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1. Abstract.

We estimate the number of labelled loop-free eulerian oriented graphs with
multiple edges with n vertices by using an n-dimensional Cauchy integral.
An asymptotic formula is obtained for the case where the multiplicity of
each edge is O(logn).

2. Main result.

By an eulerian oriented graph we mean a digraph in which the in-degree is
equal to the out-degree at each vertex and at most one of the edges (v, w)
and (w,v) is permitted for any distinct v and w. Let EOGME(n,1) be
the number of labelled loop-free eulerian oriented graphs with n vertices in
which the multiplicity of each edge is at most t. Allowing loops would mul-
tiply EOGME(n, t) by exactly (¢+1)", since loops do not affect the eulerian
property. For the case where ¢ = 1, McKay [1] obtained the asymptotic
formula .

3HINM-1I2 1y _ass —1/24¢
41rn) n!/2e=3/3(1+ O(n )

EOGME(n,1) = (

for any € > 0.

We will identify EOGME(n,t) as a coefficient in an n-variable power
series, and estimate it by applying the saddle-point method to the integral
provided by Cauchy’s Theorem. In particular, the choice of contour is trivial
but substantial work is required to demonstrate that the parts of contour
where the absolute value of the integrand is small contribute negligibly to
the result.

The techniques used are similar to those to estimate the number of
eulerian digraphs with multiple edges [2], but here we allow the bound of
the multiplicity of each edge to be O(logn) where n is the order of the
graph.

For s > 0 and n > 1, define U, (s) = {(z,25,...,2,) | |zl < sfor 1 <
i<n}).Let 0 =(6,,...,0,),6 =(6,...,0,_;) and let T : R*~* — R*"*
be the linear transformation defined by T : 8’ — y = (¥1,¥%2s-- > Un—1)s
where

n-1
y; =0; — z 6/ (n +n'/?)
k=1
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for 1 < j < n— 1. The following Theorem 2.1 was obtained by McKay [1]
which is useful for our estimation.

Theorem 2.1. Let a,b and c be real numbers witha > 0. Let 0 < ¢ < 1/8,
and let n > 2 be an integer. Define

J:J(a,b,c,n):/exp(—a Z (0; —6,)* +b Z (6; — 6;)*

1<j<kgn 1<j<k<n
+ n—c2( >, (6- 91:)2)2) de’,
1<j<k<n

where the integral is over 8' € U,,_,(n=Y/2+¢) with 6, = 0. Then, as n —

00,
(n-1)/2 6b+c
— o 1f2f T —1/244¢
J=n (_an) exp( i + O(n )) |

Lemma 2.2. ‘
(i) For integert > 1 and real z with |z| < 7/(2t + 1),

| (1 + exp(iz) + exp(—iz) + -- - + exp(itz) + exp(—itz) |
< (2t + 1) exp(-Lt(t + 1)2?).

(1) For integert > 1 and any real z,

|1+ exp(iz) + exp(~iz) + - -- + exp(itz) + exp(—itz)|
<2-1+(2+ 2cos(:c))1/2.

Proof. (ii) is true since |1 + exp(iz)| = (2 + 2cos(:c)).1/ ? and each of the
rest terms is bounded by 1. The proof for (i) is as follows. Clearly,

| (1+ exp(iz) + exp(—iz) + - - - + exp(itz) + exp(—itz) |
=| 1 —exp(i(t + 1)z) + 1 —exp(—i(t + 1)z) |
1 — exp(iz) 1 — exp(—iz)
_ cos(tz) — cos((t + 1)z)
- 1 - cos(z)
sin((2t + 1)|z|/2)
sin(|2(/2)
exp (log(sin((2t +1)|z|/2)) - Iog(sin(|z|/2)))
< (2t + 1) exp(—Lt(t + 1)z?),
since for0 < z < 7,
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. _ 0o (_1)k22k—lB 22k
log(sin(z)) = log(z) + ; k(2k)! —,

where {B,} are the Bernoulli numbers, which satisfy (—1)¥ By, < 0. §

Theorem 2.3. For any € > 0, as n — 00,

EOGME(n,t) =
3(2t + 1) \ (D2 3(2t2+2t+1) —1/24¢
(2t(t+1)7rn) 2 exp W+ O )

Proof. Since [[;¢;crgn(l +27 2 +ojzp !+ 427"z} + ez’ is the

generating function for the digraphs in which the multiplicity of each edge
is at most t, EOGME(n, ) is the constant term. By Cauchy’s Theorem,

1
FOGME = —
GME(n,!) = e
f ‘7{]_[J-<k(1+:cj'1:ck+a:jz;1+---+:z:j_‘:ci_.+:c;-x,:’)
b4 vee dml...d;cn’
xlxz"'xn

where each integration is around a simple closed contour encircling the
origin once in the anticlockwise direction. We choose each contour to be
the unit circle and substitute z; = ‘% for 1 < j < n. We obtain

EOGME(n, 1) =
1 t _ '
@rr /U”(") 15}:];:,5,,(1 + Z;l(exp(zm(ﬁk — 0;)) + exp(im(9; — Bk)))) de.
Defining
T;4(60) = 14+ bz (exp (im(Gk;fi) + exp(z'm(aj -6.)))
and

