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ABSTRACT. Inagraph G = (V, E), aset S C V is a dominating
set if each vertex of V — S is adjacent to at least one vertex in S.
Approximately 1000 papers have been written on domination
related concepts with more than half of them appearing in the
literature in the last five years. Obviously, a comprehensive
survey is beyond the scope of this paper, so a brief overview is
presented.

1 Introduction

Let G = (V, E) be a graph with |V| = n. Each vertex v € V dominates
every vertex in its closed neighborhood N[v]. A set S C V is a dominating
get if each vertex in V is dominated by at least one vertex of S. The
domination number v(G) is the minimum cardinality of a dominating set.
We refer to a minimum dominating set as a y-set.

The concept of domination has its origins in the game of chess, where the
goal is to cover (or dominate) various squares of a chessboard by certain
chess pieces. In 1862 de Jaenisch [12] considered dominating the squares
with queens and posed the following problem: Determine the minimum
number of queens that can be placed on a chessboard such that every square
is either occupied by a queen or can be occupied by one of the queens in a
single move. (On a single move a queen can move any number of squares in
one direction along its row, column, or diagonal.) The minimum number
of such queens is five. For one possible placement of five queens, see Figure
1.
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Figure 1: A Solution to the Five Queens Problem.

Using graph theory to model this problem, the Queen’s Graph is formed
by representing each of the 64 squares of the chessboard as a vertex of
a graph G. Two vertices (squares) are adjacent in G if each square can
be reached by a queen on the other square in a single move. Obviously,
to solve the queens problems we are looking for the minimum number of
queens that dominate all the squares of the chessboard, i.e., y(G). (Note
that many variations on this problem are formed by considering different
chess pieces and/or different size chessboards.)

The next appearance of domination in the literature was also associated
with game applications. In their book on game theory (1944), von Neumann
and Morgenstern [40] considered domination in digraphs to find solutions
(kernels) for cooperative n-person games.

In 1958, domination was formalized as a theoretical area in graph theory
by Berge [5]. He referred to the domination number as the coefficient of
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external stability and denoted it S(G). In 1962, Ore [31] was the first
to use the term “domination” for undirected graphs and he denoted the
domination number by §(G).

However, it was not until Cockayne and Hedetniemi’s [10] survey paper
appeared in 1977 that the growing interest in domination unfolded. They
introduced the accepted notation y(G) to denote the domination number.
Much attention to domination followed and in 1990, Hedetniemi and Laskar
[25] edited an issue of Discrete Mathematics devoted entirely to domina-
tion. The 1990 bibliography revealed an impressive increase in thirteen
years from approximately 20 to 400 references. The explosive growth is
further evidenced by the current bibliography [20] which has over 950 en-
tries and is growing daily. Obviously, writing a comprehensive survey paper
is unrealistic, so only a brief overview is presented here. However, a book
on domination in graphs by Haynes, Hedetniemi and Slater [20] is in prepa-
ration. An edited book on selected research topics in domination [21] is also
being prepared as a companion to the textbook. Chartrand and Lesniak
[7] have included a chapter on domination in their revised book, Graphs &
Digraphs.

Perhaps some of the widespread interest in domination stems from the
many different perspectives from which it can be viewed. For example, we
mention a few of the equivalent definitions of a dominating set:

Vertex-Vertex Set Covering Problem. Set S C V is a dominating set
of a graph G if each vertex in V — S has at least one neighbor (is
covered by a vertex) in S.

Set Intersection. Set S C V is a dominating set if for each vertex z €

V-85,
N(z)nS #0.
Union of Neighborhoods. Set S C V is a dominating set if
U Npl=V.
vES

Dominating Function. Let f be the function f : V — {0,1} such that

foreachv eV,
Y fw=1
u€EN[v]

Also, finding the order of a minimum dominating set may be expressed
asa
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Linear Programming Problem. The linear programming representation

7(G) =min ) _ z;

i=1

subjectto N.X >T,

with z; € {0,1}.

Another motivation for the study of domination may be the natural for-
mation of domination parameters. For instance, varying the range in the
functional domination definition yields minus domination [13] where f has
the range {—1,0,1}, signed domination [14] where f has the range {—1,1},
and fractional domination [23] where f has the range [0,1]. Hedetniemi
and Laskar [25] suggested that over 60 types of domination parameters ex-
ist. A recent count suggests that over 100 have been defined and there are
numerous possibilities for defining additional ones.

