Edge-3-coloring of a family of cubic graphs

John L. Goldwasser and Cun-Quan Zhang*
Department of Mathematics
West Virginia University
Morgantown, West Virginia 26506-6310
email: jgoldwas@math.wvu.edu
email: cqzhang@math.wvu.edu

ABSTRACT. Let G be a cubic graph containing no subdivision of the Petersen graph. If G has a 2-factor F consisting of two circuits C_1 and C_2 such that C_1 is chordless and C_2 has at most one chord, then G is edge-3-colorable. This result generalizes an early result by Ellingham and is a partial result of Tutte's edge-3-coloring conjecture.

1 Introduction

A cubic graph is a 3-regular simple graph. A 2-factor of a graph G is a 2-regular spanning subgraph of G. The underlying graph of a graph G, denoted by \overline{G} , is the graph homeomorphic to G and containing no degree two vertex. A chord of a circuit G is an edge not in G with both endvertices in G. A cubic graph G is called a permutation graph if G has a 2-factor G which is the union of two chordless circuits. All other graph-theoretic terms that are used in this paper can be found, for instance, in [6].

The following well-known conjecture due to Tutte is a generalization of the 4-color problem ([3, 4, 5, 10]).

Conjecture 1 (The Edge-3-coloring Conjecture, Tutte [11]) Every 2-edge-connected cubic graph containing no subdivision of the Petersen graph is edge-3-colorable.

^{*}Partial support provided by the National Science Foundation under Grant DMS-9306379

It is easy to see that a smallest counterexample to Conjecture 1 must have a 2-factor which is a union of a few even-circuits and precisely two odd circuits. It is natural to study the edge-3-colorability of a cubic graph which has a 2-factor consisting of precisely two (odd) circuits. This motivates the following work by Ellingham.

Theorem 1 (Ellingham [7]) If G is a permutation graph containing no subdivision of the Petersen graph, then

- (i). G contains a 4-circuit,
- (ii). G contains a Hamilton circuit,
- (iii). G is edge-3-colorable.

The edge-3-colorability of permutation graphs containing no subdivision of the Petersen graph is useful in cycle cover problems and is a key lemma in showing that a minimal counterexample to the cycle double cover conjecture contains a subdivision of the Petersen graph ([1, 2]).

Definition 1 Let G be a cubic graph with at least four vertices and F be a 2-factor of G which is the union of two chordless circuits C_1 and C_2 . The set of edges joining C_1 and C_2 is denoted by M. A circuit of length four containing exactly two edges of M is called an M- C_4 . A subdivision of the Petersen graph in G is called a P_{10} -subgraph. A P_{10} -subgraph which has a 2-factor consisting of all edges of F (so that it has a perfect matching consisting of five edges of M) is called an M- P_{10} -subgraph.

In [7], Ellingham actually showed that if a permutation graph has no M- P_{10} -subgraph then it contains an M- C_4 . From this it is easy to construct a Hamilton circuit in G, so G is edge-3-colorable (all edges not in the Hamilton circuit have the same color). V. Klee ([9]) showed that for each odd integer $n \geq 9$, there is a non-Hamiltonian permutation graph (with a P_{10} -subgraph) of order 2n, but was unable to determine what happens for each even n.

The main result of this paper is the following generalization of Theorem 1.

Theorem 2 Let G be a cubic graph containing no subdivision of the Petersen graph. If G has an edge e such that $\overline{G \setminus \{e\}}$ is a permutation graph with a 2-factor F which is the union of two chordless circuits and e subdivides two edges in F, then G is edge-3-colorable.

If the graph G described in Theorem 2 is itself a permutation graph, then we have Theorem 1. However, if the edge e subdivides two edges in one of the chordless circuits in F, then G might not have an M- C_4 -circuit. Goldwasser and Zhang ([8]) showed that every permutation graph containing no M- P_{10} -subgraph has at least two M- C_4 's, and constructed

an infinite family having precisely two $M-C_4$'s. If G is obtained by adding the edge e to one of the chordless circuits in F so as to cut both of the $M-C_4$'s, then G has no $M-C_4$ (see an example illustrated in Figure 1). So Ellingham's method certainly cannot be used to obtain a Hamilton circuit in G and we have to take a different approach in this case.

