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ABSTRACT. Let G be a cubic graph containing no subdivision
of the Petersen graph. If G has a 2-factor F' consisting of two
circuits C; and C3 such that C; is chordless and C> has at most
one chord, then G is edge-3-colorable. This result generalizes
an early result by Ellingham and is a partial result of Tutte’s
edge-3-coloring conjecture.

1 Introduction

A cubic graph is a 3-regular simple graph. A 2-factor of a graph G is a
2-regular spanning subgraph of G. The underlying graph of a graph G,
denoted by G, is the graph homeomorphic to G and containing no degree
two vertex. A chord of a circuit C is an edge not in C with both endvertices
in V(C). A cubic graph G is called a permutation graph if G has a 2-factor
F which is the union of two chordless circuits. All other graph-theoretic
terms that are used in this paper can be found, for instance, in [6].

The following well-known conjecture due to Tutte is a generalization of
the 4-color problem ({3, 4, 5, 10}).

Conjecture 1 (The Edge-3-coloring Conjecture, Tutte [11]) Every 2-edge-
connected cubic graph containing no subdivision of the Petersen graph is
edge-3-colorable.
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It is easy to see that a smallest counterexample to Conjecture 1 must
have a 2-factor which is a union of a few even-circuits and precisely two odd
circuits. It is natural to study the edge-3-colorability of a cubic graph which
has a 2-factor consisting of precisely two (odd) circuits. This motivates the
following work by Ellingham.

Theorem 1 (Ellingham [7]) If G is a permutation graph containing no
subdivision of the Petersen graph, then

(i). G contains a 4-circuit,

(ii). G contains a Hamilton circuit,

(iii). G is edge-3-colorable.

The edge-3-colorability of permutation graphs containing no subdivision
of the Petersen graph is useful in cycle cover problems and is a key lemma in
showing that a minimal counterexample to the cycle double cover conjecture
contains a subdivision of the Petersen graph ([1, 2]).

Definition 1 Let G be a cubic graph with at least four vertices and F be a
2-factor of G which is the union of two chordless circuits Cy and Ca. The
set of edges joining C) and C is denoted by M. A circuit of length four
containing ezactly two edges of M is called an M-Cy. A subdivision of the
Petersen graph in G is called a Pyo-subgraph. A Pyg-subgraph which has
a 2-factor consisting of all edges of F (so that it has a perfect matching
consisting of five edges of M) is called an M-Pyo-subgraph.

In [7], Ellingham actually showed that if a permutation graph has no M-
Po-subgraph then it contains an M-Cy. From this it is easy to construct
a Hamilton circuit in G, so G is edge-3-colorable (all edges not in the
Hamilton circuit have the same color). V. Klee ([9]) showed that for each
odd integer n > 9, there is a non-Hamiltonian permutation graph (with a
Pig-subgraph) of order 2n, but was unable to determine what happens for
each even n.

The main result of this paper is the following generalization of Theorem 1.

Theorem 2 Let G be a cubic graph containing no subdivision of the Pe-
tersen graph. If G has an edge e such that G\ {e} is a permutation graph
with a 2-factor F which is the union of two chordless circuits and e subdi-
vides two edges in F, then G is edge-3-colorable.

If the graph G described in Theorem 2 is itself a permutation graph,
then we have Theorem 1. However, if the edge e subdivides two edges
in one of the chordless circuits in F, then G might not have an M-C;,-
circuit. Goldwasser and Zhang ([8]) showed that every permutation graph
containing no M-Pjo-subgraph has at least two M-Cy’s, and constructed
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an infinite family having precisely two M-Cy’s. If G is obtained by adding
the edge e to one of the chordless circuits in F so as to cut both of the
M-Cy’s, then G has no M-Cy (see an example illustrated in Figure 1). So
Ellingham’s method certainly cannot be used to obtain a Hamilton circuit
in G and we have to take a different approach in this case.

o) —o§>—o

—0

Figure 1. A graph with no M — Cj circuit

In this paper, we characterize the permutation graph containing no M-
Py subgraph and precisely two M-Cys’s. We use this characterization to
get the desired edge-3-coloring to prove the main case of Theorem 2.

