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ABSTRACT. The distance of @ verter u in a connected graph
G is defined by oc(u) = ), v sy 4(u,v) and the distance of
Gisgiven by 0(G) := 53" v () (= X(unycvic) 4w 0)-
Thus the average distance between vertices in a connected graph
G of order n is o(G)/ (’;) These graph invariants have been
studied for the past fifty years. Here we discuss some known
properties and present'a few new results together with several
open problems. We focus on trees.

1 Introduction

Fifty years ago Wiener [23], [24], [25], [26], and [27] presented an empirical
formula. for predicting the boiling points of certain hydrocarbons; a formula
that takes into account the molecular bond structure. It was known that
isomers, i.e., compounds with the same chemical formula but with different
chemical structure, could have different boiling points. In Figure 1 two such
isomers, both with the formula Cr, H;s, are pictured. Note that only the
carbon atoms are shown; since they each have valence 4 while carbon has
valence 1, it is clear how many hydrogen atoms must be attached to each
carbon atom.

To explain the different boiling points of various saturated paraffins (in-
cluding different boiling points of isomers) it can be argued that compounds
with a less “compact” molecular structure would boil at higher tempera-
tures since they were subject to more entanglement during motion. This led
to Wiener’s use of distance as a measure of molecular “compactness” and
so distance was incorporated as an additive term in his empirical formula
for boiling points.
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The boiling points of the paraffins (see [23]) are closely approximated by
the formula tp = aw + bp + ¢ where a, b, and c are constants for a given
isometric group and p and w are structural variables defined as follows.
The polarity number p is defined as the number of pairs of carbon atoms
which are separated by three carbon-carbon bonds and w is the sum of the
distances between carbon atoms in the molecule. Thus the heptane 2,3-
dimethylpentane (if all hydrogen atoms are deleted the resulting structure
is represented by the unique tree of order 7 having two adjacent vertices of
degree 3) has p = 6 and w = 46. Wiener has shown (see references above)
that similar results hold for molecular refraction, molecular volume, heats
of formation, and vapor pressure.

Much of the material contained in this limited survey that has not ap-
peared elsewhere is available in detailed form from the author. Our goal
here is to present a coherent overview of distance vis-a-vis trees.

2 Background
The distance of a vertez u in a connected graph G is defined by
og(u) ==Y d(u,v).
veV(G)

We will suppress the subscripts on ¢ when no confusion can arise.

In Figures 1 and 2 we show the distance of each of the vertices in the
respective graphs. In both figures vertices with minimum distance have
been darkened.

16 11 10 11 16 177 12 11 12 15 20

16I I16 17I

Figure 1. Two isomers of Heptane
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Figure 2. An unlabeled graph and its two spanning trees
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Various techniques for the rapid calculation of distances of vertices are
available; the following is one such.
Observation A. (Entringer, Jackson, and Snyder [5]) Suppose a and b are
adjacent vertices of a connected graph G of order n. Let A be the set of
vertices closer to a than to b and let B be the set of vertices closer to b
than to a. Then o(a) —o(b) = |B| — |A|.

Noting that |B| 4+ |A| = n we have the convenient formula o(b) = o(a) +
n — 2|B|. Thus, after using the definition to determine the distance of
one vertex, only simple calculations are needed to iteratively determine the
distances of all remaining vertices.

The distance of a connected graph G is defined by

o(G) = Z d(u,v):% Z o(u).

{u}CV(G) u€V(G)

Thus the left tree of Figure 1 has distance 48 and the right tree has distance
52. In Figure 2 the distances of the trees are the numbers enclosed in boxes.

Canfield, Robinson, and Rouvray [4] have described a technique for com-
puting the distance of trees that depends on recursively removing a root
vertex and determining the distance of the subtrees remaining. A fur-
ther method is discussed and’exemplified by Gutman, Yeh, Lee, and Chen
[11]. Also, in our concluding remarks we discuss another technique used by
Wiener [23] for determining the distance of trees.

The average distance of a connected graph G of order n is given by

u@)=a(@)/(3).

Thus the average distance of G is just that: the mean distance between
vertices.

