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ABSTRACT. A connected dominating set is a dominating set S
with the additional property that the subgraph induced by S
is connected. We are interested in the collection C of graphs in
which every minimal connected dominating set is of one size.
Trees, for instance, clearly belong to this collection. A partial
characterization will be discussed; in particular, we determine
those graphs which have the property that all spanning trees
have the same number of leaves. It is noted that membership in
this sub-collection of C can be determined in polynomial time.

1 Introduction

We begin with some terminology used in this paper.

Let G be a graph. A dominating set of G is a set, D, of vertices of
G such that every vertex in G is either in, or adjacent to, a member of
D. D will be a connected dominating set of G if the subgraph induced by
D is connected. A minimal connected dominating set of G is a connected
dominating set of G such that the removal of any member of the set leaves G
no longer dominated or the set no longer connected. Let C be the collection
of graphs in which every minimal connected dominating set is of one size.
A cut vertez of G is a vertex of G such that its removal leaves G no longer
connected. A non-cut vertez of G is a vertex of G such that its removal
does not disconnect G.

It is easily seen that every minimal connected dominating set of a tree
with n vertices is of constant size, n— L, where L is the number of leaves [2].
Similarly, the leaves of a spanning tree of a graph G can be removed to find
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a connected dominating set of G. In fact, every minimal connected dom-
inating set corresponds to some spanning tree with its leaves removed, an
observation first made in [4]. Therefore, the spanning tree with the maxi-
mum number of leaves can be used to find a minimum connected dominating
set of a graph G. Unfortunately, finding this tree for an arbitrary graph
is NP-complete [3]! As pointed out in [4], this can be used to show that
determining a minimum connected dominating set for an arbitrary graph is
also NP-complete (the reader interested in more detailed complexity results
is referred to [5] and [6]).

If all spanning trees of a graph G have the same number of leaves, then
any spanning tree will give a minimal connected dominating set and, in
fact, G will be in the collection C. Let D be the class of graphs such that
G belongs to D if and only if all spanning trees of G have the same number
of leaves. Observe that a 4-cycle with a tree rooted at one vertex on the
4-cycle but the other vertices on the 4-cycle being of degree two is in the
collection C but fails to be in D. In this paper we will focus our attention
on D.

Our main result is the following:

Theorem. A graph G has the property that each pair of spanning trees
have the same number of leaves if and only if both of the following conditions
hold.

(1) About each cycle in the graph G, the vertices are either all cut ver-
tices, all non-cut vertices, or alternating cut and non-cut vertices.

(2) Every vertex of degree 3 or more is a cut vertex.

2 Proof of the Theorem

Lemma 1. Let G be a graph in which all spanning trees have the same
number of leaves. If a vertex v is of degree three or more, then v must be
a cut vertex.

Proof: Assume not. That is, let G be a graph in which all spanning trees
have the same number of leaves but with a vertex v of degree at least 3
where v is not a cut vertex. Let the neighbors of v be zy,zs,...,zx, k > 3
(see Figure 1).

Since v is not a cut vertex, we can find a spanning tree T of G — {v}.
Let m be the number of leaves in T. Note that in T the z;’s can be leaves
or non-leaves. We consider various possibilities.

Case 1: There exists at least one vertex, z, say, that is a leaf, and one
vertex, z, say, that is a non-leaf in 7.
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Figure 1

One way to form a spanning tree of G is to to extend T to include the
edge between v and z,. This spanning tree of G will have m leaves since
v takes the place of z, as a leaf. On the other hand, a spanning tree of G
can be formed by including the edge between v and z;. This spanning tree
of G will have a different number of leaves, m + 1, since v becomes a new
leaf.

Hence Case 1 cannot occur as all spanning trees of G must have the same
number of leaves.

Case 2: All the z;’s are leaves in T'.

One way to form a spanning tree of G is to extend T to include the edge
between v and z;. This spanning tree of G will have m leaves since v takes
the place of z; as a leaf. Another way to form a spanning tree of G is to
first include two edges between v and any two x;’s, say z, and =,. Exactly
one cycle has been formed, since there are now two paths between z, and
z5; one in T and one through v. Along this cycle, there must be at least one
vertex of degree 3 or more to connect it to vertices outside the cycle. Let
one such vertex be called y. At least one vertex outside of the cycle must
exist since deg(v) > 3. Now remove an edge (not incident with v) along
the cycle to form a spanning,. tree of G. By removing the edge between y
and a neighbor in the cycle, a spanning tree with m — 2 or m — 1 leaves
will be formed. If the degree of the neighbor is 2, and the neighbor is not
Z,, NOT T, then removing the edge will create a new leaf, but z, and z,
are no longer leaves, thus giving m — 1 leaves. In the event the neighbor is
one of z, or z,, z, say, then removing the edge results in a spanning tree
with m — 1 leaves (as z, no longer a leaf). If the degree of the neighbor is
greater than 2, then removing the edge will not create a new leaf, and =,
and z, are no longer leaves, thus giving m — 2 leaves.
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In either situation, a spanning tree with a different number of leaves than
m is obtained. Thus case 2 cannot occur.

Case 3: None of the z;’s are leaves in T,

One way to form a spanning tree of G is to extend T to include an edge
between v and any z;. This spanning tree will have m + 1 leaves as v
becomes a new leaf.

