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ABSTRACT. It is shown that the circuit polynomial character-
izes many of the well-known families of graphs . These include
chains, stars, cycles, complete graphs, regular complete bipar-
tite graphs and wheels. Some analogous results are deduced for
the characteristic polynomial and the u-polynomial.

1 introduction

The graphs considered here are finite and contain neither loops nor multiple
edges. Let G be such a graph. We define the circuits (or cycles) with one
and two nodes to be a node and an edge respectively. Cycles with more
than two nodes are called proper. A cycle (circuit) cover in G is a spanning
subgraph of G, in which every component is a cycle. With every cycle C,
with n nodes, let us associate an indeterminate or weight w,, = w(Cr) and
with every cycle cover Z in G, the weight w(Z) = [[(Cy), where the product
is taken over all the components C of Z. Then the circuit polynomial of G

) C(G;w) =Y _w(2),

where the summation is taken over all the cycle covers of G , and w =
(wy, w2, ws, ...) is the vector of indeterminates. The basic results on circuit
polynomials have been given in the introductory paper [3].

JCMCC 24 (1997), pp. 193-200



Let G be a graph and F(G;w) an F-polynomial (see [2]) associated with
G. We say that F(G;w) characterizes G, if and only if for any graph H,
whenever F(G;w) = F(H;w), then G = H. It is of interest to determine
the families of graphs that are characterized by their circuit polynomials.
In this paper, we identify several of these families. They include cycles,
chains (trees with nodes of valencies 1 and 2 only), stars, complete graphs,
regular complete bipartite graphs and wheels. Analogous results can also
be deduced for characteristic polynomials and p-polynomials.

Suppose that we restrict the elements of a circuit cover to improper cycles
(i.e. nodes and edges) only, then each circuit cover becomes a matching.
The resulting polynornial is then called a matching polynomial. This poly-
nomial was introduced in [4]. Let us denote the matching polynomial of G,
by M(G;w). Then clearly

M(G;w) = C(G; (wy,w,0,0,...,0)).

It is not difficult to see that if a graph is characterized by its matching
polynomial, then it must be also characterized by its circuit polynomial.
In [7], it was shown that cycles, stars (except the 4-star), chains of even
lengths and complete graphs, are all characterized by their matching poly-
nomials. It follows that all these graphs are also characterized by their
circuit polynomials. . :

The circuit polynomial is related to the matching polynomial, as shown
above. It is also related to the u-polynomial (see Gutman and Polansky
[9]). The connection between these polynomials has been given in Farrell
and Gutman [8]. Both the matching polynomial and the p-polynomial
have been applied to various problems in Chemistry ([9]). It follows that
developments in the theory of circuit polynomials might be of interest to
researchers who apply graph polynomials in Chemistry.

In the material which follows, we denote by C,, P,, K, and W, the cycle,
chain, complete graph and wheel respectively with p nodes. The m by n
complete bipartite graph is denoted by Km n.

2 Preliminaries

The following lemma gives graph-theoretical interpretations for the coeffi-
cients of the polynomial C(G;w). It can be easily proved.

Lemma 1. Let G be a graph with p nodes and q edges. Then
(i) C(G;w) has the term w£™2; and this occurs with the coefficient 1.
(ii) The coefficient of wf %w, is q.

(iii) The coefficient of wf *w3 is () —X0_, (%), where d, is the valency
of node i in G.
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(iv) The coefficient of wy is the number of hamiltonian cycles in G.

The following result (see [3]) gives a relationship between the circuit
polynomial of G and the characteristic polynomial of G, denoted by ¢(G; z).

Lemma 2.
¢(Ga z) = C(G: (x) -1,-2,-2,...)).
Lemmas 1 and 2 yield the following result.
Lemma 8. Let G be a graph with p nodes and q edges. Then

(i) ¢(G;z) has the term zP; and this occurs with coefficient 1.

(ii) The coefficient of —zP~2 is q.

The following lemmas give the relations between the circuit polyno-
mial, p-polynomial and the characteristic polynomial of a graph. The u-
polynomial of G will be denoted by u(G;t, z).

Lemma 4. u(G;t, z) = C(G;(z,—1, —2t1,—2t3,...)), where t = (t1,¢2,%3,
...) and more general weights are assigned to the cycles as defined in [8].

