WEAK REPETITIONS IN STRINGS

L. J. Cummings

Faculty of Mathematics
University of Waterloo
Waterloo, Ontario, Canada N2L 3G1

W. F. Smyth

Department of Computer Science & Systems
McMaster University
Hamilton, Ontario, Canada L8S 4L8

School of Computing
Curtin University of Technology

ABSTRACT

A weak repetition in a string consists of two or more adjacent substrings
which are permutations of each other. We describe a straightforward ©(n?)
algorithm which computes all the weak repetitions in a given string of length
n defined on an arbitrary alphabet A. Using results on Fibonacci and other
simple strings, we prove that this algorithm is asymptotically optimal over
all known encodings of the output.

1 INTRODUCTION

Interest in the periodic behaviour of strings dates back to Thue [T06)] at
the turn of the century. Thue considered what we call here strong repeti-
tions (equal adjacent substrings) and showed how to construct an infinitely
long string on an alphabet of only three letters with no strong repetitions.
(Other constructions on three letters have been discovered several times
since, most recently by Dekking [5] and Pleasants [12] — the latter lists
several references to earlier constructions.) More recently, Erdds [6, p.
240] considered “Abelian squares” (what we call weak repetitions: adjacent
substrings that are permutations of each other), and asked what was the
minimum size of alphabet on which infinitely long strings with no weak rep-
etitions could be constructed. In 1970 Pleasants [12] gave a construction
on an alphabet of five characters, and Kerédnen [8] has very recently found
a best possible construction on only four characters.

It has been only in the last 15 years or so, with the increased modern
emphasis on algorithms, that a problem more in the spirit of computer

JCMCC 24 (1997), pp. 33-48

science has been considered: how to compute (efficiently) all the repetitions
in a given string z of length n. It might be supposed that in the worst case
such a computation would require time Q(n?), since it can easily be seen
that the string z = a™ contains {n?/4] strong (also weak) repetitions. (For
example, a® contains five distinct repetitions aa, three distinct repetitions
a’a?, and one repetition aa3.) However, in 1981 Crochemore [3), using a
clever encoding of repetitions (see the next section), devised a ©(nlogn)
algorithm to compute all the strong repetitions in a string z defined on
an ordered alphabet. Crochemore also showed that, in his encoding, a
Fibonacci string of length n contains Q(nlogn) repetitions, so that, at
least with respect to his encoding, his algorithm was “optimal”. Somewhat
later, two other, quite different, algorithms for computing all the strong
repetitions were published [1,10], both also requiring ©(nlogn) time, but
now over an arbitrary alphabet.

This paper discusses, apparently for the first time, the computation of
all the weak repetitions in z. This problem generalizes and includes the
corresponding strong repetitions problem, since every strong repetition is
also a weak one. In Section 2 we introduce some notation and terminology,
in particular another encoding (called the R-encoding) which appears to be
more natural for weak repetitions. In Section 3 we then describe an algo-
rithm for computing all the weak repetitions in z: this “obvious” algorithm
executes in time ©(n?) on all strings of length n. In Section 4, the main
part of the paper, we show that, in the R-encoding, the Fibonacci string
contains ©(n?) weak repetitions; further that, in Crochemore’s encoding,
another simple string contains ©(n?) weak repetitions. With respect to
known encodings, therefore, we conclude that the computation of all weak
repetitions is a ©(n?) problem. A final section gives some brief concluding
remarks.

2 TERMINOLOGY & NOTATION

Let A denote a (possibly infinite) set of distinct elements a;,7=1,2,....,
which are not required to be ordered. We call A an alphabet and its elements
letters. Let A* denote the set of all concatenations of elements of A, and
let A* = {e} U A%, where € denotes the empty element. The elements
of A* are called strings, and a string z of length [z| = n > 1 is written
T = 2123 ---Tp, Where each z; € A. If £ = uv, then u is said to be a prefiz
and v a suffiz of z. For any positive integer k, a concatenation of k identical
strings » is written u*.

A string z is said to be strongly periodic of order k if there exists an
integer k > 1 and a string u € At such that z = u*. Similarly, z is said

34

to be weakly periodic of order k if there exists £k > 1 and u; € At such
that £ = ujius -+ -ug, where each u;, 2 < 7 < k, is a permutation of u;
(that is, a concatenation of the same elements of A, but not necessarily
in the same order). When k = 2 in these definitions, z is said to be a
strong (respectively, weak) square. If z is not strongly (respectively, weakly)
periodic of any order k, then we shall say that z is strongly (respectively,
weakly) primitive. If there exists a strongly (respectively, weakly) periodic
string w such that z = uwv for some strings u,v € A*, then w is said to
be a strong (respectively, weak) repetition in z. The following observations
are immediate consequences of these definitions:

* if ¢ is strongly periodic of order k, then z is weakly periodic of order k;

* if ¢ is weakly primitive, then z is strongly primitive;

* if » is strongly (respectively, weakly) periodic of order k and k' |k, then
z is strongly (respectively, weakly) periodic of order &';

* the number of weak repetitions in z is at least as great as the number of
strong repetitions in z.