Figure 1. A graph with no $M - C_4$ circuit

In this paper, we characterize the permutation graph containing no M- P_{10} subgraph and precisely two M- C_4 's. We use this characterization to get the desired edge-3-coloring to prove the main case of Theorem 2.

2 The easy cases

Theorem 2 is obviously true for the following cases.

- (1). G itself is a permutation graph;
- (2). Both circuits of F are of even length (because edges of F can be alternatively colored with two colors, with all other edges having the third color);
- (3). G has an M- C_4 (so G has a Hamilton circuit).

If $\overline{G \setminus \{e\}}$ has at least three $M-C_4$'s then G has an $M-C_4$ and we are done. Goldwasser and Zhang proved the following lemma.

Lemma 3 ([8] Theorem 4) A permutation graph G containing no M- P_{10} -subgraph contains at least two M- C_4 's.

Thus, the only remaining case is that the two chordless circuits in $\overline{G \setminus \{e\}}$ have odd length and $\overline{G \setminus \{e\}}$ has precisely two M- C_4 's both of which are 5-circuits in G. So Theorem 2 will be proved if we can prove the following lemma.

Lemma 4 Let G be a cubic graph of order $4k \ge 12$ containing no subdivision of the Petersen graph and F be a 2-factor of G such that F is the union of two circuits C_1 and C_2 where C_1 has a chord e = xy, and $\overline{G \setminus \{e\}}$ is a permutation graph which has precisely two M- C_4 's each of which contains one of $\{x,y\}$ in a subdivided edge. Then G is edge-3-colorable.

3 Nested permutation graphs

Define a bijection $f: Z \mapsto Z$ as follows:

$$f(i) = \begin{cases} i & \text{if } i \text{ is even} \\ -i & \text{if } i \text{ is odd.} \end{cases}$$

Let $k \geq 2$ be a positive integer and construct a permutation graph H_k as follows. Let $A = a_{-k} \cdots a_0 \cdots a_k a_{-k}$ and $b_{-k} \cdots b_0 \cdots b_k b_{-k}$ be two disjoint circuits, let $M = \{a_i b_{f(i)} : -k \leq i \leq k\}$, let $V(H_k) = V(A) \cup V(B)$ and let $E(H_k) = M \cup E(A) \cup E(B)$. Let $L_k = \overline{H_k \setminus \{a_0b_0\}}$ and denote the family of permutation graphs L_k by \mathcal{L} (see Figure 2). Obviously, $a_1b_{-1}b_1a_{-1}a_1$ and $a_kb_kb_{-k}a_{-k}a_k$ (when k is even) or $a_kb_{-k}b_ka_{-k}a_k$ (when k is odd) are the only 4-circuits of L_k (not just M- C_4 's) if $k \geq 3$.

Figure 2. L_k

Goldwasser and Zhang proved the following lemma.

Lemma 5 (Goldwasser and Zhang [8]) Each graph in \mathcal{L} contains no M- P_{10} and precisely two M- C_4 's.

Let $\xi_i=1$ or 2 for each $i=2,\cdots,k-1$. A nested permutation graph is a graph which is the underlying graph obtained by deleting from L_k precisely $2-\xi_i$ of the edges in $\{a_{-i}b_i,b_{-i}a_i\}$ if i is odd and in $\{a_{-i}b_{-i},a_ib_i\}$ if i is even, for $i=2,3,\cdots,k-1$. We say such a nested permutation graph is of type $2,\xi_2,\xi_3,\cdots,\xi_{k-1},2$ and denote by $\mathcal N$ the set of nested permutation graphs.

Such a graph has $2[4 + \sum_{i=2}^{k-1} \xi_i]$ vertices, precisely two M- C_4 's (since $\xi_i \neq 0$), and, by Lemma 5, no M- P_{10} . Two nested permutation graphs of the same type might not be isomorphic, while two of different types might be isomorphic. For example, Figures 3 (a) and (b) show one of type 2, 2, 1, 2 and one of type 2, 1, 2, 2 which are isomorphic (in fact there is one isomorphism class for all nested permutation graph of these two types), and Figure 3 (c) and (d) show two of type 2, 1, 1, 1, 2 which are not.