Many domination parameters are formed by combining domination with
another graph theoretical property P. That is, parameters may be defined
by imposing an additional constraint on the dominating set or the condition
may also be placed on the dominated set or on the method of dominating.
For example, imposing the condition that the subgraph induced by the
dominating set S be independent yields independent domination. Total
domination is defined by the restriction on S that the induced subgraph
< 8 > has no isolated vertices. Other properties imposed on the dominat-
ing set include that < S > is connected, < S > is a clique, and < S > has
a hamiltonian cycle. Also, new domination parameters may be defined by
changing the method of dominating. For example, requiring that each ver-
tex outside the dominating set have at least k neighbors in the dominating
set is k-multiple domination. The generic nature of this provides a method
for defining many new invariants by considering different properties P.

Moreover, the applications of domination in a wide variety of fields have
surely added to its escalating popularity. For a sample of its applications,
consider communication networks, guard location problems, surveillance
systems, and coding theory.

Hence domination has emerged as one of the most studied areas in graph
theory. At the Carbondale conference corresponding to this proceedings,
I presented only seven of the numerous topics in domination. The topic
selection was made with the goal of presenting favorite open problems and
hence, a strong author bias could not be avoided. A thorough discussion of
even seven problems is beyond the space limitations of this paper, so four
problems are selected.
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2 Bounds on ¥(G)

An obvious upper bound on the domination number is the number of ver-
tices of the graph. This worst case situation is achieved if and only if the
graph G is a set of isolated vertices. Note that each isolated vertex must
be in every dominating set. Considering graphs without isolated vertices,
the upper bound is much improved in a classical result due to Ore [31].

Theorem 1 (Ore) If graph G has no isolated vertices, then v(G) < n/2.

In general, the corona G; o G is the graph G = G; o G5 formed from
one copy of G; and |V(G})| copies of G2 for which the ith vertex of G is
adjacent to every vertex in the ith copy of Ga2. The corona G = H o K3, in
particular, is the graph constructed from a copy of H and for each vertex
v € V(H), a new vertex v’ and the pendant edge vv’ are added. Hence
G has even order and achieves the bound of Theorem 1. Graphs having
no isolated vertices and domination number exactly half their order were
characterized independently by Payan and Xuong [32] and Fink, Jacobson,
Kinch, and Roberts [16].

Theorem 2 For a graph G with even order n and no isolated vertices,
¥(G) = n/2 if and only if the components of G are the cycle Cy or the
corona H o K, for some connected graph H.

Cockayne, Haynes, and Hedetniemi [8] characterized the odd order graphs
for which ¥(G) = |n/2]. The graphs of even order having v(G) = n/2 are
a special case of this result.

Ore’s theorem applies to graphs having minimum degree §(G) at least
one. Restricting their attention to graphs G having 6(G) > 2, McCuaig
and Shepherd [29] made another improvement on the upper bound. Let B
be the collection of graphs in Figure 2.

[ > [T [ X
[ D L] OO X

Figure 2: Graphs in family B, “Bad Graphs”

Theorem 3 If G is connected with 6(G) > 2 and G ¢ B, then v(G) <
2n/5.
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Figure 3: A family of graphs haviﬁg v = 2n/5.

We note that the bound of Theorem 3 is sharp and is achieved by the
family of graphs illustrated in Figure 2. McCuaig and Shepherd [29] charac-
terized the extremal (edge-minimal and edge-maximal) graphs which obtain
this upper bound.

Reed [33] extended this type result to graphs having minimum degree at
least three.

Theorem 4 If G is connected and §(G) > 3, then v(G) < 3n/8.

These results are summarized in the following table.

| lower bound for 6(G) | upper bound for ¥(G) ]|

Lo n |
I n/2 |
fl 2, (G connected, G & B) | 2n/5

L 3, (G connected) 3n/8 I

Observing the decrease in the upper bound on the domination number
each time the bound on the minimum degree is increased raises a very
interesting open question (first noted by Stephen Hedetniemi). That is, in
general, does an increase in the minimum degree requirement by one justify
a decrease in the upper bound on the domination number and, if so, what
are these upper bounds on +(G) for a given §(G)?

3 Nordhaus-Gaddum Type Results

In 1972 Jaegar and Payan [26] published the first Nordhaus-Gaddum type
results involving domination.

Theorem $ For any graph G,
YC)+v(@) <n+1.
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Cockayne and Hedetniemi [10] improved the upper bound on the sum.

Theorem 6 For any graph G, 7(G) + ¥(G) < n + 1 with equality if and
only if G = K, or K,,.

