
transitive (or even arc-transitive) is required.

Observe first that the voltage construction itself introduces some special
automorphisms for free. Let G be a digraph and let G* be a lift of G
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Figure 2: The Alegre’s digraph and its base digraph.

obtained by means of a voltage assignment « in a group I'. As before, let
® : G% — G be the natural projection erasing the second coordinates,
that is, n(u,g) = u and =n(z,g) = = for each u € V(G), z € D(G) and
g € T'. Now, for any two vertices in the same fibre 7=1(u) there exists an
automorphism of the lift which sends the first vertex to the second. Indeed,
without loss of generality, let (u,id),(u,g) € 7~ 1(u) be a pair of such
vertices. Then it can be easily checked that the mapping B, : G* — G¢,
given by B,(v,h) = (v, gh) for each (v,h) € V(G?), is an automorphism
of the lifted digraph G* such that B,(u,id) = (u,g). (Note also that
7B, = n.) Thus Aut(G®), the group of all automorphisms of G, acts
transitively on each fibre and hence we always have |Aut(G*)| > |T|.

More automorphisms of the lift may in some cases be constructed by
lifting automorphisms of the base digraph. To be specific, we say that an
automorphism A of G lifts to an automorphism A of G* if 7A = A, that
is, if w(A(v, h)) = A(w(v,h)) for each vertex (v,h) € G*. Observe that
since A(7(v, h)) = A(v), the lifted automorphism A maps vertices from the
fibre #=1(v) onto vertices in the fibre 7=1(A(v)), that is, A is necessarily
fibre-preserving.

It is also important to note that if an automorphism A € Aut(G) lifts
to some A € Aut(G*) then A has at least |I'| distinct lifts. Indeed, for each
g € T, the composition EgA~ is also a lift of A because wﬁgﬁ = 7A.

We now prove a necessary and sufficient condition for an automorphism
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to have a lift. For notational convenience, if W is a walk in the base digraph
G then W will stand for the terminal vertex of W. If A is an automorphism
of G, we denote by AW the image of W under A. Two walks W and W’ in
G will be said to be correlated (in symbols, W ~, W') if Wx = W'« and,
at the same time, oW = oW’

Theorem 2 Let G be a digraph, let « be a proper vollage assignment on G
in a finite group T’ and let A be an automorphism of G. Then A lifis to an
automorphism of G* if and only if for any two walks W and W' emanating
from a fized vertez of G,

W ~g W AW ~q AW’ .

Proof. Necessity: Fix an arbitrary vertex w in G and let W and W’
be two correlated walks emanating from w. Let W* and W'® be the lifts
of W and W’, both emanating from the vertex (w,id) of G*. The fact
that the net voltages of W and W’ are equal implies that W+ = W'%x.
Now, if an automorphism A of G lifts to an automorphism A of G* then
AWo)x = A(W"”)* Hence the net voltages of AW = wA(W®) and
AW' = TA(W'®) in the base digraph G must be equal to each other and
their terminal vertices must coincide. Thus W ~, W’ implies AW ~,
AW'. The same considerations applied to the inverse A~! at the vertex
A(w) yield the reverse implication.

Sufficiency: Again, fix w € V(G) and let W ~, W' & AW ~, AW'
for any two walks W and W’ in G, both emanat;mg from w. We define
a mapping A : V(G*) — V(G®) in the following way. Let (u, g) be an
arbitrary vertex of G*. Since the voltage assignment « is proper, there
exists a walk W in G which emanates from w, terminates at u«, and has
net voltage g. Thus instead of (u,g) we may simply write (W%, a(W))
without any loss of generality; this method of encoding all vertices of G*
will facilitate subsequent considerations. Let us set

AW+, a(W)) = (AWx, a(AW))

where W is any walk in G emanating from w. We show that A is (a) well
defined, (b) a bijection, and finally (c) an automorphism of the lift G.