Figure 3. Nested permutation graphs of order 14

The statements in the following lemma follow easily from the definition of nested permutation graph.

Lemma 6 Let $L_k \in \mathcal{L}$ and let G be a nested permutation graph of type $2, \xi_2, \xi_3, \dots, \xi_{k-1}, 2$ (which is a subgraph of L_k).

- (a). Let G' be the graph obtained by subdividing the edges $a_{-1}a_1$ and b_1b_2 of G to get $a_{-1}ra_1$ and b_1sb_2 and adding an edge rs (Figure 4 (a)). Then G' is a nested permutation graph (of type $2, 1, \xi_2, \xi_3, \dots, \xi_{k-1}, 2$, with a new $M-C_4$ $a_{-1}rsb_1a_{-1}$).
- (b). Let G'' be the graph obtained by subdividing the edges $a_{-1}a_1$ and $b_{-1}b_1$ of G to get $a_{-1}rr'a_1$ and $b_{-1}ss'b_1$ and adding edges rs and r's' (Figure 4 (b)). Then G'' is a nested permutation graph (of type $2, 2, \xi_2, \dots, \xi_{k-1}, 2$ with a new $M-C_4$ rr's'sr).

Figure 4. Adding edges to get nested permutation graphs

Theorem 7 Let G be a permutation graph with no $M-P_{10}$ subgraph. Then G has precisely two $M-C_4$'s if and only if G is a nested permutation graph.

Proof. Clearly each graph in \mathcal{N} has precisely two $M-C_4$'s and no $M-P_{10}$. Assume that G is a permutation graph with no $M-P_{10}$ and precisely two $M-C_4$'s. It is easy to check that such a graph G has at least 8 vertices and that if G has precisely 8 vertices then $G \in \mathcal{N}$ (of type 2, 2). Assume that G is a permutation graph with minimum order $2n \geq 10$ such that G has no $M-P_{10}$ and precisely two $M-C_4$'s, but $G \notin \mathcal{N}$.

Let $A = c_1c_2\cdots c_nc_1$ and $B = d_1d_2\cdots d_nd_1$ be two chordless circuits whose union is a 2-factor of G and suppose $c_1d_2d_1c_2c_1$ is one of the M- C_4 's. By Lemma 3, $\overline{G\setminus\{c_1d_2\}}$ contains at least two M- C_4 's, so at least one of c_nd_n and c_3d_3 must be an edge of G. If only one, say c_nd_n , is an

edge of G, then $\overline{G\setminus\{c_1d_2\}}$ contains precisely two M- C_4 's (one has edges $c_nc_1c_2, c_2d_1, d_1d_n, d_nc_n$), so must be in $\mathcal N$ since G is a minimal counterexample. Then, by Lemma 6 (a) (with $c_2c_1c_n$ and $d_1d_2d_3$ in the role of $a_{-1}ra_1$, and b_1sb_2 respectively), G is in $\mathcal N$. If both c_nd_n and c_3d_3 are in G, then $\overline{G\setminus\{c_1d_2,d_1c_2\}}$ is of smaller order and clearly has precisely two M- C_4 's, so must be in $\mathcal N$. Hence, by Lemma 6 (b), $G\in\mathcal N$.

4 Proof of the main theorem

The difficulty in trying to prove Lemma 4 by a straightforward induction is that arbitrary edge-3-coloring of a graph cannot always be readily modified to obtain an edge-3-coloring of a graph with an extra edge or two. So we will prove a stronger result than Lemma 4 (so that we can have a stronger inductive hypothesis)

Definition 2 Let \mathcal{N}_C be the set of all graphs G_C which can be obtained by adding an edge e (and two vertices) to one of the disjoint chordless ncircuits of a nested permutation graph G of order 2n ($n \geq 4$) so that ecuts both M- C_4 's of G. Each M- C_4 of G has a subdivided edge in G_C and these two 5-circuits are called the ears of G_C . Let A and B be two disjoint chordless n-circuits of G and let A' be the (n+2)-circuit formed in G_C by adding the edge e to A in G. We say that an edge-3-coloring T of G_C is simple at the ear R if the two edges of R not contained in $A' \cup B$ have the same color in T.