Consider some examples on the alphabet A = {a,b}: =z = abaababa
is weakly primitive, therefore strongly primitive; z = abbaabba is weakly
periodic of order 4, hence weakly periodic of order 2, and is also strongly pe-
riodic of order 2; z = bbaababa is strongly primitive and weakly periodic of
order 2; z = abbabababaab is weakly periodic of order 6, hence weakly peri-
odic of orders 2 and 3. The string z = abbaba contains strong (hence weak)
repetitions b2 and (ba)? and, in addition, the weak repetitions (ab)(ba) and
(ab)(ba)(ba); as we have seen, the string = = a™ contains exactly |n%/4)
strong (hence weak) squares.

Observing that it suffices to compute maximum-length repetitions of
primitive substrings, Crochemore [3] improves the definition of strong rep-
etition as follows. Suppose there exist an integer k& > 1, strings u and
v, and. a nonempty strongly primitive string z such that z = uz*v and 2
is neither a suffix of u nor a prefix of v. Then the strong repetition z*
is uniquely specified by the triple (Ju| + 1, |z|, k), where |u| + 1 gives the
position of the repetition, |z| its period, and k its order. Clearly the collec-
tion of all such triples for a given string z specifies the strong repetitions
of z; we call this collection the C-encoding of the strong repetitions and
denote it C(z). With the obvious adjustments, a C-encoding of the weak
repetitions can be defined in a similar way. Observe that for the string
z = a", C(z) = {(1,1,n)} for both strong and weak repetitions: thus all
the repetitions in z, including the {n?/4] squares, are described by a single
triple.

Other encoding schemes are possible for strong/weak repetitions. For

th

instance, one may think of the ¢*® position of z as a centre of strong/weak

35

squares of various lengths: then if a substring

TopPap = (TempTempti® Tem1)(TeTep1®* Teyp_1) (1)

were a strong/weak square of period p < p. = min{c—1,n—c+1} centred
at ¢, it could be encoded by the pair (¢,p). Clearly a collection of all
such pairs (c,p) could be used to specify all the repetitions of z. This
collection can be further compressed by taking advantage of cases where,
for given ¢, the periods p fall into ranges of acceptable values; thus, for
P2 > p1, the pairs (¢,p1),(c,p1 + 1),...,(c,p2) may be expressed as a
range triple (c,p1,p2). A collection of such triples identifying all squares
in z is called an R-encoding of the repetitions and denoted R(z). For the
string z = a”, for example, a minimum-cardinality R-encoding is given by
R(z) = {(¢,1,pc),c = 2,3,... ,n}, of cardinality n — 1.

In (3] it was shown that, for Fibonacci strings f;, i = 0,1,...., and for
strong repetitions, |C(f;)| € Q(F; log F;), where F; denotes |f;|. Fibonacci
strings are defined on A = {a, b} as follows: fo = b, f1 = a; for every i > 2,
fi = fi—1fi—2. Karhumaiki [7] showed that f, does not contain “fourth
powers” for any n > 0. It follows then that, with respect to the C-encoding,
the algorithms which compute strong repetitions in O(nlogn) time are
asymptotically optimal. In this paper we consider both the C-encoding
and the R-encoding for weak repetitions, and exhibit classes of strings
of length n such that both encodings necessarily contain Q(n?) elements;
thus algorithms, such as the one described in Section 3, which compute
weak repetitions in O(n?) time, are also, with respect to known encodings,
asymptotically optimal.

3 A WEAK REPETITIONS ALGORITHM

Here we outline a simple @(n?) algorithm (called Algorithm A) which
computes a minimum-cardinality R-encoding of the weak repetitions in
a given string ¢ = z122---z,. We suppose that z contains exactly m
distinct letters, which we denote by A;, i = 1,2,...,m. Clearly m < n.
The algorithm considers in turn each potential centre ¢ = 2,3,...,n of =
to determine every integer p € [1,pc] such that the pair (c,p) encodes a
weak repetition. Recall that p. = min{c — 1,n ~c+1}.