(a) Let W’ be another walk in the base digraph G emanating from
w such that (Wx,a(W)) = (W', «(W')). This means that W ~, W’
which (by our assumption) implies AW ~o AW’. The latter implies that
(AWx, a(AW)) = (AW'*,a(AW’)) and so A is well defined.

(b) Assume that (AW, a(AW)) = (AW'x,a(AW’)) for some walks
W, W’ in G emanating from w. Similarly to (a), this translates to AW ~,
AW’, which implies W ~, W', and hence (Wx,a(W)) = (W'*, a(W’)).
Since G is finite, this shows that A is bijective.
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(c) Let an arc (z. «(W)) of G* emanate from the vertex (W=, a(W))
and terminate at the vertex ((Wz)*, a(Wz)) where a(Wa:) = a(W)a(z).
Then the arc A(z,(W)) = (A(z), «(AW)) emanates in the lift G* from
the vertex A(Wx,a(W)) = (AW#,a(AW)) and terminates at the ver-
tex A(Wz)*, «(Wz)) = (A(Wz)*, a(A(Wz))) because for the voltages we
have a(A(Wz)) = a(AW)a(A(z)). This proves that 4 is an automorphism
of G*. (m}

An analogous result for lifts of undirected graphs (in terms of closed
walks) can be found in [11]. In fact, Theorem 2 could also have been stated
in terms of “closed walks” — however, one would have to allow “walking”
in the opposite direction as well, which seems unnatural in digraphs.

At a first glance, it is not obvious how to construct voltage assignments
with the property as stated in Theorem 2. We now propose a fairly general
method based on considering automorphisms of the voltage group.

Corollary 2 Let G be a digraph and let A be a group of avtomorphisms
of G. Let T be a voltage group and let ¢ : A — Aut(T') be an arbitrary
group homomorphism which sends each digraph automorphism A € A to
an automorphism ¢4 of the group T'. Let o be a proper vollage assignment
on G tn the group I' such that

a(A(z)) = pa(a(z))

for each arc z € D(G). Then each digraph automorphism A € A lifts to an
automorphism of the lifted digraph G*.

Proof. Let W = eje5...e; be a walk in the digraph G and let AW =
A(e1)A(ez) ... A(ex) be its image under a digraph automorphism 4 € A.
Then, since ¢4 is an automorphism of the group I', we have

k k k
o(AW) = [T a(A(en)) = [T ¢ala(en)) = sa([] a(e:)) = pa(a(W)) .
i=1 i=1 i=1
Invoking the fact that ¢4 € Aut(T') again, we see that a(W) = o(W’) if
and only if ¢ 4(a(W)) = ¢a(a(W')). By the above chain of equalities this is
equivalent to a(AW) = a(AW’). It follows immediately that W ~o, W’ &
A(W) ~q A(W’) for any two walks W, W’ based at a common vertex. The
rest follows from Theorem 2. o

The following special case of Corollary 2 is often useful in applications
and we will discuss it in detail in the last section.
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Corollary 3 Let A be an order k automorphism of a digraph G. Lel o
be a proper voltage assignment on G in the addilive group Z,. Assume
that there ts an element b tn 2, of multiplicative order k, which has a
multiplicative inverse in the ring (2,,+,.) and such that a(A(a:)) ba(z)
for each arc z € D(G) (the maultiplication is again in the ring (Z,,+,.)).
Then A lifts to an auiomorphism A of the digraph G*.

Proof. Let A be the cyclic group of order k generated by the automor-
phism A. Then we have an obvious homomorphism ¢ : A — Aut(Z,,+),
given by ¢4(r) = br for each r € (Z,,,+) The result now follows from
Corollary 2. m]

5 Semidirect products and voltage assignments

The theory developed in the preceding section can prove useful in the search
for large vertez-transitive digraphs of given degree and diameter by looking
for suitable voltage assignments on small digraphs. As an illustration, in
this section we shall now focus on lift constructions based on the result of
Corollary 2 in the special case when the underlying digraph G is a Cayley
digraph G = C(A,X) and the group A =~ A of automorphisms of G is
determined by the left action of A on G.