2 The easy cases

Theorem 2 is obviously true for the following cases.
(1). G itself is a permutation graph;
(2). Both circuits of F are of even length (because edges of F' can be
alternatively colored with two colors, with all other edges having the third
color);
(3). G has an M-Cj4 (so G has a Hamilton circuit).

If G\ {e} has at least thrée M-Cy’s then G has an M-C4 and we are
done. Goldwasser and Zhang proved the following lemma.

Lemma 3 ([8] Theorem 4) A permutation graph G containing no M-Py,-
subgraph contains at least two M-Cy’s.

Thus, the only remaining case is that the two chordless circuits in G \ {e}
have odd length and G\ {e} has precisely two M-Cy’s both of which are
5-circuits in G. So Theorem 2 will be proved if we can prove the following
lemma.

Lemma 4 Let G be a cubic graph of order 4k > 12 containing no subdivi-
sion of the Petersen graph and F be a 2-factor of G such that F is the union
of two circuits Cy and Cy where Cy has a chord e = zy, and G\ {e} is a
permutation graph which has precisely two M-C,’s each of which contains
one of {z,y} in a subdivided edge. Then G is edge-3-colorable.
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3 Nested permutation graphs
Define a bijection f : Z +— Z as follows:

. i ifiiseven
1) = { —i ifi is odd.
Let k > 2 be a positive integer and construct a permutation graph Hj. as
follows. Let A=a_k---ap---axa_xand b_g---bp - - - bpgb_x be two disjoint
circuits, let M = {abs) : —k <4 < k}, let V(Hi) = V(A)UV(B) and let
E(Hi) = MU E(A)U E(B). Let Ly = Hi \ {aobo} and denote the family
of permutation graphs Ly by £ (see Figure 2). Obviously, a;b_1b1a_1a;
and axbrb_xa—iax (when k is even) or axb_ibra_raxr (when k is odd) are
the only 4-circuits of Ly (not just M-C,’s) if k > 3.

O-- --0

O-- --0
Figure 2. L,
Goldwasser and Zhang proved the following lemma.

Lemma 5 (Goldwasser and Zhang [8]) Each graph in £ contains no M-Pyo
and precisely two M-Cy’s.

Let §, =1or2foreachi=2,... ,k—1. A nested permutation graphis a
graph which is the underlying graph obtained by deleting from L; precisely
2 — & of the edges in {a_;b;,b_;a;} if i is odd and in {a_;b_;,a;b;} if i is
even, for i =2,3,... ,k — 1. We say such a nested permutation graph is of
type 2,62,63,¢:+ ,6k—1,2 and denote by N the set of nested permutation
graphs.

Such a graph has 2[4 + Ef;j & vertices, precisely two M-Cy’s (since
& # 0), and, by Lemma 5, no M-Pyg. Two nested permutation graphs
of the same type might not be isomorphic, while two of different types
might be isomorphic. For example, Figures 3 (a) and (b) show one of type
2,2,1,2 and one of type 2,1, 2,2 which are isomorphic (in fact there is one
isomorphism class for all nested permutation graph of these two types), and
Figure 3 (c) and (d) show two of type 2,1, 1, 1,2 which are not.
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(a) Type 2,2,1,2

(b) Type 2,1,2,2

(c) Type 2,1,1,1,2

(d) Type 2,1,1,1,2

Figure 3. Nested permutation graphs of order 14

The statements in the following lemma follow easily from the definition
of nested permutation graph.

Lemma 6 Let Ly € £ and let G be a nested permutation graph of type
2,62, 63’ tte ﬁsk—lx 2 (w}”’c”' i3 e subgra.ph Of Lk)’
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(a). Let G’ be the graph obtained by subdividing the edges a_1a; and b1by of
G to get a_yra; and bysby and adding an edge rs (Figure 4 (a)). Then G’
is a nested permutation graph (of type 2,1,£3,€3,+- ,€Ek—-1,2, with a new
M-Cy a_yrsbia_;).