Algorithm A uses O(n) integer arrays: L[0..m] and INDEX[l..n]. For
i=1,2,...,m, Z[i] is used as a counter of the number of occurrences of
Ai: each occurrence to the left of ¢ is counted with a decrement of 1, while
each occurrence to the right is counted with an increment of 1. £[0] is used
as a “global” counter and as we shall see later, £[0] = 0 if and only if a
weak repetition has been found.

36

The array INDEX is used to specify positions in ¥, according to the
following rule: INDEX[j] = ¢ <= z; = X;. Thus S[INDEX[j]] is the
counter corresponding to z;, and so INDEX effectively replaces x, which is
not mentioned at all in the main part of the algorithm.

The replacement of z by INDEX is performed in a preprocessing phase.
Where z is defined on an arbitrary alphabet A, this replacement requires
time O(n?); if A is totally ordered, the replacement can be effected (using
a search tree, for example) in time O(nlogn); if A is fixed and finite,
conversion reduces to an O(n) table lookup procedure.

Corresponding to each potential centre ¢ = 2,3,...,n, Algorithm A
computes a linked list L consisting of all ranges [pi, p2] such that for every
P € [p1, 2], (¢, p) encodes a weak square. To accomplish this, the algorithm
first initializes L to a single entry [1, p] and then updates L by eliminating
ranges which cannot give rise to weak repetitions. After all updates to L
have been made, therefore, L consists of exactly those ranges of values of
p which do give rise to weak repetitions. Over all possible values of ¢, the
aggregate of these lists is equivalent to a minimum-cardinality R(z), and
since L can contain at most [p./2] elements, it is clear that |R(z)| € O(n?).
Moreover, since the algorithm handles the update of L without backtracking
— that is, in monotone increasing order of p —, it follows that, for each ¢,
update of L requires time O(n) and, over all values of ¢, time O(n?).

Corresponding to each potential centre ¢ = 2,3,...,n, Algorithm A
first initializes all counters to zero, initializes L, and then, for each integer
p=1,2,...,p, decrements the counter Z[INDEX[c — p]] and increments
S[INDEX[c + p — 1]]. The entire processing for each centre c is as follows:

initialize all counters to zero; L « [1,p.];
for p « 1to p. do
i « INDEX[c — p]; Z[i] « =[] - 1;
if 7] > 0 then
Z[0] «+ Z[0) -1
else
2[0] « T[0] + 1;
i INDEX[c+ p — 1); Z[¢] + Z[i] + 1;
if £[¢) < 0 then
Z[0] + 20} -1
else
(0] « Z[0] + 1;
if [0] # 0 then
delete p from L.

It is easy to see that £[0] = 0 after the processing for the current value
of p if and only if (c, p) encodes a weak square. Over all values of ¢ and p,

37

the interior of the for loop for p will be executed once for each of exactly
|n?/4) position pairs c—p and c+p—1; it follows that Algorithm A requires
O(n?) time. As we have seen, the additional space required for Algorithm
A consists of L, ¥ and INDEX, and is thus O(n).

Theorem 1. Algorithm A computes a minimum-cardinality R-encoding
of the weak repetitions in any string in ©(n?) time, independent of the
alphabet size.

The complexity of Algorithm A will be discussed in Section 4.

As an example of the operation of algorithm A, suppose
z = f¢ = abaababaabaab

and consider ¢ = 7 (so that p, = 6). Then only for p =1 and p = 4 does it
occur that S[0] # 0: for p= 1, L becomes {(2, 6)} and for p = 4, L becomes
{(2,3),(5,6)}. Thus the elements of R(z) which are output corresponding
to ¢ =7 are (7,2,3) and (7,5, 6).

The algorithm described here is an “obvious” algorithm, but it does not
appear to be easy to improve on. We have devised two other algorithms as
follows:

* Algorithm B, which, for each potential centre ¢, eliminates periods p
from L which are inconsistent with the distribution of each individual
letter A; in z;

* Algorithm C, which, for each ¢, eliminates from L all periods p which
are inconsistent with a “balance” between pairs of letters found close to
position ¢ in z.

Neither of these algorithms can guarantee that backtracking will not
occur in the update of L, and so each executes in time O(mn?). ' How-
ever, since it would not always be necessary to test all pairs of positions
in z, it was expected that in many cases these algorithms would execute
more quickly than Algorithm A. Timed runs of all the algorithms on long
repetition-free and repetition-dense strings have not supported this expec-
tation [14]: Algorithms B and C both appear to execute much more slowly
on average than Algorithm A.

