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ABSTRACT. A string is strongly square-free if it contains no
Abelian squares; that is, adjacent substrings which are permu-
tations of each other. We discuss recent results concerning the
construction of strongly square-free finite strings.

1 Introduction

A string is one of the most fundamental data structures. Some other names
for a string are: sequence, vector, codeword, linear array, and list. The goal
is to find what inherent properties can be found in strings independently
of their appearance in any algebraic structure. Of course strings may be
defined using any ordinal, not just finite ones. One can view the entries of
a given string as a coloring of the underlying ordinal, but we do not adopt
that language. Much research effort has been directed toward countably
infinite strings which do or do not exhibit certain properties, but here we
will be mainly concerned with finite strings.

An ordered sequence X = z1Z2--- Zm Of elements chosen from a fixed
finite set, A, of distinct elements is called a finite string of length |z| = m
over the alphabet A. In the interests of notational convenience, and without
loss of generality, we often choose A = {0,...n — 1} for fixed n > 1 as the
alphabet. Every element of the alphabet is also considered to be a string.
The elements of the alphabet will be called entries or letters. For each
a € A we define a function |z|, to be the number of times that a appears
in the string x. We freely concatenate strings and write the concatenation
of strings x and y as simply xy. If a string x=uv is the concatenation of
two strings u and v then u is said to be a prefiz of x and v is said to be a
suffiz. If v is not empty then u is said to be a proper suffiz of x.
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If 1 <4 <j <m then the ordered sequence z;z;;;---z; is said to be
a substring of the string x. Interesting combinatorial problems arise by
asking when certain strings can occur as substrings of other strings. One of
the first questions to ask is whether there are repetitions in a given string;
i.e., a substring consisting of a block of letters immediately followed at least
once by the same block of letters in the same order. If a string x contains
a substring of the form yy then we say x contains the square yy.

For example, over the alphabet {0,1}, 0010100101 is a square which
contains as substrings the squares

00 0101 1010 010010.

One direction of research has been to determine under what conditions a
string can avoid “squares” as well as algorithms for finding if they exist in
a given string. A string without any substrings which are squares is said to
be square-free. The strings 010 and 101 are square-free and, moreover, they
cannot be extended by concatenation over the alphabet {0, 1} on either the
right or the left without creating a substring which is a square. A brief
survey of square-free infinite strings and references is given in [1]. Viewing
the entries of a given string as a coloring of the underlying ordinal, the
“ultimate” generalization was given in [11] where it was shown that the
class of all ordinals has a square-free 3-coloring. In a different direction, It
was shown by Ross and Winklmann [15] that over any alphabet of at least
three elements, the set of strings containing “squares” is not context-free.
In what follows we concentrate on the less frequently studied question of
“Abelian squares”.

An Abelian square is a string followed by a permutation of itself. Over
the alphabet {0,1}, 010100 is an Abelian square which contains the squares
0101, 1010, and 00. Thus 010100 contains 4 Abelian squares.

Apparently Erdds [9] first raised the question of the minimum alpha-
bet size over which there exist countably infinite strings without Abelian
squares. This is a variant of the corresponding problem for squares raised
and solved by Thue [16] in 1906.

Definition 1 An Abelian square over the alphabet A is a non-empty string
of the form

YW =1 Yr¥o(1) Yo (k)
where o is a permutation of A. A string is said to be strongly square-free
if it contains no Abelian squares.

Note that every square is an Abelian square corresponding to the identity

permutation. Clearly every strongly square-free string is square-free. Over
the alphabet A = {0, 1,2}, 012201 is an Abelian square while 0102010 is
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strongly square-free and cannot be extended on the alphabet A = {0, 1,2}
without introducing Abelian squares.

Main [12] has shown that, for every alphabet with at least 16 elements,
the set of strings which contain Abelian squares is not context-free. In a
different direction, Entringer, Jackson, and Schatz [8] proved that every
infinite binary string has arbitrarily long Abelian squares. Dekking (7] has
shown that there exist infinite binary strings in which no four adjacent sub-
strings appear which are permutations of one another; i.e., no two Abelian
squares are adjacent.