(b). Let G” be the graph obtained by subdividing the edges a_ja; and b_1b;
of G to get a_irr'ay and b_,55'b; and adding edges rs and r's’ (Figure
4 (b)). Then G” is a nested permutation graph (of type 2,2,£5,+++ ,€x_1,
2 with a new M-Cyq rr's’sr).

r
£\
4
N\
\
(@) s
r r
S s'

(b)
Figure 4. Adding edges to get nested permutation graphs

Theorem 7 Let G be a permutation graph with no M-Pyo subgraph. Then
G has precisely two M-Cy’s if and only if G is a nested permutation graph.

Proof. Clearly each graph in A has precisely two M-Cy’s and no M-Pq.
Assume that G is a permutation graph with no M-Pjo and precisely two
M-Cy’s. 1t is easy to check that such a graph G has at least 8 vertices and
that if G has precisely 8 vertices then G € N (of type 2,2). Assume that
G is a permutation graph with minimum order 2n > 10 such that G has no
M-Pyg and precisely two M-Cy’s, but G ¢ N.

Let A = cijco---chcy and B = djdy---d,d; be two chordless circuits
whose union is a 2-factor of G and suppose c;dpd;coc; is one of the M-
Cy’s. By Lemma 3, G\ {c1d2} contains at least two M-Cy’s, so at least
one of c,d, and czdz must be an edge of G. If only one, say c,d, is an
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edge of G, then G\ {c1dz} contains precisely two M-Cy’s (one has edges
€nC1C2, C2dy, d1dy,, dncy), so must be in NV since G is a minimal counterex-
ample. Then, by Lemma 6 (a) (with cacic, and dydads in the role of a_;7a4,
and b;sby respectively), G is in A. If both ¢,d, and c3ds are in G, then
G\ {c1d2,d1c2} is of smaller order and clearly has precisely two M-Cy’s,
so must be in M. Hence, by Lemma 6 (b), G € N. (m}

4 Proof of the main theorem

The difficulty in trying to prove Lemma 4 by a straightforward induction is
that arbitrary edge-3-coloring of a graph cannot always be readily modified
to obtain an edge-3-coloring of a graph with an extra edge or two. So we
will prove a stronger result than Lemma 4 (so that we can have a stronger
inductive hypothesis)

Definition 2 Let Ng be the set of all graphs Go which can be obtained
by adding an edge e (and two vertices) to one of the disjoint chordless n-
circuits of a nested permutation graph G of order 2n (n > 4) so that e
cuts both M-Cy’s of G. Each M-Cy of G has a subdivided edge in G¢ and
these two 5-circuits are called the ears of G¢. Let A and B be two disjoint
chordless n-circuits of G and let A’ be the (n + 2)-circuit formed in G¢ by
adding the edge e to A in G. We say that an edge-3-coloring T of G¢ is
simple at the ear R if the two edges of R not contained in A’ U B have the
same color in T .

We note that if 7 is simple at R then the seven edges of A’UB incident to
some vertex of R (two are in A’N R and one is in BN R) must be 2-colored
in 7.

Now we are ready to prove a stronger version of Lemma 4. It is easy to
see that there is a unique graph which satisfies the hypothesis of Lemma 4
for k = 3, and Figure 6 shows that it has an edge-3-coloring.

Lemma 8 Let G¢ be a cubic graph of order 4k > 16 containing no sub-
division of the Petersen graph and F be a 2-factor of G such that F is
the union of two circuits Cy and Cy where C1 has a chord e = zy, and
Gc\ {e} is a permutation graph which has precisely two M-C4’s each of
which contains one of {z,y} in a subdivided edge. Then, for each ear R of
G¢, G¢ has an edge-8-coloring which is simple at R.

