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ABSTRACT. A continuum with finitely many non-cut points is
an irreducible tree. A two variable power series is obtained for
the number of (unlabelled) irreducible trees with p pendant and
q interior vertices. The result is then specialized to get Harary’s
series for the number of irreducible trees with n vertices and to
another series for the number of irreducible trees with p pendant
vertices, a result of interest in continuum theory.

Introduction

An irreducible tree is a connected graph having no cycles and no vertices of
degree two. A continuum is & nonempty compact connected metric space.
S.B. Nadler [N 154] has shown that any continuum having p non-cut points
(p < o) is a tree. Each pendant vertex in a tree is a non-cut point whilst
interior vertices are cut points. Hence, the irreducible trees withp (1 <p <
oo) pendant vertices and the continua with p non-cut points are the same.
Figure 1 exhibits all non-isomorphic (non-homeomorphic) irreducible trees
(continua) having four or five pendant vertices (non-cut points).

The aim of this paper is to construct a generating function for irre-
ducible trees with p pendant vertices. However, the generating function
that is obtained is somewhat more general: it is the function t(z,y) =
2_p.g>0 tpg@Py?, Where tpq is the number of irreducible trees having p pen-
dant vertices and q interior vertices that are distinct under graph isomor-
phism (t4; = t42 = t5) = 52 = ts3 = 1). A tree having p pendant vertices
and ¢ interior vertices is called a (p, q) tree.

Since there are no degree two vertices in an irreducible tree, the notions of
isomorphism and homeomorphism coincide. Thus, letting y = 1 in ¢(z, y),
we obtain the topologically interesting result of enumerating irreducible
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trees with p pendant vertices; the result answers a question that is implicit
in 9.43 of [N]. By letting y = z in ¢(z, y), we obtain a result of Harary and
Prins enumerating irreducible trees with n vertices [HP 150, cor. 1]. Since
many interested readers may not be familiar with the method employed
here, some preliminaries are included.
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Figure 1

Preliminaries

For our purpose, it is necessary to introduce Polya’s Enumeration Theorem,
following the method of Harary and Prins [HP 142-144]. Let figure be
an undefined term. To each figure there is assigned an ordered pair of
nonnegative integers called its content. Let a,,, denote the number of
different figures of content (m,n). Then the figure counting series a(z,y)
is defined by a(z,y) =Y or >0 GmnZ Y.

Let A be a permutation group of degree d and order h. A configuration
of length d is a sequence of d figures. The content of a configuration is
the vector sum of the contents of its figures. Two configurations are A-
equivalent if there is a permutation in A sending one into the other, so
we call A the configuration group. Let F,,, denote the number of A-
inequivalent configurations with content (m,n). Then the configuration
counting series is defined to be F(z,y) = > mn>0 Fmnz™y™.

The aim is to express F(x,y) in terms of a(z,y) and A. This is accom-
plished using the cycle index for the group A which is denoted Z(A) and
defined as follows. Z(A) is a polynomial in the variables fi, f3,..., f4 with

24 =1 3 Hfi"(“)

<€A k=1

where ji(ox) is the number of cycles of length k in the disjoint cycle de-
composition of . For any power series f(z,y) let Z(A, f(z,y)) denote the
function Z(A) replacing each fi by f(z*,3*). Now, it is possible to state
Polya’s Theorem.
Polya’s Enumeration Theorem. The configuration counting series F(z, y)
is determined by substituting the figure counting series into the cycle index
of the configuration group. Symbolically, F(z,y) = Z(A, a(z,y)).

The degree of a vertex, v, in a graph, G, is the number of edges to which
it is incident. Let o(G) be the automorphism group of G. Two points o and
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b in V(G) are similar if there is a ¢ in o(G) such that ¢a = b. The notion
of similar edges is defined analogously. A symmetry line is an edge whose
endpoints are similar. A tree of type (p,q) is a tree that has p pendant
and ¢ interior vertices (sometimes called a (p,q) tree). A rooted tree is a
tree with a distinguished vertex, called its root. An edge rooted tree is a
tree with a distinguished edge. A symmetric tree is a tree which contains a
symmetry line. The following theorem of R. Otter gives a relationship key
to the enumeration of many species of trees.

Otter’s dissimilarity characteristic. Let p*, ¢*, and s represent the
number of dissimilar points, the number of dissimilar edges and the num-
ber of symmetry lines respectively in a tree T. Then p* —¢* + s = 1.
Furthermore, s =0 or s = 1..[O 588]

Results

A branch of a rooted tree determined by an edge adjacent to the root is the
subtree consisting of the root and all points reachable by a path through
that particular edge. A plantable tree is a rooted tree whose branches are
irreducible and whose root degree is not one.

Lemma 1. If Ly, is the number of plantable irreducible (p, q) trees (Loo =
0) and L(z,y) = Zp q>0 LypqzPy® then L(z,y) = z2+y Y nrp Z(Sn, L(z,y)).

Proof: Each plantable (p,q) tree has a root with degree r (r = 0 or
2 < r < p). Let L{")(z,y) be the counting series for plantable (p,q) trees
with root degree r and let T be such a tree. Consider the graph obtained
by deleting this root and all incident edges. Rooting each of the r resulting
plantable (p, q) trees at the point which was adjacent to the root gives a
set of r plantable trees. Clearly, then each plantable tree with root degree
r corresponds to a combination with repetition of r plantable trees with
pendant vertices totalling p and interiors totalling ¢ — 1. Applying the
Polya’s Enumeration Theorem with configuration group S, and counting
series L(z,y), L{)(z,y) is obtained to be yZ(S;, L(z,y)). Summing over
all possible root degrees completes the proof. a

For some explicit coefficient values of L(z,y), see Table 1.