In 1970 Pleasants [14] showed that there existed an infinite strongly
square-free string on an alphabet of 5 elements. This result was recently
sharpened by Kerénen [10] who showed the same was true for an alphabet
of 4 elements, with a computer-aided proof.

It is folklore that any strongly square-free string over {0, 1,2} has length
at most 7 [1].

This can be established, say, by diligently constructing the tree of possible
strongly square-free strings starting with 0 and observing that starting with
1 or 2 would yield the same tree. Knowing this allows one to prove:

Theorem 1 There are 117 distinct strongly square-free finite strings over
the alphabet {0,1,2}.

This is proved in [5]. Accepting the result by Kerinen [10], the case of
just three letters is seen to be important because it is the last case for which
all strongly square-free strings are finite. We include as an appendix a list
of all strongly square-free strings on {0,1,2}. .

A great deal of attention has been focused on the case of infinite strings,
culminating in the work of Kerénen which resolved Erdés’s question.

2 Central Strongly Square-Free Strings

We are not concerned with just a computer listing of strongly square-free
strings, but rather determining their global properties.

Definition 2 A siring x is said to be central if it contains at least one
entry a such that |z|, = 1. A set of sirings S is said to be central with
respect toa € A if |z|, =1 forallz € S.

All central strongly square-free strings can be constructed by the follow-
ing lemma.

Lemma 1 If ¢ and z are strongly square-free strings on an alphabet A and

a € A does not appear in  or z then zaz is a strongly square-free central
siring.
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Proof. Suppose xaz contains an Abelian square yy°, where o can be any
permutation of y. Then, yy” cannot be a substring of x or of z since they
are strongly square-free. Therefore, either a occurs in y or a occurs in
y°. But since y° is a permutation of y, a must appear in both y and y°,
contradicting the assumption that a appears only once in xaz. o

Note that if @ € {0,1,... ,n — 1} does not appear in x or y then both x
and y are necessarily strings over alphabets of at most n — 1 elements.

For each permutation of the underlying alphabet, the following recursive
definition constructs a different central string on an alphabet of size n which
is strongly square-free by Lemma 1.

Definition 8 For each permutation 7 of {0,... ,n — 1} recursively define
a string z, = z,(w) by iterating fork=0,...,n—1
Z1 = T (0)
1 = zxw(k)zg. (1)
For example, if n = 4 and = is the 4-cycle (0123) then
z4(7) = 121312101213121.
For |A| = n, Definition 3 yields n! distinct strings each of length 2" — 1. It

had been previously shown in [4] that the strings 2z, = z,(7) are square-free.

It is the non-central strings which appear to be more difficult to construct.
A string x is non-central only if every letter of the alphabet A appears at
least twice in x and, consequently, |x] > 2|A|.

For example, on {0, 1,2} the only non-central strings are of length 6 or
7 [5]. The non-central strings on {0, 1,2} of length 6 are

010212 020121 101202 121020 202101 212010
and those of length 7 are
0121012 0212021 1020102 1202120 2010201 2101210.

For a proof see [5].

3 Maximal Strongly Square-Free Strings

We_observed earlier that 010 and 101 were binary strings that could not
be extended by concatenation right or left without introducing a square.
Moreover they are strongly square-free strings which cannot be extended.
Another example we have already noted is z3(id) = 0102010 which does not
contain Abelian squares and cannot be extended over the alphabet {0, 1,2}
without introducing Abelian squares.

204



Definition 4 A finite siring @ over an alphabet A is a maximal strongly
square-free string if for every a € A, both axz and za contain Abelian
squares. Right maximal and left maximal strongly square-free strings are
defined in the obvious way.

For example, 0102010 and the 5 strings obtained from it by permuting the
underlying alphabet are all strongly square-free strings. Although strongly
square-free implies square-free, a maximal strongly square-free string need
not be a maximal square-free string. A simple example is the string 1020102
over {0,1,2}

For each permutation of the underlying alphabet, Definition 3 constructs
a maximal strongly square-free string on an alphabet of size n. Although
the indexing in Definition 3 might seem a bit tricky, in practice any z,(m)
is easy to compute. For example, if n = 4 and 7 is the identity permutation
then

z4(7) = 010201030102010.