4 DISCUSSION OF COMPLEXITY

In this section we show that for Fibonacci strings fn, |R(fa)| € Q(F2),
and also that for the strings g, = (aababbab)” of length 8n, |C(gn)| € Q(n?).
We conclude then that Algorithm A is asymptotically optimal over the C-
and R-encodings of the output.

38

We consider first g, = (aababbab)”, a string of length G, = 8n. In
particular, we consider the weak repetitions of g, as expressed in the C-
encoding; indeed, we initially confine our attention to those repetitions
(¢,p, k) where ¢ = 1 (mod 8) and p = 1 (mod 4). We show first that for
this special class of weak repetitions, it must be true that k = 2, and hence
that there exist exactly ("’2"1) of them.

Observe first that for 7 = 1 (mod 8), g,[i] = a. Observe also that g,
may be written in the formr

a(ababd)(baba)(abab)(baba) . . . (abab)bab,
so that for p=1,5,9,..., there exists a weak square (in fact a palindrome)
a(ababbaba) P~/ g, (2)

provided that
i+2p—1<8n. (3)

We see that each component of each square (2) necessarily contains (p+1)/2
a’s and (p — 1)/2 b’s; that is, an excess of a’s over b’s of one. Furthermore,
each such square is followed by substrings b, ba, bab, babb.. ., each of which
will contain at least as many b’s as a’s. Thus no squares (2) can be extended
to cubes, from which we conclude that & = 2.

We wish now to count the number of occurrences v, of the weak squares
(4,p,2) in g,. From (3) it follows that p < (8n — i + 1)/2, so that

8n—-7 (8n—-i+1)/2

Vp = z Z 1
i=1(8) p=1(4)
8n—-7

Y (n-(i-1)/8)

i=1(8)

n

=n?-)Y (i-1)

=1
_(n+1
= 5)
Essentially the same argument, with the roles of a and b reversed, shows
that for i = 5 (mod 8) and p = 1 (mod 4) there are another ("}!) weak

squares (i, p, 2). Similarly, the cases i = 3 (mod 8) and i = 7 (mod 8) with
p =3 (mod 4) add an additional ("'2*'1) and (}) weak squares, respectively.

39

Thus the total number of weak repetitions in the C-encoding for odd posi-
tions % of g, is 3(*?) + (3) = 2n% + n. We have then |C(g,)| € ©(G2). O

Theorem 2. The number of triples in the C-encoding of weak repetitions
in the string g, = (aababbab)® is quadratic in n.

In fact, it is also true for the R-encoding that |[R(gs)| € ©(G2). But
it turns out in this case, due to the regularity of g,, that a very slight
modification of the R-encoding can be used to reduce the output required
to ©(Gy). The modification required is to replace the triples (c,p1,p2) of
the R-encoding by quadruples (¢, p1, d, k) representing the squares

(c,pl)a (C,P1 + d)y reey (C:Pl + (k - l)d)’

Therefore, in order to establish more clearly that the R-encoding requires
in the worst case output quadratic in the length of the string, we consider
next the Fibonacci string f, and show that |R(f,)| € Q(F2).

The Parikh or frequency vector of a string ¢ = 1z - - - &, over an alpha-
bet A is an integer vector ¢(z) of length @ = |A|, where the ith element

¢(z)[4] counts the number of occurrences in z of the it element of A. (For
example, if A = {a, b}, then ¢(a) = (1,0) and ¢(b) = (0, 1).) For strings z,y
over A, it is easy to see that ¢(zy) = ¢(z) + ¢(y). Observe also that zy is a
weak square if and only if ¢(z) = ¢(y), so that in such a case ¢(zy) = 24(z).
We state a special case of an important lemma on Sturmian strings which
will be useful later:

Lemma 1. Let u and v denote any two substrings of equal length of a
Fibonacci string. Then ¢(u) — ¢(v) can only take one of the values (0, 0),
(-1,1), (1,-1).

Proof. See [2]. O

Let ws(z) denote the number of weak squares (of the form (c,p)) in a
string . We now turn our attention to the estimation of ws(f,). Clearly
ws(fn) > |R(fa)|- In order to estimate more precisely, consider the two-
dimensional array T' = T[1..Fy, 1..F;] formed by applying the following
rule:

Tlc,p] = 1, if fn contains a weak square (c, p);

=0, otherwise.

Recall from Section 2 the definition of p., which for Fibonacci strings we
modify to
pe =min{c — 1, F, —c+1}.

Then clearly for every p > p¢, T[¢,p] = 0, so that row ¢ of T' contains
at most p. nonzero entries and column p is all zeros for every p > F,/2.