Another way to form a spanning tree of G is to first include two edges
between v and any two z;’s, say z, and z,. Similar to case 2, exactly one
cycle is formed. If either z, or z, has a neighbor on the cycle that is of
degree greater than two, then the edge between the neighbor and that z;
can be removed. This spanning tree of G will have m leaves since no new
leaves were created. As this argument will hold for any cycle formed by
including two edges between v and any two z;’s, it can be assumed that
the neighbors on the cycle of all z;’s will be of degree 2. By including three
edges between v and any three z;’s we note that two edges must be removed
to form a spanning tree of G. If each edge removed is between an z; and its
degree 2 neighbor, both on a cycle, then the spanning tree of G will have
m + 2 leaves.

In either situation, a spanning tree with a number of leaves different than
m + 1 is obtained. Hence case 3 is impossible.

This completes the proof of Lemma 1. O

Lemma 2. Let G be a graph in which all spanning trees have the same
number of leaves. If C is a cycle of G, then the vertices of C must either be
all cut vertices or all non-cut vertices or the cycle must be of even length
where the vertices alternate between cut and non-cut.

Proof: Let G be a graph in which all spanning trees have the same number
of leaves. Assume G has some cycle in which the vertices are not all cut
vertices, nor all non-cut vertices, nor alternating cut and non-cut vertices.
Then on that cycle, one of two possible sequences of vertices will be found.

Case 1: There is a cycle in G with three consecutive vertices z, y and
z where z and y are non-cut vertices and z is a cut vertex. By Lemma
1, non-cut vertices cannot be of degree three or more. Therefore, we may
assume that all the non-cut vertices on the cycle are of degree 2 (see Figure
2).

Consider any spanning tree, say T, of G — {y} and let m be the number
of leaves. To form a spanning tree of G, the edge xy or the edge yz must be
added to T'. By including the edge zy, the spanning tree of G will have m
leaves since y takes the place of z as a leaf. On the other hand, by including
the edge yz, the spanning tree of G will have a different number of leaves,
m + 1, since y becomes a new leaf.
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Figure 2

Case 2: There is a cycle in G with three consecutive vertices z, y and z
where z and y are cut vertices and 2 is a non-cut vertex (see Figure 3).

Figure 3

Let G; be the component of the graph G — {y} containing the vertices
z and z. Since z is a cut vertex in G, it must also be a cut vertex in Gi.
Hence, it will not be a leaf in any spanning tree of G;. To form a spanning
tree of G, we first take a spanning tree of each component of G —~ {y} and
then add an edge from y to each component (other than Gi) of G — {y}.
Finally, we include either the edge zy or the edge yz. The former case
results in a spanning tree of G with exactly one more leaf (namely, z).

Hence, neither case 1 nor case 2 can occur.
This completes the proof of Lemma 2. O

Lemma 3. If a graph G has both the following properties, then any two
spanning trees of G have the same number of leaves.
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(1) Around each cycle, either cut and non-cut vertices alternate, or all
vertices are cut vertices, or all vertices are non-cut vertices.

(2) Every vertex of degree 3 or more is a cut vertex.

Proof: Assume a graph G which satisfies conditions 1 and 2 has two span-
ning trees with different numbers of leaves. Call the spanning trees A and
B, where B has fewer leaves than A, but let B be chosen in such a way
that it has as many leaves as possible in common with A. Then there will
be at least one vertex v that-is a leaf in A but not in B. Since v is a leaf
in a spanning tree, it must be a non-cut vertex in G, and by condition 2,
it will be of degree 2. Let vw be the edge in G that is not included in the
spanning tree A.

The vertices v and w lie on a cycle in the graph G because there exists
two paths between these vertices: the edge vw and the unique path in the
spanning tree A. This cycle must satisfy condition 1, so there are two
possibilities for the vertices in the cycle. All vertices may be non-cut, and
hence of degree 2, in which case G itself consists only of one cycle. Since
all spanning trees of cycles have the same number of leaves, a contradiction
has been reached. A second possibility is that the vertices alternate around
the cycle between cut and non-cut, in which case w is a cut vertex.

Consider the spanning tree B and the two components of B —vw. Let
B, be the component consisting of those vertices in the same component
as v and B,, consisting of those in the same component as w. Observe that
there must be at least one edge, say ab, on the unique path between v and
w in the spanning tree A, where a belongs to B, and b belongs to B,,. Now
form a new spanning tree B’ from B by deleting the edge vw and adding
the edge ab. This edge is between a cut and a non-cut vertex which means
one leaf will be destroyed. Therefore, the number of leaves in B’ is the
same as the number of leaves in B. But, this is a contradiction since B’
now has more leaves in common with A than B (namely, v). Therefore,
our original assumption was incorrect and all spanning trees must have the
same number of leaves.

This completes the proof of Lemma 3. a

3 Conclusions

We conclude by observing that one can determine membership in the family
characterized by the Theorem in polynomial time. For instance, one could
employ a depth-first search to a graph G to determine the biconnected
components (see [1]). Then the conditions for either all cut or all non-cut
or alternating cut and non-cut on cycles can be readily verified.
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