Lemma 5. ¢(G;z) = u(G;1,z), where 1 =(1,1,1,...,1).
The following result cah be easily deduced from above.

Lemma 6. If a graph G is characterized by its characteristic polynomial,
then it is also characterized by its circuit polynomial and its u-polynomial.
If G is characterized by its p-polynomial, then it is also characterized by
its circuit polynomial (with the implied general weights).

3 Chains and complete bipartite graphs

The following theorem shows that chains are characterized by their circuit
polynomials. It is well known that the chain is not characterized by its
chromatic polynomial. Chains are characterized by their star polynomi-
als ([6]). Also, only the even chains are characterized by their matching
polynomials; as reported in 7] .

Theorem 1. The circuit polynomial characterizes chains.

Proof: This is straightforward. a

The non-characterization of Kmmn (m # n) for matching polynomials,
was established in [7]. For m = n, the problem is still open. The following
theorem can be easily proved. It shows that K, , is characterized by its
circuit polynomial.
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Theorem 2. The circuit polynomial characterizes regulg.r complete bipar-
tite graphs.

The characterization of K, » by its characteristic polynomial is shown in
Cvetkovic et al [1].

4 Wheels

Definition. The wheel W), (p > 2) with p nodes, is the graph formed by
joining a new node to all the nodes of C,_1. W is a node and W is an
edge.

The following lemma can be easily established from Lemma 1 and by
observing the form of the subscripts of w in C(Wp;w), given in [5].

Lemma 7. Let G be a graph such that C(G;w) = C(Wp;w). Then
(i) G has p nodes
(ii) G has 2p — 2 edges
(i) iy (3) = &2 +3p - 1)
(iv) G is hamiltonian
(v) G has cycles of all lengths, up to p

(v) G does not contain any pair of node-disjoint proper cycles.

Lemma 8. Let G be a graph such that C(G;w) = C(W,; w), where p > 5.
Then G contains a node v of valency d,, > 4.

Proof: Assume the contrary. Then for all i, d; < 3. Therefore the sum of
the valencies is < 3p. But the sum of the valencies is 2¢ = 2(2p—2) = 4p—4.
It follows that 4p —4 < 3p. Thus p < 4. This is a contradiction. Hence the
result follows. a

Lemma 9. Let G be a graph such that C(G; w) = C(W,; w), where p > 9.
Then G contains a node v such that d, = p — 1.

Proof: By (iv) of Lemma 7, G is hamiltonian. = all the nodes are located
on a cycle H. By lemma 8, there is a node v € V(G) such that d, > 4. Let
us label the nodes of H as shown in Figure 1(i), with d; > 4.

We will prove the result by considering the different possible values of
d;. Since there are ¢ = 2p — 2 edges in G, and H has p edges, another
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p — 2 “diagonal” edges must be drawn between the p nodes of H. We will
consider four cases:

)

1) (ii)
Figure 1

Case (1). p — 3 diagonal edges are drawn from node 1.

In this case , we get that d; = p — 1 and the result follows. This situation
is shown above in Figure 1(ii).

Case (2). m[(4 < m < (p —4)] diagonal edges are drawn from node 1.
Let the diagonal edges be (1,%1),(1,%2),...,(1,¢m), where 3 < ¢; < t2 <
-++ < t;m < p—1. Since there are p — 2 diagonal edges to be added, at least
2 edges must be added between nodes other than node 1.

We show that it is impossible to add two or more edges between the
nodes, other than node 1 without violating the property that G has no
node-disjoint proper circuit subgraphs.

First of all, we note that no two nodes in the set {2,3,...,tm — 1} can
be joined by an edge; otherwise a proper cycle, disjoint from the cycle
1 — t,, — p — 1, will be formed. Similarly, no edges can be drawn between
the nodes in the set {t; + 1,2+ 2,...,p — 1,p}. Therefore the required
edges can only be added between nodes of the sets A; = {tm,tm+1,...,0}
and B; = {2,3,...,t;} (N.B. A, and B are non-empty, since p € A; and
2 € By). If A; and B are singletons then it is impossible to add two or more
edges. Otherwise, since m > 4, Inodes ¢ and j such that {; < i <j <im
withl =4 —=i+1 > ... = j — 1 as one cycle and a (disjoint) cycle
consisting of two diagonals joining a nodes in A, to nodes in B; and edges
of the hamiltonian cycle H. This contradicts (vi) of Lemma 7. Therefore
4 <m < p -4 is impossible.