40

Observe also that for integers p such that 1 < p < F,/2, column p of T
contains at most F, — 2p + 1 nonzero entries. Since the number of weak
squares is just the number of ones in T', we can then easily compute a crude
upper bound for ws(f,):

Lemma 2. ws(f,) < |F2/4].

Proof. The upper bound is just the sum of the possibly nonzero entries in
the columns of T. When F, is even, this sum is

(Fo=1)+ (Fo = 3)+ -+ +1=F/4;
and when F, is odd, the sum is
(Fo—1)+ (Fo =3)+---+2=(F2-1)/4.

Both these sums reduce to [F2/4]). O

Obviously, the upper bound in Lemma 2 is far from being best possible.
For example, fg has length F3 = 34 and contains 136 weak squares, but
the bound provided by Lemma 2 is 289. In order to compute more precise
bounds on ws(f,), we consider now what may be called the diagonals of the
array T. These are ordered collections of the values of all those positions in
T which may possibly take the value 1; they are defined as follows:

D : {T[e,c— 1), Tle+1,c—2],...,T[2c - 2,1]}, (4)

where ¢ = 2,3,..., M, with M = [F,/2] if F, is odd and [F,/2] + 1
otherwise; and

D, : {Tlc+1,c~ 1), T[c+2,c~2),...,T[2c - 1,1]}, (5)

for ¢ = 2,3,...,[Fn/2]. The collections D and D! are interleaved cross-
diagonal entries that together fill a triangle of T whose sides are the first
column, the main cross-diagonal, and the first diagonal below the main
diagonal. Observe that |D.| = |D.| = ¢ — 1. From now on we shall treat
the D, and D, simply as strings of length ¢ — 1 defined on the alphabet
A={0,1}.

The following lemma shows that adjacent positions in any D, or D! can
be both zero or both one only if the substring aa occurs at a specified
location in f;. This will pave the way for showing that approximately half
of the entries in each D, or D/ are ones, hence that the number of weak
squares in f, is order F2.

41

Lemma 3. Suppose z is any Fibonacci string. For integers ¢ € [3, F, — 1]
and p € [2,pc], let hy = T[c,p] and hy = T[c + 1,p — 1] denote adjacent
positions in some diagonal D, or D, of the array T. Then h; = h; if and
only if £c—p = Zc—py1 = a.
Proof. Let q denote the Parikh vector of =, and let ¢’ denote the Parikh
vector of Zc_pZc—pt1. Observe that ¢ = (0,1) or (1,0) and that, since b2
never occurs in any Fibonacci string, ¢’ # (0, 2). It follows that ¢’ = (2, 0) if
and only if £._, = Zc—p4+1 = a. Recall the notation Tcp and :z:;':p introduced
in (1). Now let

51 = $(z2,) — dlal,), (6)

02 = ¢(“’c_+1,p—1) - ¢(w:+1,p—1)’ (7)

and observe by Lemma 1 that é; and d; can assume only the values (0, 0),
(1,-1), or (—1,1). From (6) it follows that

¢(‘°:+1,p—1) = ¢($::p) —-q

(zip1p-1) = ¢(1=Zp) +8+q-4,

and so (7) implies that
¢ = (61— &2) +2g. (8)

First consider the case hy = hp = 1; that is, § = §2 = (0,0). Then (8)
implies that ¢’ = 2¢ and, since ¢’ # (0,2), it follows that ¢’ = (2, 0).

Next suppose that Ay = hs = 0, so that neither é; nor d; can equal
(0,0). Then if §; = d2, (8) tells us again that ¢' = (2,0); while otherwise
d1 = —42, so that (8) reduces to ¢’ = 2(é; + ¢), once more implying that
g =(2,0).

Conversely, when hy = 1 and hy = 0, it follows from (8) that ¢’ = 2g—42,
where §2 = (-1, 1) or (1, —1); this equality can hold only if ¢’ = (1,1). We
reach the same conclusion in the case h; = 0, hy = 1. Since all possibilities
have been considered, the result is proved. O
Lemma 4. Suppose z is any Fibonacci string. Let d denote any bit string
(4) or (5) of length ¢—1 corresponding to z, and suppose that ¢(d) = (3, j),
where ¢ counts the frequency of zeros and j the frequency of ones. Then

(a) j =i+ 1if and only if ¢ is even and

- + —
ZTogl,e-1Tc41,c-1 = T182 7 " T2e-2

has suffix aa;

(b) ¢ = j+ 2 if and only if ¢ is odd and :cc_+1’c_1:z:’c"+1’c_.1 has suffix
aaba;

(¢) 7 <i<j+1, otherwise.