9@ = JI 7o),

1<j<k<n
we have

n(n-1)/2
EOGME(n, 1) = HF 8”" L

where
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I= 9(8) de.
Un(m)

We will begin the evaluation of I with the part of the integrand which
will turn out to give the major contribution. Let I, be the contribution to
I of those @ such that |6, — 6,| < n='/2t¢ for 1 < j < n — 1, where 8;
values are taken mod 27. Since g(8) is invariant under uniform translation
of all §;, we see that the contributions to I, from different values of 6, are
the same. Hence,

Un_1(n-1/3+¢)

Wl’lel‘e 91 = (01, . .,9n_1) With 0,, = 0.
By using Taylor’s expansions for exp(iz) and log(1 + z) for complex z,
we obtain

9@ = T[ T0)

1<j<k<n

=exp( ) logT;(6))

1<j<k<n

1
=exp(—-6-t(i+l) 3 (6 -0,)°
1<i<k<n
—S—éo-t(t-i-l)(Zt?-l-?t-!-l) 3 (-6,
1<j<k<n

+0( 3 1-0.P).

1<j<k<n

Applying Theorem 2.1, we have
67 (n-1)/2

=92rpl/2{__2"

I, =27n (t(t < 1)n)

322+ 2t +1)

Wi +1) T O("_lmse))' (2.1)

X exp (—

So our remaining work is to prove that the integral of g(8) over the other
parts of the region of integration is negligible compared to (2.1).

Let 6 = 7/6(2t + 1). For j = 0,1,2,3,24¢ + 10,24t + 11, define the
interval A; = [(j - 1)6, jé], and B = [—w, —26]U[26, 7). For any 6 € U, (r),
let us suppose that Ay U A, contains n/6(2t + 1) or more of the 6;. (If not,
we can make this true by suitable translation). If 6; € Band 8, € AjUA,,

246



then 6 < |0;—0,| < m+6. Define C to be the set consisting of such pairs (G, k)
and I, to be the contribution to I of all the cases where n¢ or more of the 0;

lie in B. Since, if (j, k) € C, |Tj(6)] < (2t — 1+ (2+ 2cos(6))"/2) /(2t + 1),
and for any other pair (j, k), |fZ“Jk(0)| < 1, we have that

n(1+e)/6(2t41)

|| < 2m)"((2t = 1 + (2 + 2cos(8))"/2) /(2t + 1))

From this it easily follows that I, = O(exp(—c,n!*¢))I; for some ¢, > 0.
Thus we can suppose that at least n — n® of the §; lie in [-26,26]. Now
define I;(r) to be the contribution to I of those @ such that

(i) 36 < 16;] < m for r values of j,

(ii) 6; € [—26 26] for at least n — n¢ values of j, and
(iii) 9 € Az U Ayy 4o for any other values of j.
Clearly I3(r) = 0if r > n. If §; and §; are in classes (i) and (ii), re-
spectively, then § < |0; — 8| < 7 + 26, while if they are both in classes

(ii) and (iii), by Lemma 2.2, |T};(8)| < exp(—3t(t + 1)(6; — 6;)?). Using
|T;1(6)| < 1 for the other cases, we find

[Z3(r)| < (27)" (:) ((2t — 1+ (2 + 2cos(6))1/?) /(2t + 1)) ™™
X |Iili(n - r)la (2'2)

where

Bom= [ I exn(-3ut+ 10 = 06)7)dby - dl

m(7) 1<j<k<m
We can apply the transformation T (using m in place of n) to easily obtain

6 (m-D/2
Ht+1)m
Substituting back into (2.2) we find that

SN < Llexp (= egn +o(n))
r=1

4(m) < 2rm!/3(

for some ¢, > 0. We conclude that the only substantial contribution must
come from the case r = 0.

. Next, define I,(h) to be the contribution to I of those @ such that

(i) 16,) < 38,

(ii) n=1/2+¢ < |6; — 0,,| < 66 for h values of j, and
(iii) 16; =0, < n‘l/ 2+¢ for the remaining values of j.

Since g(O) is invariant under uniform translation of all §;, we see that the
contributions to I,(h) from different values of §,, are the same. Hence, we
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have |I,(h)| < 68]|I(h)|, where |Ij(h)| is the same integral over &' with
0, = 0. Since we have |T},(8)] < exp(—§t(t + 1)(6; — 6,)?), apply the
transformation T to transform the @ to y and the values of 8’ contributing
to I3(h) for h > 1 map to a subset of those y such that either IS0zt vl >
n¢/2 or |y, | > n=1/2+¢/2 for some k. Since the contribution to

/_Z.../_Zexp(—%t(t+1)n:2;::y§)dy

of those y is O(n)(67/t(t + 1)n)("~1)/2 exp(—c3n?¢) for some ¢z > 0, we
conclude that

n-—1
D~ 1u(k)] < O(n) exp(—csn?) |1,
h=1

The remaining case, h = 0, is covered by I,. Therefore we have completed
our proof. |1
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