We note that if \mathcal{T} is simple at R then the seven edges of $A' \cup B$ incident to some vertex of R (two are in $A' \cap R$ and one is in $B \cap R$) must be 2-colored in \mathcal{T} .

Now we are ready to prove a stronger version of Lemma 4. It is easy to see that there is a unique graph which satisfies the hypothesis of Lemma 4 for k = 3, and Figure 6 shows that it has an edge-3-coloring.

Lemma 8 Let G_C be a cubic graph of order $4k \geq 16$ containing no subdivision of the Petersen graph and F be a 2-factor of G such that F is the union of two circuits C_1 and C_2 where C_1 has a chord e = xy, and $G_C \setminus \{e\}$ is a permutation graph which has precisely two M- C_4 's each of which contains one of $\{x,y\}$ in a subdivided edge. Then, for each ear R of G_C , G_C has an edge-3-coloring which is simple at R.

Proof. We use induction on k. The edge-3-colorings in Figure 5 show that the result holds for k=4. There are four isomorphically distinct possibilities for G_C (from the three isomorphically distinct graphs of order 14 in \mathcal{N} , one of type 2, 2, 1, 2 and two of type 2, 1, 1, 1, 2), and a total of six isomorphically distinct ordered pairs (G_C, R) of a graph G_C of order 16

and an ear R in G_C (there are automorphisms in two of the four graphs G_C which transpose the ears). It is necessary to start the induction at k=4 because while there is an edge-3-coloring of the unique graph of order 12 in \mathcal{N}_C (Figure 6), there is no edge-3-coloring simple at an ear.

Figure 5. Edge-3-colorings simple at an ear of graphs of order 16

Figure 6. An edge-3-coloring of the graph in \mathcal{N}_{C} of order 12

Now let k be at least 5 and we assume the result for all graphs in \mathcal{N}_C of order less than 4k. Let $G_C \in \mathcal{N}_C$ have order 4k, and let e be an edge of G_C such that $G = \overline{G_C \setminus \{e\}}$ is in \mathcal{N} with type $2, \xi_2, \xi_3, \dots, \xi_{h-1}, 2$, so G is the underlying graph of a subgraph of L_h , for some $h \geq k$, where L_h has disjoint chordless 2h-circuits $C_1 = a_{-h} \cdots, a_{-1}a_1 \cdots a_h a_{-h}$ and $C_2 = b_{-h} \cdots, b_{-1}b_1 \cdots b_h b_{-h}$. Assume $a_{-1}b_1b_{-1}a_1a_{-1}$ is an M- C_4 of L_h (so also of G), that a_0a_{h+1} is the chord added to G to get G_C and let $R = a_{-1}a_0a_1b_{-1}b_1a_{-1}$ be an ear of G_C . There are four (similar) cases.

Figure 7. Subtracting edges to get graphs in \mathcal{N}_C

Case 1. $a_{-2}b_{-2}$ and a_2b_2 are edges of G_C (Figure 7 (a)).

Then $\overline{G\setminus\{a_{-1}b_1,b_{-1}a_1\}}\in\mathcal{N}$. Thus, $H'=\overline{G_C\setminus\{a_{-1}b_1,b_{-1}a_1\}}$ is in \mathcal{N}_C , has order 4(k-1), and has $R_{H'}=a_{-2}a_0a_2b_2b_{-2}a_{-2}$ as one of its ears. By the inductive hypothesis, H' has an edge-3-coloring $\mathcal{T}_{H'}$ which is simple at $R_{H'}$. Suppose the colors in $\mathcal{T}_{H'}$ of the edges $a_{-3}a_{-2}, a_{-2}a_0, a_0a_2, a_2a_3$ are R, Y, R, Y respectively, of the edges $b_{-3}b_{-2}, b_{-2}b_2, b_2b_3$ are R, Y, R respectively (they could be Y, R, Y instead), and that B is the third color in $\mathcal{T}_{H'}$. Define a coloring \mathcal{T} of the edges of G_C by assigning the edges $a_{-2}a_{-1}, a_{-1}a_0, a_0a_1, a_1a_2$ Y, R, Y, R respectively, assigning the edges $b_{-2}b_{-1}, b_{-1}b_1, b_1b_2$ Y, R, Y respectively, letting $\mathcal{T}(a_{-1}b_1) = \mathcal{T}(b_{-1}a_1) = B$, and assigning all other colors in \mathcal{T} as they are in $\mathcal{T}_{H'}$. It is easy to check that \mathcal{T} is an edge-3-coloring of G_C which is simple at R.