42

Proof. Suppose first that d = D, for some valid integer ¢. To exclude
trivial cases, suppose that ¢ > 3. Then the c—1 entries d, h = 1,2,...,¢-
1, in d are 1 or 0 according as the ¢ — 1 substrings

Toem1Zacm1 = (21227 Tem1)(Te -+ Tac-2)

z:+1,c—2x;:*-+1,c—2 = (2324 Tc)(Teg1** Tac—2)

- + -
Z2c-2,1%2c-2,1 = T2c-3T2c-2

are squares or not, respectively. Observe that dy = T[c + h — 1,¢ — A].
Therefore, by Lemma 3, consecutive entries dj, and dpy1,1 <h<c—2, are
unequal if and only if zap_3 # z2n. Thus consecutive entries in d flipflop
(from 0 to 1, or from 1 to 0) as determined by the first ¢ — 2 pairs of entries
in z:

T1Z2,L3L4, ... 3 L2¢-5T2¢c~4-

Consider the case in which one of these pairs is aa. Occurrences of aa cannot
exist either at the beginning or at the end of z, and in fact must always
be embedded in substrings z’ = abaaba; that is, preceded by a pair ab
and followed by a pair ba. Thus, except in the case that the substring 2’ in
question is a terminating substring (suffix) of z,, c_la:;':c_l =TTy Tac_2,

~ the entries in d corresponding to z’ must be either 1001 or 0110, depending

on whether or not the substring marks the beginning of a square in z. In
each of these cases, the number of zeros equals the number of ones, and the
final entry equals the initial one. Since pairs in = which are not ae must be
either ab or ba, each of which causes a flipflop in d, it follows that, except
when z' is a suffix, the number of ones and the number of zeros in d can
differ by at most one. In particular, for any even position k < ¢ — 1,

¢(d1d2 . dh) = (h/Z, h/2)’ (9)

a fact used below.

Now consider the case in which 2’ is a suffix of 2325 - - - Z5._5. In this case
the final entries in d are either 100 or 011. But observe in particular that
the final entry d._; in d is determined by whether or not zz,_3 = Lac—2;
that is, whether or not b = a. Thus d.~; = 0, so that only the case 100
is possible. In this case, if in addition ¢ is odd, it follows from (9) that
$(dids---de_3) = (552, 32), and s0 i = (¢ +1)/2 = j + 2. (That this case
actually arises may be seen by considering fs and ¢ = 13.)

43

Finally, consider the only remaining case: aa a suffix of 23z, - za.—s.
This is the only case in which d._; = 1, and, since aa is always preceded
by ab, it follows that d._ = 0. Thus when ¢ is odd, ¢(d) = (52, 52),
while when c is even, ¢(d) = (§—1,%), so that j =i+ 1.

Thus the result is proved for d = D.. An almost identical argument
establishes the result also for d = D.,. O

We remark now that in the strings D. and D., every instance in which
case (a) of Lemma 4 holds is matched by an instance of case (b), and vice
versa. That is, ¢ is odd and z3z3 -+ -23.—2 has suffix aeba if and only if
¢ —1is even and ;23 ---Z3._4 has suffix aa. It follows that in counting
the cumulative frequency of ones in the D, and in the D., we can simply
ignore cases (a) and (b), and count [(c—1)/2] ones in each of these strings.
The total number of ones in T is then just the sum of |(c — 1)/2] over all
strings D. and D{, where c takes the values specified in (4) and (5). For
example, for F, =3 (mod 4), it is not difficult to compute that

(Fa-3)/4
ws(fp) = Z k
k=1
= (F2 -2F, - 3)/8.
Similar calculations may be carried out for F;; = 0,1,2 (mod 4), yielding

Theorem 3. ws(f,) = (F2 — 2F, + q)/8, where
(a) ¢=0if F, =0 (mod 2);
(b) g =1if Fy =1 (mod 4);
() gq=—-3if F, =3 (mod 4). O

This result specifies the number of weak squares (c,p) in f,. However,
the question remains whether, by encoding every collection (c,p1), (¢, p1 +
1),...,(c,p2) of weak squares as a single triple (c,p1,p2), an algorithm
could perhaps run faster than O(F?); that is, in time proportional to some-
thing less than the square of the string length. For example, in fs the weak
repetitions can be encoded by only 10 triples: (4,1,3), (6,2,3), (6,5,5),
(7,2,3), (7,5,6), (9,1,3), (9,5,5), (10,3,3), (11,3,3), (12,1,2). Without
the use of the triples, 18 pairs (c, p) would be required.