For the sake of generality, we will now work with a slightly more general
concept of a Cayley digraph — namely, we shall allow loops and multiple
arcs. Formally, let A be a group and let X = (z1,z2,...,z;) be a sequence
of generators of A, that is, we allow repeated use of the same elements in
X. The Cayley digraph G = C(A, X) is now defined in much the same way
as before: Vertices of G are elements of A, and for each vertex b € A and for
each ¢, 1 < i <k, there is an arc (b, 2;) emanating from b and terminating at
the vertex bz;. Clearly, for each a € A, the left multiplication A, : b — ab
is an automorphism of the Cayley digraph G.

In order to come back to the connection with Corollary 2, let G =
C(A, X) be a Cayley digraph for a group A and a sequence of generators
X. Let A = {Aq4; a € A}; obviously A ~ A. Assume that, for our voltage
group I', there is a group homomorphism ¢ : A — Aut(T') (which sends
a € A to an automorphism ¢, of I') and a proper voltage assignment on
G in T such that a(ab, z;) = ¢a(a(d, z;)) for each arc (b,z;) of G. Setting
b = id, it follows that then, for each a € A, we have

(e, z5) = pa(e(id, z;)) . (2)

In what follows we shall refer to the equation (2) as compatibility condition.
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Summing up the discussion under the above assumptions, the com-
patibility condition implies that the voltage assignment « is completely
determined by the distribution of voltages on the arcs emanating from the
vertex id € A. Clearly, combining Corollary 2 with the well known (directed
version of) theorem of Sabidussi [18], we can conclude that the lift G* is
necessarily a Cayley graph as well. However, we shall be interested in the
structure of the underlying group of the lift. For that reason we recall the
concept of semidirect product A x4 T of the groups A and I’ (which depends
on the above homomorphism ¢ : A — Aut(I')) where the multiplication of
elements (e, g), (b, h) € A x T is given by (a, g)(b, k) = (ab, gba(h)).

Theorem 3 Let G = C(A, X) be a Cayley digraph for a group A and a
generaling sequence X and let T be a vollage group. Let ¢ : A — Aut(T)
be a group homomorphism and let a be a proper voltage assignment such
that o(a, z;) = ¢a(a(id, z;)) for each arc (a,z;) of G. Then the lift G* is
isomorphic to the Cayley digraph C(A x4 I, X®) with generating sequence
X = ($1, a(id; z"1))’ (172, a(id) 32))’ RS (xk» (a(id) :Bk)).

Proof. According to the definition of a lift, there is an arc in G* from
(a, g) to (b, k) if and only if az; = b for some z; in X and, at the same time,
h = ga(e, ;) = gda(a(id, z;)). But this adjacency condition is equivalent
to the following multiplicative property in the semidirect product A x¢ I':

(@, 9)(2i, a(id, 2;)) = (azi, gda(a(id, 2;))) = (b, h)
which actually defines the Cayley graph C(A x4 T, X©), as claimed. m]

The preceding theorem tells us that if a voltage assignment on a Cayley
graph satisfies the compatibility condition (2), then the resulting lift is a
Cayley graph of a semidirect product of the original group and the voltage
group. Interestingly enough, the converse is true as well.

Theorem 4 Let ¢ : A — Aul(T') be ¢ homomorphism which sends an
element a € A to an automorphism ¢, of the group T'. Let C(A x4 T,Y)
be a Cayley digraph for the semidirect product A x4 I' with a generating
sequence Y. Then there exists a Cayley digraph G = C(A, X) and a voliage
assignment o on G which satisfies the compatibility condition (2), such that
G*~C(A x4 TY).