A corollary to a result by Bollobds and Cockayne [6] made a significant
improvement in the upper bound for the sum for the case when neither
G nor G has isolated vertices. Independently, Joseph and Arumugam [27]
gave a simple, yet elegant, proof for this result.

Theorem 7 If G and G have no isolates, then
7(G)+7(G) < |n/2] +2.

Joseph and Arumugam [27] determined the graphs achieving the upper
bound.

Theorem 8 For G of order n # 9, such that G and G have no isolated
vertices, 7(G)+(G) = |n/2|+2 if and only if either v(G) orv(G) = |n/2].

Payan and Xuong showed that [32] the self-complementary graph K3 x K3
is the only graph for which v(G) = 4(G) = 3. Hence the above theorem
can be restated as follows.

Theorem 9 For G and G without isolates, v(G) + ¥(G) = [n/2| + 2 if
and only if G = K3 x K3, or 4(G) or v(G) = |n/2].

Recognizing that the upper bound of n+1, in a sense, corresponds to the
upper bound of n on 4(G) and when neither G nor G has isolated vertices,
the upper bound of |n/2| + 2 corresponds to the upper bound of |n/2] on
v(G), it is natural to ask the following questions:

Is v(G) + 7(G) < 2n/5 + 3 when both G and G have minimum degree
2? And similarly, is 3n/8 + 4 an upper bound on the sum when both G
and G have minimum degree 3? Affirmative answers to these questions are
given in [9]. Note that this work is still in progress and there is a chance
the bounds may be improved. The known results are summarized in the
following table.

—

ower bound for §(G), §(G) | upper bound for 4(G) | Nordhaus-Gaddum bound |

n n+1 I
n/2 n/2+2 I

Il (G, G connected, G,G € B) | 2n/5 2n/5+3 l
3, (G, G connected) 3n/8 3n/8+4 ||

Open Problem: Generalize the above table.

—— ==
Ld =1

N
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4 The Inequality Chain and Strong Equality

A set S is independent if no two vertices in S are adjacent. The indepen-
dent domination number i(G) is the cardinality of a minimum independent
dominating set (or equivalently, the minimum order of a maximal indepen-
dent set). The verter independence number Bo(G) is the cardinality of a
maximum independent set of G.

Obviously, every graph has an independent dominating set and y(G) <
i(G) < Bo(G). These bounds are sharp as can be seen with the corona K ;0
K, which has y = i = fp = t+1. On the other hand, the difference between
each pair of these parameters can be made arbitrarily large. For example,
the double star S, ; is the graph obtained by connecting the centers of two
stars K; , and K, with an edge. For 3 < s < ¢, the double star has
T=2<i=84+1<Fy=3s+1t.

A set S C V is irredundant if each v € S dominates at least one vertex
of G which is not dominated by any other vertex of S. Equivalently, S is
irredundant if for each v € S, v is isolated in < S >, the subgraph generated
by S, or v has at least one private neighbor relative to Sin V — 8, ie, a
vertex which is adjacent to v but not to any other vertex of S. For any
graph G, ir(G) and I R(G) denote respectively the cardinality of a smallest
and a largest maximal irredundant set of vertices. The upper domination
number ['(G) is the cardinality of a largest minimal dominating set. For
completeness, we list a well-known inequality chain which relates the upper
and lower domination, independence, and irredundance parameters.

ir(G) < 7(G) < i(G) < po(G) <T(G) < IR(G)

Characterizing graphs which obtain sharpness in one or more of the
inequalities has been the object of extensive investigation in more than
100 papers [24]. One of the most studied of these issues is characterizing
graphs for which ¥(G) = i{(G). Note that a forbidden subgraph charac-
terization cannot be obtained since adding a vertex adjacent to all the
vertices in any graph H constructs a new graph, the join G = K; + H,
with #(G) = 4(G) = 1. Graph G is claw-free if it has no induced subgraphs
isomorphic to K 3. Allan and Laskar (1] presented a sufficient condition
for ¥(G) = i(G) in terms of this forbidden subgraph.

Theorem 10 If G is claw-free, then 4(G) = i(G).

Topp and Volkmann [39] extended Theorem 10 by presenting 16 for-
bidden subgraphs as a sufficient condition for 7(G) = i(G). Others have
characterized such graphs for specific families:

e Harary and Livingston: caterpillars [17], trees [18]
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¢ Topp and Volkmann: unicyclic graphs [37], bipartite and block graphs
(38].