For |A| = n, Definition 3 yields n! distinct strings each of length 2" — 1. It
had been previously shown in [4] that the strings 2,(7) are square-free.

Theorem 2 The n! strings z, = zn(m) are mazimal strongly square-free
strings on {0,1,...n —1}.

Proof. Using induction, Lemma 1 implies each string 2, in (1) is strongly
square-free because w(k — 1) cannot appear in 2x. The proof that each z,
is maximal is also by induction, but on n.

If n =1 then A = {0} and z; = 0 is trivially strongly square-free.
For n > 2 observe that

zma(n—1) = 2zp_17(n—1)z_17(n 1)

is a square. Similiarly, w(n — 1)z, is a square.

Take a € {0,... ,n — 1}\{w(n —1)}. Then a = «(3) for some i #n—1
since x is a permutation. We have seen by induction that z,_, is a maxi-
mal strongly square-free string and so both az,_; and 2,-3a have Abelian
squares. Therefore, both

azy = azp17(n —1)zn—1

and
200 = 2p17(n — 1)2n_10
have Abelian squares for each choice of a € {0,... ,n —1}\{r(n —1)}. O

Gus Simmons noted that the strings 2, are all palindromes so that it is
really only necessary to check that they are maximal on the left or on the
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right. The strings 2, are also central since 7(n — 1) is not repeated in the
string. We conjecture that the strings z,(m) also have maximum length in
the set of all finite strongly square-free strings over {0,... ,n—1}. If this is
true then we are assured that there are only finitely many maximal strongly
square-free strings for any alphabet A with |A| > 4 even though infinite
strongly square-free strings are known to exist [10]. Also we needn’t look at
strings of very short length to find the maximal strongly square-free ones
as the following lemma. shows.

Lemma 2 Ifz =z, ...z, is any finite mazimal strongly square-free string
on an alphabet A, then m > 2|A| - 1.

Proof. Suppose that z = z,...z,, is a maximal strongly square-free
string. Then the strings xa, a € A, have distinct suffixes which are Abelian
squares, necessarily of even length. An easy counting argument shows that
the number of possible suffixes that are Abelian squares in any string of
length m is given by | #1|. Hence, |A| < |}L|. That is, m > 2|4| - 1.D

This not a particularly good lower bound. Even for |A] = 3 it can be
checked (see the appendix) that none of the strongly square-free strings of
length 5 are maximal. A better lower bound on the lengths of maximal
strongly square-free strings would speed up searching algorithms such as
the one given in [6].

4 Further Research

We have seen that relatively little is known about strongly square-free fi-
nite strings. For those only interested in the countably infinite case, it
is important to note that infinite strongly square-free strings must avoid
maximal finite ones. Although the enumeration problem has been studied
for square-free strings [13], we do not have good bounds for the number of
strongly square-free strings of length n. While it is relatively easy to write
down central strongly square-free strings, we know little about the strings
which are non-extendible and non-central. Searching strings for Abelian
squares is discussed in [6].
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Strongly Square-Free Finite Strings on {0,1,2}

01 2
01 10 02 20 12 21

010 101 020 202 121 212
012 102 210 021 201 120

1012 0102 0201
1021 0120 0210
2021 2102 1201
2012 2120 1210
1202 0212 0121
2101 2010 1020

10121 01020 02010
10212 01202 02101
20121 21020 12010
20212 21202 12101
12021 02120 01210
12012 02102 01201
21021 20120 10201
21012 20102 10210
12102 02012 01021
21201 20210 10120

120121 120212 210121 210212
121021 121012 212012 212021
021020 021202 201020 201202
020120 020102 202102 202120
012010 012101 102010 102101
010210 010201 101201 101210
010212 020121 101202 121020
202101 212010

1210121 1210212 2120121 2120212
0201020 0201202 2021020 2021202
0102010 0102101 1012010 1012101
0121012 0212021 1020102 1202120
2010201 2101210
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