Now the counting series for plantable trees is used to obtain counting
series for symmetric irreducible, rooted irreducible and edge-rooted irre-
ducible trees. Clearly a symmetric (p, g) tree can exist only if both p and ¢
even.

Lemma 2. The counting series for symmetric irreducible trees of type
(p,q) is L(=?,9%).
Proof: There is a one-to-one correspondence between symmetric trees with

type (p, ¢) and identical pairs of plantable trees with p/2 pendant vertices
and g/2 interior vertices, each rooted at a point on the symmetry line. O
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Lemma 3. The counting series for rooted irreducible (p,q) trees is

L(z,y) = (1 + z)L(z, y) — yZ(S2, L(z,y)).

Proof: Let Ly, be the number of rooted irreducible trees with type (p, g).
Then Lpg can be obtained in the following manner. All rooted (p, q) trees
having a root with degree one can be formed by attaching an edge to the
root of all plantable trees with type (p — 1,9) and rooting the resulting
tree at its new vertex. Thus there are Z(p_ 1)q rooted (p, q) trees with root
degree one. There is also a one to one correspondence between rooted
(p, q) trees (r # 1) and plantable (p, g) trees and r > 3. Therefore, Lpg =
Lip—1yg+Lpg — L), where L) equals the number of plantable (p, q) trees
with root degree two. In words, Ly, equals the number of plantable (p—1, q)
trees plus the number with type (p, ¢) minus the number with type (p, q)
and r = 2. The result then follows by Polya’s Theorem. m|

Some coefficients of L(z,y) are listed in Table 2.

Lemma 4. The counting series for edge rooted irreducible (p, q) trees is
Z(Sz, L(x’ y))'

Proof: There is a one-to-one correspondence between edge rooted irre-
ducible (p, g) trees and unordered pairs of plantable trees whose pendancies
total p and interiors total g, each rooted at a vertex of the distinguished
edge. By applying Polya’s enumeration theorem with configuration group
S> and figure counting series L(z,y) we obtain the series for edge rooted
irreducible trees with type (p, g). O

We are now prepared to state the main result.

Theorem 5. The counting series for irreducible (p, q) trees is

t(z,y) = (1+=z)L(z,y) — (1 +¥)Z(S2, L(z,y)) + L(z% 3?)

Proof: First summing Otter’s dissimilarity characteristic over all irre-
ducible (p, q) trees, then inserting the respective counting series for rooted,
edge rooted and symmetric irreducible (p, q) trees, the counting series for
the number of such trees is obtained. In other words, the sum of the number
of dissimilar points minus the sum of the number of dissimilar edges plus
the sum of the number of symmetry lines over all irreducible (p, q) trees is
the same as the number of rooted minus the number of edge rooted plus
the number of symmetric irreducible (p, q) trees. Symbolically, by lemmas
2 and 4,
t(z,y) = Lz, y) — Z(Sy, L(z,y)) + L(z2, ,y2)

and the result follows by lemma 3. ‘ a

For several explicit coefficient values of ¢(z, ), see Table 3.
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If we set h(z) = t(z,z) and L(z) = L(z,z) we see that h(z) and L(z)
are the counting series for irreducible and plantable trees respectively with
n = p + q vertices. Letting y = = in Theorem 5 then gives the result of
Harary and Prins.

Corollary 1. h(z) = (1 + z)[L{z) — Z(S2, L(z))] + L(z?).
Explicitly, h(z) = z+22+ 2% + 25+ 22% 4+ 227 + 428 4 52° 4+ 10210 4 141 +
26z12 4 42213 4 78214 + 132215 4 ...

Similarly, if we let A\(z) = t(z, 1) and Lo(z) = L(z, 1) then A(z) and Lo(z)
are the counting series for irreducible and plantable trees respectively with
p pendant vertices. A concise formula for A(z) now follows.

Corollary 2. X(z) = (1 + z)Lo(z) — LE(z).

Proof: Let y =1 in Theorem 5 and use the fact that
Z(S», Lo(=)) = (1/2)[Lg *(=) + Lo(=?)]

a

Explicitly, A(z) = z + 22 + z° + 2z* + 32° + 725 4 1327 + 8228 + 732% +
1900 + 488z!! 4 135022 4 3741z'3 + 107654 + 31309z +. ..

The coefficients given in the corollaries are readily obtained once the
series L(z,y) is obtained. However, the coefficients of L(z,y) are obtained
(with some difficulty) using Mathematica and the formula given in Lemma 1.
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Appendix I
Tables of Coefficients

z\y 0 1 2 3 4 5 6 7 8 9 10
2
5 3
10 12 6

16 29 28 11

24 57 84 66 23

33 99 192 231 157 46

44 157 382 615 634 373 98

56 234 682 1380 1905 1704 890 207

-
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Plantable irreducible (p, q) trees: L(z,y)

Ay 0 1 2 3 4 5 6 7 8 9
1 1
2 1
3 0 2
4 0 2 2
5 0 2 4 4
6 0 2 6 10 7
7 0 2 8 20 25 13
8 0 2 10 32 60 60 25
9 0 2 12 48 117 176 143 52
10 0 2 14 66 202 399 494 345 106
11 0 2 16 88 319 789 1297 1369 829 225
Rooted irreducible (p, q) trees: L(z,y)
Ny 0 1 2 3 4 5 6 7 8 9
1 1
2 1
3 0 1
4 0 1 1
5 0 1 1 1
6 01 2 2 2
7 0 1 2 4 4 2
8 0 1 3 6 10 8 4
9 0 1 3 9 17 22 15 6
10 0 1 4 12 30 47 53 32 11
11 0 1 4 16 44 91 127 121 66 18

Irreducible (p, g) trees: t(z,y)
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Appendix II

Diagrams of all irreducible trees with p (p < 8)
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