Figure 2
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Case (3). m = 3 diagonal edges are drawn from node 1.
This situation is shown in Figure 2(i).

Let the edges be (1,¢,), (1,22) and (1,3), where 3 < t; <ty <t3 <p-—1.
In this case, there are (p —2) — 3 = p — 5 > 4 edges that must be drawn
between the nodes other than node 1. These edges must be drawn between
nodes of the sets A2 = {t3,ta +1,...,p} and Bz = {2,3,...,t; — 1,4;}.
Furthermore, we may restrict the number of edges starting from ¢3 (or ;)
to the set By (or Az) to be at most 2; otherwise there will be 4 or more
diagonal edges starting from ¢3 (or ¢;) and so by Case(2), the result follows.

Now every cycle must use both ¢; and ¢3 in order not to be disjoint
from each other . Therefore one of the sets of edges {t1¢s,¢1z}, {t1ts, 3z}
or {tit3,t1z,tax} must be used. It follows that 2 or 3 edges must join
elements of the sets A2 and Bs. Any other edges joining a pair of nodes
other than ¢; and t3 will form independent cycles.

Case (4). m = 2 diagonal edges are joined from node 1.
This case can be analyzed in the same manner as Case(3) above (see Figure
2 (ii)). Therefore the proof is completed.

Lemma 10. Let C(G;w) = C(Wp,w). Suppose that there is a node
v € V(G) such that d, =p — 1. Then G = W,,.

Proof:
Y d=2-2)-(-1)=3p-1)

u€(V(G)—{v})
dy -2 -1
> (3)=te-0EF+3e-1- (7, 1) =s-1
ue(V(G)—{v})
by (iii) of Lemma 7.

It can be shown that (3, 3, 3,...) (p—1 times) is the only valency sequence
satisfying the two conditions above. Therefore all the d,’s must be equal
to 3. Hence the valency sequence of G is (3,3,3,...,p — 1). Thus G is
isomorphic either to the wheel W, or some web (a graph consisting of

concentric circles with radial edges connecting them). But no web can
satisfy the condition (vi) of Lemma 7. Therefore G = W,,. (]

The above lemmas lead to the following result.

Lemma 11. The circuit polynomial characterizes all wheels with more
than 8 nodes.

We now establish the results for wheels with no more than 8 nodes.

Lemma 12. The circuit polynomial characterizes W, for 1 <p < 7.

Proof: The result follows from direct calculation of the circuit polynomials
of the graphs on 6 and 7 nodes.
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The following lemma was recently established by Maharaj [10], using a
computer program to investigate the circuit polynomials of all the graphs
on 8 nodes.

Lemma 18. The circuit polynomial characterizes Ws. (N.B. It is well-
known (Xu and Li [11]) that the W3 is not characterized by its chromatic
polynomial.)

The following theorem summarizes the above lemmas.

Theorem 3. The circuit polynomial characterizes wheels.

5 Discussion

The circuit polynomial has strong characterizing properties. However, it
is not a characterizing polynomial for all graphs. For example, the follow-
ing non-isomorphic graphs are cocircuit; i.e. they have the same circuit
polynomial.

/\/V--

G G
1 2

Figure 3

It can be verified that C(Gy;w) = C(G2;w) = wi + 10w]wy 4+ 29wiw? +
25wiw3 +5wywh +2wiws +10wiwyws +wiwdws +wiws+wiwd +wiwawi.

We have presented results which can be used to further compare the
characterizing abilities of the various F-polynomials. This is an interesting
problem. There are many families of graphs that are characterized by their
characteristic polynomials, and by Lemma 6, they must also be character-
ized by their circuit polynomials. These include some of the graphs which
have been considered above. However, in such cases, we have presented
a novel combinatorial approach, to establish results which until now have
been exclusively in the domain of Matrix Algebra.
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