Case 2. $a_{-2}b_{-2}, a_{-3}b_3 \notin E(G_C), \{a_2b_2, a_3b_{-3}\} \subseteq E(G_C)$ (Figure 7 (b)).

Then, $H'' = \overline{G_C \setminus \{b_{-3}a_3, a_2b_2\}} \in \mathcal{N}_C$, so has an edge-3-coloring $\mathcal{T}_{H''}$ simple at the ear $R = a_{-1}a_0a_1b_{-1}b_1a_{-1}$. $\mathcal{T}_{H''}$ can be modified to get an edge-3-coloring \mathcal{T} of G_C which is simple at R.

Case 3. $a_{-2}b_{-2}, b_{-3}a_3 \notin E(G_C), \{a_2b_2, a_{-3}b_3\} \subseteq E(G_C)$ (Figure 7 (c)).

Then, $H''' = \overline{G_C \setminus \{a_{-3}b_3, a_2b_2\}} \in \mathcal{N}_C$, so has an edge-3-coloring simple at the ear $a_{-1}a_0a_1b_{-1}b_1a_{-1}$ and the argument is the same as before.

Case 4. $a_{-2}b_{-2} \notin E(G_C)$, $\{a_2b_2, a_{-3}b_3, b_{-3}a_3\} \subseteq E(G_C)$ (Figure 7 (d)).

Then, $H'''' = \overline{G_C \setminus \{b_{-3}a_3, b_{-1}a_1\}} \in \mathcal{N}_C$, so has an edge-3-coloring simple at the ear $a_{-1}a_0a_2b_2b_1a_{-1}$ and the argument is the same as before. \square

5 A stronger theorem

A graph G satisfying the hypothesis of Theorem 2 must, in fact, have a Hamilton circuit (which implies that it is edge-3-colorable). This is obvious if G has an M- C_4 . And, if not, it follows from the following lemma, a strengthening of Lemma 8.

Lemma 9 Let G_C be a cubic graph of order $2n \ge 16$ containing no subdivision of the Petersen graph and F be a 2-factor of G_C such that F is the union of two circuits C_1 and C_2 where C_1 has a chord e = xy and $G_C \setminus \{e\}$ is a permutation graph which has precisely two M- C_4 's, each of which contains one of $\{x,y\}$ in a subdivided edge. Let R be an ear of G_C and let f and g be the two edges in $R \setminus (C_1 \cup C_2)$. Then there is a Hamilton circuit in G_C which includes neither f nor g.

The proof of Lemma 8 is actually a proof of Lemma 9 if G_C has order $4m \geq 16$ (Figure 5 shows the induction can start at m=4, because the R-Y subgraph is a Hamilton circuit in each graph). There are two isomorphically distinct graphs of order 12 in \mathcal{N} (one of the type 2, 2, 2, one of type 2, 1, 1, 2) and three isomorphically distinct graphs of order 14 in \mathcal{N}_C , all of which have Hamilton circuits. But of the three isomorphically

distinct ordered pairs (G_C, R) of a graph $G_C \in \mathcal{N}_C$ of order 14 and an ear R of G_C , only one has a Hamilton circuit with the special property required in Lemma 9. So to start the induction when G_C has order 4m+2 we must check that for each ordered pair (G_C, R) of a graph $G_C \in \mathcal{N}_C$ of order 18 and an ear R of G_C there is a Hamilton circuit in G_C which misses $R \setminus (C_1 \cup C_2)$. There are 15 such ordered pairs to check, so we decided to omit the proof of Lemma 9 in this paper, and to be content to show edge-3-colorability instead (if G_C has order 4m+2 then C_1 and C_2 are each even circuits, so G_C is obviously edge-3-colorable).