Observe that any one of these output triples, say (c, p1,p2), corresponds
to a sequence, or run, of one or more consecutive ones in row ¢ of the matrix
T; specifically,

Tle,p] =Tle,pr+1] = =Tle,pa] = 1,
where T[c,p2 + 1] = 0 and also
n>1= Tle,pr—-1]=0.

Thus whenever 01 occurs in row ¢ of T, a run (triple) is beginning, and
whenever 10 occurs, a run (triple) is ending. Therefore, to determine a
lower bound on the number of output triples, we may count the occurrences
of 01 or of 10. As it turns out, it is convenient (and sufficient) to count the
total occurrences of both 01 and 10, and then divide by two; the following
technical lemma provides the basis for doing this.

Lemma 5. Let z denote any Fibonacci string, and let ¢ > 1 and j >i+3
denote any two nonadjacent positions in z such that j — i is odd. Let

c=(i+j+1)/2,p=(j—i-1)/2.

Then T[c, p] = Tc, p+ 1] if and only if z; = =;.
Proof. Since the occurrences are nonadjacent, and since j — i is odd, it
follows that a substring w of even length lies between positions i and j. In

fact, w = mc"p:c;':p, where ¢ and p are as defined in the statement of the
lemma.

Suppose first that z; = z;, and consider the case in which w is a weak
square. Then Tf[c,p] = 1. But since z; = x;, it follows that T[c,p+ 1] =1
also. Similarly, when w is not a weak square, it is clear that Tle,p) =
Tle,p+1]=0.

Conversely, suppose that T'c,p] = Tc,p+ 1]. If w is a weak square,
then we see that z;wz; must be also, and so we conclude that z; = z;5.
Similarly, if w is not a weak square, then neither is z;wz;, and so it follows
from Lemma 1 that, in this case also, z; = z;. O

Lemma 5 tells us that by counting all the pairs (¢, j), j —4 > 3, for which
i # z; and j—i is odd, we will identify all cases in which T'[c, p] # T/[c, p+1);
that is, all occurrences of 01 (beginning of a run of ones) and of 10 (end
of a run of ones) in the triangle of T' determined by the strings (4) and
(5). These occurrences do not include all beginnings and all ends of runs;
specifically excluded are beginnings of runs for which p = 1 (corresponding
to occurrences of aa in z) and endings of runs for which p = p,. Thus
the number of pairs (4,7) is only a lower bound on the number of runs;
nevertheless, as we shall now show, this number is O(|z|?).

Suppose that some Fibonacci string f, is given, n > 3. It is easy to
show that b occurs F,_, times in f,, and so it follows that there are Fpn_1
occurrences of a. Let m > 1 denote the number of b’s at odd positions of
fn; then F,_5 —m b’s occur at even positions. Note that there are [Fn/2]
odd positions and | F,, /2] even positions in f,. Hence there are [F, /2] —m
a@’s at odd positions and | F, /2] — Fo—2 + m a’s at even positions.

To simplify the computation a little, let us assume that n is odd, so
that f, ends in a and every occurrence of b has exactly two neighbouring

45

occurrences of a. It is these two neighbouring occurrences that are excluded
by the “nonadjacent” condition of Lemma 5. Then over all b’s occurring at
odd positions, the total number of nonadjacent pairs with a’s occurring at
even positions is given by

m(|Fn/2) = Fazz +m—2).

Similarly, the total number of nonadjacent pairs corresponding to b’s at
even positions and a’s at odd positions is

(Fu-2 —m)([Fa/2] — m - 2).

Then [R(fn)|, the total number of runs of ones in T, is at least

L {m(LFa/2) = [Faf2] = Facy 4 2m) + Faca([Fa/2] - m =)}
Fa_o(Fa/2 = 2) = m(2Fa_s — 2m +2)}

2 — (Facz+ 1)ym+ Fuoa(Faf2 - 2)/2

(m).

The function g(m) achieves its minimum value if

d
‘Z(—:’:l)=2m—(F,,_3+l)=0;

V
3 o=

n
)

that is, if m = (Fr—-2 + 1)/2. In this case,
g(m) = (Fa—2(Fa-1—6) — 1)/4.

Since Fn_z > Fn/3, it follows that for sufficiently large n, g(m) > F2/36,
and hence that |R(fn)| € Q(F2). Since |R(fn)| < ws(fs), so that by
Theorem 2 |R(fa)| € O(F?), we have thus proved

Theorem 4. |R(f,)| € O(F2). O

In fact, it appears that, making use of more precise calculations, it is
possible to establish that |R(fn)| ~ ws(fn)/2.