Harary and Livingston [19] applied results from coding theory to obtain
information about «(G) and i(G) when G is the hypercube Q. of dimension
k. They found that ¥(Q,) = i(Qx) for infinitely many values of k and
conjectured that v(Qx) and #(Qx) differ only when k = 5 for which v(Qs) =
7 and #(Qs) = 8.

On the other hand, Barefoot, Harary, and Jones [4] constructed an in-
finite family of 2-connected cubic graphs for which the difference between
the domination and independent domination number may be arbitrarily
large. They conjectured that a similar class exists for cubic graphs with
connectivity 1. Mynhardt [30] proved this conjecture and described infinite
families of 1-connected and 3-connected cubic graphs for which i(G) —v(G)
becomes unbounded. Cockayne and Mynhardt [11] and Kostochka [28]
independently found other infinite classes of cubic graphs for which the dif-
ference between {(G) and (G) may be arbitrarily large. Moreover, Seifter
[34] showed that for every triple (r,k,t), 7 > 5, 2 < k < r, t > 1, there
exist r-regular k-connected graphs G having i(G) - v(G) > t.

The problem of characterizing graphs for which 7(G) = i(G) remains
unsolved and seems to be extremely difficult. Here we consider a related
subproblem introduced in [22]. Suppose that, in fact, ¥(G) = i(G). Then
every i(G)-set is also a y(G)-set, but not every y(G)-set must be an i(G)-
set. For example, the path P4 has four v(P;)-sets, only three of which are
i(P3)-sets. On the other hand, ¥(Cs) = i(Cs) = 2 and each of the five
7(Cs)-sets is also an i(Cs)-set. We say that v(Cs) and i(Cs) are strongly
equal.

Definition [22] Let P; and P be properties of vertex subsets of a graph,
and assume that every subset of V(G) with property P, also has property
P;. Let 41(G) and v2(G), respectively, denote the minimum cardinalities
of sets with properties P; and P, respectively. Then ¥1(G) < ¥2(G). If
¥1(G) = ¥2(G) and every 1;(G)-set is also a 12(G)-set, then we say ¥;(G)
strongly equals 12(G), written ¥;(G) = ¥2(G). (Note that one could also
define strong equality for maximization properties such as y(G) and I'(G).)

For example, we give the results for strong equality in paths and cycles.

Proposition 1 [22] For the path P, and cycle C,,
¥(Psk) = i(Pak) = ¥(Csx) = i(Cax) = k,
Y(P3k+2) = i(Pai+2) = Y(Cary2) = #(Caky2) =k + 1, and
Y(Psk41) = i(Pakt1) = ¥(Caks1) = i(Caiy1) =k +1
but ¥(Pak+1) # (Pax+1) and ¥(Cak+1) # i(Cakya).
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We are currently trying to characterize the graphs G for which v(G) =
i(G). Analogous problems remain open for other parameters in the inequal-
ity chain.

5 Edge-Domination-Critical Graphs

Sumner and Blitch [36] defined a graph G to be edge-domination-critical if
for any edge e € G, 7(G + €) = 7(G) — 1. That is, the addition of any edge
to G decreases the domination number. We consider one of the many open
problems related to edge-domination-critical graphs.

It was conjectured in [36] that an edge-domination-critical graph has
equal domination and independent domination numbers. However, the con-
jecture was proven false with a counterexample due to Ao [2] for the case
when v(G) = 4. Moreover, Ao, Cockayne, MacGillivray, and Mynhardt [3]
constructed graphs having ¥(G) < i(G) for each ¥(G) > 3. On the other
hand, the conjecture is known [36] to be true for graphs having v(G) < 2
and is still open for graphs with v(G) = 3. Sumner [35] stated that based
on a prolonged computer search, he believes the conjecture is true in the
case of 7(G) = 3. Based on my work on the problem, I also believe it is
true, but have not been able to prove it.

Conjecture 1 [35] If G is an edge-domination-critical graph with v(G) =
3, then v(G) = i(G).

Note that the conjecture has been proven for several special cases in
[36]. For example, if G is edge-domination-critical with v(G) = 3 and has
diameter 3, or §(G) < 2, or a cut-vertex, then ¥(G) = i(G). Favaron, Tian,
and Zhang [15] showed that every edge-domination-critical graph G with
7(G) = 3 and 6(G) > 2 has By(G) < §(G) + 2 and if Bo(G) = §(G) + 2,
then v(G) = i(G).
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