6 Problems

A minimal counterexample to the Tutte's Edge-3-coloring Conjecture has a 2-factor that consists of only two odd circuits and all other components are even circuits. Considering the edge-3-colorability of a graph with a 2-factor consisting of precisely two (odd) components was initially the motivation of the paper by Ellingham ([7]). Thus, it is natural to try to generalize Theorem 1 and Theorem 2 as follows.

Problem 1 Let G be a bridgeless cubic graph and F be a 2-factor of G which consists of at most two components. If G does not contain a subdivision of the Petersen graph, is G edge-3-colorable?

Apparently there is no other progress toward solving this problem. In the statements of Theorem 1 and Theorem 2, the assumption is made that G contains no P_{10} -subgraph. However, the proofs were actually done under the weaker assumption that G contains no M- P_{10} -subgraph. There is no hope for similar situation for Problem 1, as can be seen from the following example. Let G be a longest circuit of the Petersen graph P_{10} which is of length 9 and replace the vertex $v \in V(P_{10}) \setminus V(G)$ with a triangle G'. Then the new graph G has a 2-factor $G \cup G'$, does not have an G-subgraph (since G and is not edge-3-colorable (it does have a G and we relax the condition and consider the following problem?

Problem 2 Let G be a bridgeless cubic graph and F be a 2-factor of G such that F is the union of two circuits C_1, C_2 . If G has no $M-P_{10}$ and each subgraph of G induced by $V(C_i)$ (i = 1, 2) is planar, is G edge-3-colorable?

Theorem 1 and Theorem 2 are special cases of Problem 2. Even if the whole graph G is assumed to be planar, we still do not have a proof without applying the 4-color theorem.

Problem 3 Let G be a bridgeless cubic planar graph such that G has a 2-factor F consisting of two odd circuits. Can we prove that G is edge-3-colorable without applying the 4-color theorem?

Adding extra chords to permutation graphs containing no P_{10} -subgraph makes edge-3-colorability harder to prove. Even without extra chords, the following problem may not be an easy one.

Problem 4 Let G be a 3-connected, cyclically 5-edge-connected permutation graph. If $G \neq P_{10}$, is G edge-3-colorable?

References

- [1] B. Alspach and C.-Q. Zhang, Cycle coverings of cubic multigraphs, *Discrete Math.* 111 (1993), 11-17.
- [2] B. Alspach, L.A. Goddyn, and C.-Q. Zhang, Graphs with the circuit cover property, Transaction of the American Mathematics Society, Vol. 344, No. 1 (1994), 131-154.
- [3] K. Appel and W. Haken, Every map is four colorable, Part I: Discharging, *Illinois J. Math.*, 21 (1977), 429-490.
- [4] K. Appel, W. Haken and J. Koch, Every map is four colorable, Part II: Reducibility, *Illinois J. Math.*, 21 (1977), 491-567.
- [5] K. Appel and W. Haken, Every map is four colorable, AMS Contemporary Math., 98 (1989).
- [6] J.A. Bondy and U.S.R. Murty, Graph Theory with Applications, Macmillan, London, 1976.
- [7] M.N. Ellingham, Petersen subdivisions in some regular graphs, Congressus Numerantium, 44 (1984), 33-40.
- [8] J.L. Goldwasser and C.- Q. Zhang, Permutation graphs and Petersen graph. Ars Combinatoria to appear.
- [9] V. Klee, Which generalized prisms admit H-circuits? in Graph Theory and Application, Lecture Notes in Mathematics 303, Springer-Verlag, Berlin, Heidelberg, New York (1972), 173-178.
- [10] N. Robertson, D. Sanders, P.D. Seymour and R. Thomas, The 4-color theorem, preprint.
- [11] W.T. Tutte, A geometrical version of the four color problem, Combinatorial Mathematics and its Applications, (eds. R.C. Bose and T.A. Dowling), University of North Carolina Press, Chapel Hill, 1967.