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Abstract. In this paper we derive some inequalities on the existence of balanced
arrays (B-arrays) of strength six and with two symbols by using some results
involving moments from Statistics. Besides providing illustrative examples, we
will make brief comments on the use of these combinatorial arrays in Statistical
Design of Experiments.

1. Intreduction and Preliminaries

An array T with m constraints (rows), N runs (columns or treatment-
combinations), and with two levels is merely a matrix T of size (m x N)and
with two elements (say, 0and 1). The weight of a column « of T', denoted by
w( ), is merely the number of 1's in oc . Next we state the definition of a
balanced array (B-array):

Definition 1.1. T is called a B-array of strength ¢ = 6 if in every (6 x N)
submatrix T of T, every vector  of T with weight ¢ (¢ = 0, 1, ..., 6) appears
a constant number (say) p; times, and g’ = (o, 4, .., #45) is called the index set
of the array T'. A B-array T is denoted by (m, N, s =2,t=6, u').
It is quite clear that N = % ( ? ) ;. Obviously orthogonal arrays (O-arrays) are
c=0
special cases of B-arrays, and that the incidence matrices of incomplete block
designs as well as those of BIB designs form special cases of B-arrays. B-arrays
of strength six, under certain conditions, give rise to the construction of balanced
fractional factorial designs which allow us to estimate all the effects up to and
including three-factor interactions. In order to learn more about the applications
of B-arrays to combinatorics and statistical design of experiments, the interested
reader may consult the list of references (by no means an exhaustive list) at the
end of this paper, and also further references given there in.
It is quite obvious that a B-arrays of strength six with p' = (pg, 4, ..., i) and
m = 6 will always exist, but its existence for m > 6 is a difficult and non-trivial
problem. The problem of the existence of B-arrays for a given 4’ and to obtain,
for a given ;_1’, an upper bound on m is very important in combinatorics and
statistical design of experiments. Such problems for O-arrays and B-arrays have
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been studied, among others, by Bose and Bush [1], Chopra and/or Dio's 3, 4],
Rafter and Seiden [8], Saha et. al. [10], Yamamoto et. al. [14], etc. etc.

2. Main results on the existence of Balanced Arrays.
The following results are straight forward and easy to establish.

Lemma 2.1. A B-array T with m = ¢ = 6 and with a given index set ' always
exists.

Lemma 2.2. A B-array T with strength ¢ = 6 and index set i/ = (g, py, g, -,
L) is also of strength ¢’ where 0 < ¢’ < ¢ =6. -

Remark: Considered as an array of strength ¢, let its new index set'ﬁ, be (Aoe,
Ay, Apy), where each A;y is a linear function of the .'s and is Eiven by

tol (t-t ,
Ajg =) ( ; ) Biyy 5=0,1,2, ..., t.

=0
Lemma 2.3. Consider a B-array T(m,N,s=2,t =6, '), and let
z;(0 < j < m) denote the number of columns of weight jin 7. Then the
following results are true:

m

2zi=N @0

=0

gz = m Ay 2.2)
2

Y= 2ome Ar (2.3)
=1

3525 = myAaz + 3mp g + M Ay 2.4)

foj = myAsys +6myAsz + TmyAgs + myAry 2.5

Ejszj = mSAS.S + 10m4A4_4 + 25m;,A3,3 + 15"12142_2 + m1A1_1 (26)

ZJ’GSCJ' = msAs_s + 15m5A5'5 + 65m4A4'4 + 90m3A3'3 + 31’”1.2442_2 + mlAm
@7
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where m, = m(m — 1)(m — 2)...(m — r + 1), and each of A, is a linear
function of the y's. For a given g/, it is not difficult to see that the R.H.S. in
each of (2.1-2.7) is a polynomial function of m.

Next we state, without proofs, some results involving central moments which are
extensively used in statistics to study distributions. Let z,, 2,, ..., 2, be reals such

n
that ) z; = 0, and Y_z? = n. Set o w=1 2. Now we state the desired results
i=1 »
for later use from Chakrabarti [2] and Lakshmarramurti [5].
Results: (a) x> x2+ oc2. Here o 4and o jrefer to Kurtosis and
Skewness respectively which are used by statisticians to study "peakedness" and
"symmetry” in empirical and theoretical distributions.
) xs< (n2—3n+3)+(%:;'—)1
Remark: It is not difficult to see that (2.1)-(2.7) give us the moments of order
k(0 < k < 6) of the weights j (z; representing their frequencies) of the columns
of T'in terms of m and the elements of the index set 1. We use these together

with results (a) and (b) given above to obtain some new results on the existence
of B-arrays T'.

Theorem 2.1. Consider a B-array T'(m,n,t = 6, s = 2, u’). Then the
following holds:

[N 2 — (s’ [N o2 — ON* L2y +

+ 1N 5tz (3 g2;)" — 20N 5Pz (L ;) + 15Nz (Tiey)* -

- 5(21'-"3;)6] > [N Yoitz; — AN w5 ja; + 6N Y fz)(Ties)’ —
~3(Sia)] + [NEfa;— (Tie)] [N*5 e, -

~ NS ey + AT @3)
Proof: Here in:xj = N, z; being the frequency of the vectors of weight
j0<j< mJ)=i(;1 T. Letj = %Y jz;, and s? = L3(j —7)’x;. Itis quite clear
that the quantities (-L:-'i) are such that Z("—;z)a:j = 0Oand Z:(j—:z)zx,- = N, and
thus (7—;1) plays the role of z;. Also we have o ,, = %E("—:z)"‘a:j. Using
result (a), we get

FEE Y2 h[SE) ) + h[TE )

Simplifying, we obtain
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NG -7V~ 1) > N[S6-7)'=) +

. -r\2 . —\3 2
+ [Z(J -7) z;] [E(J -7) -'vj]
Expanding (j —7)" for k = 2,3, 4, and 6 and using + Y jz; for 7, we obtain the

desired result after some simplification.
Theorem 2.2. For the existence of a B-array T'(m, N, s = 2,t =6, u’), we
must have

N3 Pz — 6N*Yjz;y 5 x; + 15N (T jz;)* S5z, —
— 20N*(Xjz;)° iz + 15N (T jz;) S fz; — 5(Tjz;)° <

[NZ] z; — (Xjz;) ] [N2 ~3N+3+ 24 2.9)

Proof: Using result (b), and substituting o ¢ = %Z(t})ﬁzj leads us to (2.9)

after some simpliﬁcatlon

Remark: For a given u "and m > 7, it is easy to check conditions (2.8) and
(2.9). If a condition is contradicted for m = k + 1 (say), then clearly k is an
upper bound on the number of constraints for such an array. Obviously these are
necessary conditions for the existence of such arrays, and the array with
parameters satisfying both the conditions may or may not exist. Next we include
some illustrative examples obtained by using a computer program.

Example 2.1. Consider an array T with 2’ = (2,3, 3,3,3,3,2). Clearly

N = 190. This array is quite close to an orthogonal array of strength six with
index set 3. Starting with the given ] "and m = 7, we tested (2.8) and obtained a
contradiction for m = 10. For this case, L.H.S. = 1.059097 x 10% and the
R.H.S. = 2.094517 x 10%. Thus the maximum number of constraints for this
array is 9.

Example 2.2. Consider B-array T(m > 7, p’ = (0,0,0,0,1,1,1). Here

N = 22. We checked (2.9) for this array with m = 7, and obtained

L.H.S. = 2.4956 x 10° and R.H.S. = 2.4950 x 10° which, obviously, is a
contradiction. Hence the maximum number of constraints for this array is 6, and
clearly this array exists.
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