Proof. We use induction on k. The edge-3-colorings in Figure 5 show
that the result holds for k = 4. There are four isomorphically distinct
possibilities for G¢ (from the three isomorphically distinct graphs of order
14 in N, one of type 2,2,1,2 and two of type 2,1,1,1,2), and a total of
six isomorphically distinct ordered pairs (Gg, R) of a graph G¢ of order 16
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and an ear R in G¢ (there are automorphisms in two of the four graphs G¢
which transpose the ears). It is necessary to start the induction at k = 4
because while there is an edge-3-coloring of the unique graph of order 12 in
Nc¢ (Figure 6), there is no edge-3-coloring simple at an ear.

" Type 21112 Type 21112
R p——- Y —-— R —— ___ B8

Figure 5. Edge-3-colorings simple at an ear of graphs of order 16

Figure 6. An edge-3-coloring of the graph in N¢ of order 12
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Now let k be at least 5 and we assume the result for all graphs in Ng
of order less than 4k. Let G¢o € N¢ have order 4k, and let e be an edge
of G¢ such that G = G¢ \ {e} is in N with type 2,6,8€3,--- ,€r—1,2, SO
G is the underlying graph of a subgraph of L, for some h > k, where
Ly, has disjoint chordless 2h-circuits C; = a_p--- ,a_1a;---apa_p and
02 = b_h .. ,b_1b1 '--bhb_h. Assume a_1blb_1a1a_1 is an M-C4 of Lh
(so also’ of G), that agay, is the chord added to G to get G¢ and let
R =a_japa1b-1bja_; be an ear of G¢. There are four (similar) cases.

(a)

(b)

()

(d)

Figure 7. Subtracting edges to get graphs in N¢

Case 1. a_2b_3 and asb; are edges of G¢ (Figure 7 (a)).
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Then G\{a_lbl,b_lal} e N. Thus, H = Gc\{a_lbl,b_lal} is in
NG, has order 4(k — 1), and has Ry+ = a_sagagbob_sa_s as one of its ears.
By the inductive hypothesis, H' has an edge-3-coloring Ty which is simple
at Rpys. Suppose the colors in Ty of the edges a_sza_s, a_2a9, aoas, azas
are R, Y, R, Y respectively, of the edges b_3b_2,b_obs,bobs are R, Y,
R respectively (they could be Y, R, Y instead), and that B is the third
color in Ty:. Define a coloring T of the edges of G¢ by assigning the
edges a_za_j,a_ja9,a0a1,a162 Y, R, Y, R respectively, assigning the edges
b_2b_1,b_1b1,b1b2 Y, R, Y respectively, letting T(a—1b1) = T (b_1a,) = B,
and assigning all other colors in 7 as they are in 7Ty-. It is easy to check
that 7 is an edge-3-coloring of G¢ which is simple at R.

Case 2. a_2b_2, a._3b3 ¢ E(Gc), {agbg,a3b_3} g E(Gc) (Flgure 7 (b))

Then, H” = G¢ \ {b-sas,a2b2} € Ng, so has an edge-3-coloring Ty~
simple at the ear R = a_japa1b_1b1a_;. Ty~ can be modified to get an
edge-3-coloring T of G¢ which is simple at R.

Case 3. a_2b_2, b_3a.3 ¢ E(Gc), {azbz, a_3b3} - E(Gc) (Figure 7 (C))

Then, H"” = G¢ \ {a—_3bs3, agb2} € N¢, so has an edge-3-coloring simple
at the ear a_japa1b_1b1a_; and the argument is the same as before.
Case 4. a_gb_z ¢ E(Gc), {agbz,a_sb:;, b_3a3} C E(Gc) (Figure 7 (d))

Then, H"' = G¢ \ {b-3e3,b_101} € Ng, so has an edge-3-coloring sim-
ple at the ear a_japazbzbja_; and the argument is the same as before. O

5 A stronger theorem

A graph G satisfying the hypothesis of Theorem 2 must, in fact, have a
Hamilton circuit (which implies that it is edge-3-colorable). This is obvious
if G has an M-C4. And, if not, it follows from the following lemma, a
strengthening of Lemma 8.