5 CONCLUDING REMARKS

In this paper we have presented a simple ©(n?) algorithm for finding
all the weak repetitions in a given string of length n. We have shown
that this algorithm is optimal over known encodings of the output; in the

46

course of doing so, we have derived an exact expression for the number of
weak squares in a Fibonacci string. We remark that the methodology used
to count weak squares and weak repetitions in Fibonacci strings may also
have applications to similar counting problems on other strings.

The results of this paper suggest, but do not clearly establish, that the
computation of the weak repetitions in z is an (n?) problem. To prove this
conjecture, it would be necessary to find an information-theoretic argument
that would show that ©(n?) processing steps are required in the worst case.
In fact, an even stronger result has been proved for the strong repetitions
problem [ML84]: Main and Lorentz show that, over a possibly infinite
alphabet, Q(n log n) time is required to determine whether or not z contains
a strong repetition. We give here a somewhat different proof which applies
also to weak repetitions.

For a string = of length n, suppose that n = 2F for some positive
integer k, and suppose further that the letter z, /2 does not appear in
Tn/241Ta/242 " Tn. Suppose in fact that this property applies recursively
to substrings of z of length 2¥~1,2¥=2, ... '1. It follows then that any weak
(or strong) repetition in z occurs either in the substring 123 - -+ £n 3 or in
Tn/24+1%n/242 " Tn. In order to verify this fact, it is both necessary and suf-
ficient to perform n/2 comparisons of z, /2 against Tn 241, Tnj242,- .+ T
Let ¢(n) denote the number of comparisons required to perform the verifi-
cation. Then

¢(n) = 2¢(n/2) +n/2,

a recurrence relation which can easily be solved, using the initial condition
¢(1) = 0, to yield
n
c(n) = 3 log, n.
Hence

Theorem 5. Let = be a string of length n. The time required to determine
whether or not z contains a (strong or weak) repetition is Q(nlogn). O

It appears likely that for weak repetitions the lower bound of Theorem 4
can be increased to Q(n?). H so, then it would follow that any other weak
repetitions algorithms would necessarily require ©(n?) time.

47

REFERENCES

[1] A. Apostolico & F. P. Preparata, Optimal off-line detection of rep-
etitions in a string, Theoretical Comp. Sci. 22 (1983) 297-315.

[2] J. Berstel & P. Séébold, A characterization of Sturmian mor-
phisms, The Mathematical Foundations of Computer Science,

A. Borzyszkowski, S. Sokolowski (eds.), Springer-Verlag (1993) 281-290.
[3] M. Crochemore, An optimal algorithm for computing the repe-
titions in a word, Inf. Proc. Lett. 12-5 (1981) 244-250.

[4] M. Crochemore, Transducers and repetitions, Theoretical Comp.
Sci. 45 (1986) 63-86.

[56] F. M. Dekking, Strongly non-repetitive sequences and
progression-free sets, JCT Series “A” 27 (1979) 181-185.

[6] P. Erd6s, Some unsolved problems, Hungarian Academy of Sciences
Mat. Kutaté Intézet Kozl 6 (1961) 221-254.

[7] J. Karhuméki, On cube-free w-words generated by binary mor-
phisms, Discrete Applied Mathematics 5 (1983) 279-297.

[8] V. Kerdnen, Abelian squares are avoidable on 4 letters, Lecture
Notes in Computer Science 623, Springer-Verlag (1992) 41-52.

[9] A.J. Kfoury, Square-free and overlap-free words, Mathematical
Problems in Computation Theory, Banach Center Publications, Volume 21,
Polish Scientific Publishers (1988) 285-297.

[10] M. G. Main & R. J. Lorentz, An O(nlogn) algorithm for finding
all repetitions in a string, J. Algs. 5 (1984) 422-432.

[11] M. G. Main & R. J. Lorentz, Linear time recognition of square-
free strings, Combinatorial Algorithms on Words A. Apostolico & Z. Galil
(eds.), Springer-Verlag Berlin (1985) 271-278.

[12] P. A. Pleasants, Non-repetitive sequences, Proc. Cambridge Phil.
Soc. 68 (1970), 267-274.

[13] A. Thue, Uber unendliche Zeichenreichen, Norske Vid. Selsk. Skr.
I, Mat. Nat. Kl. Christiana 7 (1906) 1-22.

[14] C. Y. Tan & T. K. K. Teo, honours project, School of Computing,
Curtin University (1993).

ACKNOWLEDGEMENTS

The work of both authors was supported in part by grants from the
Natural Sciences & Engineering Research Council of Canada. The authors
express their appreciation of the work of Chin Yong Tan and Kelvin Teo of
Curtin University, who programmed and tested the algorithms discussed in
this paper.

48