Proof. Let Y = (z1,%1),(22,¥2),.-.,(2k, yx) be the generating se-
quence for the semidirect product. Then X = z;,=,,...,2; is a gener-
ating sequence for the group A. For each arc (e, z;) of the Cayley digraph
C(A, X) let us define the voltage assignment by a(e, z;) = ¢a(yi) € I.
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The rest is now almost identical to the proof of the preceding theorem and
therefore omitted. o

The 1-1 correspondence between Cayley digraphs of semidirect products
of groups on one side and lifts of Cayley digraphs (via voltage assignments
satisfying the compatibility condition) on the other side, established in
the preceding two results, opens up a new perspective to the search for
large vertex-transitive digraphs of given degree and diameter. Namely, as
the literature on computer search for such digraphs reveals [12], a large
number of the currently known record examples were found among Cayley
graphs of semidirect products of cyclic groups. Our Theorem 4 shows how
to reconstruct each such Cayley digraph in terms of a lift of a smaller Cayley
digraph of a cyclic group, with voltages taken in some smaller cyclic group
as well. This strongly suggests that a computer search over lifts of Cayley
digraphs may lead to some new examples of large digraphs of given diameter
and degree.

Before discussing examples, let us remind the reader that we defined
the semidirect product A x4 I' by setting (a, g)(b,k) = (ab, gda(h)) for
a given homomorphism ¢ : A — Aut(T'). Occasionally, however, a dif-
ferent definition of semidirect product (which we denote here by A X r)
is considered in the literature: For the same A, I' and ¢ as above, the
multiplication * in this A x3 ' is given by (a,g) * (b,h) = (ba, hée(g)).
Clearly, these two semidirect products are algebraically equivalent under
the isomorphism ® : (a,g) — (a,g9)”! = (a~!,Pa-1(g71)); we note that
this notation is not ambiguous because the inverse of an element (a, g) is
the same in both A x4 T and A xg . It follows that Cayley digraphs
of these semidirect products are isomorphic under taking inverse gener-
ating sequences, i.e., C(A x3 T, X) = C(A x4 T, X~1). Moreover, al-
though in general C(A x4 ', X™1) # C(A x4 T, X), the latter two Cay-
ley digraphs obviously have the same diameter (which is the smallest k
such that each element of the group can be expressed as a product of at
most k elements in X - and we have the same k for X~!). Consequently,
diam C(A x3 T, X) = diam C(A x4 T, X), which means that when concen-
trating on the diameter only, it does not matter which of the two definitions
of semidirect product we are actually using,.

In order to illustrate the above facts, let us take, say, the largest known
vertex-transitive digraph of degree 3 and diameter 5, which has 165 ver-
tices and was found [12] as the Cayley digraph H = C(25 x} Z33,Y);
the homomorphism ¢ : 25 — Aut(Zs3) is given by ¢4(j) = 4%j, a =
0,1,2,3,4 (the multiplication takes place in the ring (Z33,+,.)), and Y =
((2,21),(4,4),(4,17)). (We note that for the sake of brevity, in [12] this
semidirect product is denoted by the symbol 5 x4 33.) According to the
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Figure 3: The base digraph G with the voltage assignment a.

comments in the preceding paragraph, H 2 H' = C(Z5 X ¢ Z33, Y ') where
Y~ =((1,17),(1,31),(3,9)). By Theorem 4, the digraph H’ is isomorphic
to the lift of the Cayley digraph G = C(Zs, X) where X = (z1, 22, z3),
z1 = z3 = 1, 23 = 3. The voltage assignment « in the group Zs3 is given
by a(0,z,) = 17, a(0,z2) = 31, a(0,23) = 9, and (in accordance with
the compatibility condition (2)) it extends to the remaining arcs of G by
setting a(a, z;) = ¢4(a(0, z;)). The digraph G with the voltage assignment
a is depicted in Figure 3, and it well illustrates the idea of “blowing up”
a small digraph by a suitable voltage assignment in order to obtain the
desired large lifted digraph.

A computer search run on the digraph G revealed another suitable
voltage assignment § in Z33 such that diam(G?) = 5. It is given by
B(0,21) = 1, B(0,z2) = 32, B(0,z3) = 0, and extends to all other arcs
in the same way as o above.
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