Lemma 9 Let G¢ be a cubic graph of order 2n > 16 containing no sub-
division of the Petersen graph and F be a 2-factor of G such that F is
the union of two circuits Cy and C2 where C), has a chord e = zy and
Gc \ {e} is a permutation graph which has precisely two M-Cy’s, each of
which contains one of {z,y} in a subdivided edge. Let R be an ear of G¢
and let f and g be the two edges in R\ (C1UC3). Then there is a Hamilton
circuit in Go which includes neither f nor g.

The proof of Lemma 8 is actually a proof of Lemma 9 if G¢ has order
4m > 16 (Figure 5 shows the induction can start at m = 4, because the
R —Y subgraph is a Hamilton circuit in each graph). There are two iso-
morphically distinct graphs of order 12 in A (one of the type 2,2,2, one
of type 2,1,1,2) and three isomorphically distinct graphs of order 14 in
N, all of which have Hamilton circuits. But of the three isomorphically
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distinct ordered pairs (G¢, R) of a graph G¢c € N¢ of order 14 and an
ear R of G¢g, only one has a Hamilton circuit with the special property
required in Lemma 9. So to start the induction when G¢ has order 4m + 2
we must check that for each ordered pair (G¢, R) of a graph G¢ € N¢ of
order 18 and an ear R of G¢ there is a Hamilton circuit in G¢ which misses
R\ (C;, U C3). There are 15 such ordered pairs to check, so we decided to
omit the proof of Lemma 9 in this paper, and to be content to show edge-3-
colorability instead (if G¢ has order 4m + 2 then C; and C; are each even
circuits, so G¢ is obviously edge-3-colorable).

6 Problems

A minimal counterexample to the Tutte’s Edge-3-coloring Conjecture has a
2-factor that consists of only two odd circuits and all other components are
even circuits. Considering the edge-3-colorability of a graph with a 2-factor
consisting of precisely two (odd) components was initially the motivation
of the paper by Ellingham ([7]). Thus, it is natural to try to generalize
Theorem 1 and Theorem 2 as follows.

Problem 1 Let G be a bridgeless cubic graph and F be a 2-factor of G
which consists of at most two components. If G does not contain a subdi-
vision of the Petersen graph, is G edge-3-colorable?

Apparently there is no other progress toward solving this problem. In
the statements of Theorem 1 and Theorem 2, the assumption is made that
G contains no Pyo-subgraph. However, the proofs were actually done under
the weaker assumption that G contains no M-Pg-subgraph. There is no
hope for similar situation for Problem 1, as can be seen from the following
example. Let C be a longest circuit of the Petersen graph P;p which is of
length 9 and replace the vertex v € V(Pio)\ V(C) with a triangle C’. Then
the new graph H has a 2-factor C U C’, does not have an M-Pjg-subgraph
(since |[M| = 3), and is not edge-3-colorable (it does have a Pj¢-subgraph).
Since the subgraph of H induced by V(C) is K33, could we relax the
condition and consider the following problem?

Problem 2 Let G be a bridgeless cubic graph and F be a 2-factor of G such
that F is the union of two circuits C1,Cs. If G has no M-Pyy and each
subgraph of G induced by V(C;) (i = 1,2) is planar, is G edge-3-colorable?

Theorem 1 and Theorem 2 are special cases of Problem 2. Even if the

whole graph G is assumed to be planar, we still do not have a proof without
applying the 4-color theorem.

223



Problem 3 Let G be a bridgeless cubic planar graph such that G has a
2-factor F consisting of two odd circuits. Can we prove that G is edge-3-
colorable without applying the 4-color theorem?

Adding extra chords to permutation graphs containing no Pjg-subgraph
makes edge-3-colorability harder to prove. Even without extra chords, the
following problem may not be an easy one.

Problem 4 Let G be a 3-connected, cyclically 5-edge-connected permuta-
tion graph. If G # Po, i3 G edge-3-colorable?
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