In Table 1 we present the distance of all vertices, the distance of G, and
the average distance of G for selected graphs G. We require vertex labelings
for those graphs that are not vertex transitive.

The vertices of the path P, are labeled sequentially v; to v, from one
end vertex to the other. Thus

=335 -i= ("3 7 (5) = (75) #2(5) -

The center of K, is labeled v;. In the partition of V(K ;) into parts
R and S with |R| = r and |S| = s, we label the vertices in R from 1 to r
and the vertices in S fromr+ 1 to r + s.
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If v is any vertex of the hypercube @Q,, then

o(v) = iz(?) =n2"l,

i=1

Graph " o(v;) | o(G) | #(G)
Po | ("3)+20)-ni | ("F) =
Kl,n—l 2nrf-_3}’2t_<=ilSn (n - 1)2 2- %
C n? n | n2 1 n?
n 4 2|1 n—-1 |4
K. n—1 ) 1
+2(r-1), 1<i< +ri4s? 2
K""s r+;(s—(;), 3+1$;S:+s rs—:—as 2- zr_ﬂﬂh
Qn 7."2'".—1 n4n—1 _721 + Wi{:i

Table 1. Distances in some special graphs

We note for future reference that the star and the path attain the extreme
values for distance of trees.

Theorem B. (Entringer, Jackson, and Snyder [5]) If T is a tree of order

n then 1
n
(n—1)25a(T)s( : )

The lower bound is realized only by K1 ,—-1 and the upper only by P,.

One can compare these extremal values with the expected values for
certain classes of trees.

Theorem C. (Entringer, Meir, Moon, and Székely [6]) The expected value
of o(T') over all (ordered) (rooted labeled) (or rooted binary) trees of order
n is asymptotic to Cn®/2 where C is a constant dependent only on the class
of trees.

As we will see, the centroid of a tree plays an important role in the study
of distance. Let us recall the relevant definitions.

A maximal subtree containing a vertex v of a tree T as an end vertex
will be called a branch of T at v. Figure 3 shows a tree with three branches
at the vertex v.

The weight of a branch B, denoted by bw(B), is the number of edges in
it. The branch weight of a vertex v is the maximum of the weights of the
branches at v. In Figure 3 the branches at v have weights 1, 2, and 3. The
branch weights of each of the vertices are marked in Figure 4 where the
vertices with minimum weight have been darkened. The centroid of a tree
T, denoted by C(T), is the set of vertices v of T" with minimum branch
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weight. The centroid of the tree in Figure 3 is {v} while each of the trees
of Figure 4 has a doubleton centroid.

Figure 3. The branches of a tree at a vertex

Figure 4. Branch weights of vertices

Long ago Jordan discovered an important characterizing property of cen-
troid vertices.

Theorem D. (Jordan [17}) If C = C(T') is the centroid of a tree T of order
n then one of the following holds:

() C = {c} and bu(e) < (n —1)/2,
(ii) C =: {c1,¢2} and bw(c;) = bw(cy) = n/2.
In both cases, if v € V(T)\C then bw(v) > n/2.
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A comparison of Figures 2 and 4 gives an instance of the following im-
portant result.

Theorem E. (Zelinka [30]) The set of vertices with minimum distance in
a tree T is the centroid of T.

The following result arose in the study of distributed processing in net-
works. Using it Gerstel and Zaks showed that, given a network of a tree
topology, choosing a centroid vertex and then routing all the information
through it is the best possible strategy, in terms of worst-case number of
messages sent during any execution of any distributed sorting algorithm.

Theorem F. (Gerstel and Zaks [9]) If T is a tree of order n then v € C(T)
iff V(T) (V(T)\v if n is odd) con be partitioned into pairs {u;,v;} such
that each u; — v; path contains v. Furthermore, Zil':‘/lzj d(u;,v;) is largest
among all such partitions.

If we modify the proof of Gerstel and Zaks appropriately we obtain one
that in summary form reads as follows.

We note that, by the concluding statement in Jordan’s theorem, if v is not
a centroid vertex of the tree T" then by the pigeonhole principle the desired
portion into pairs cannot exist. On the other hand, if v € C(T") and two
end vertices u and w are chosen, one from each of the two branches of T at
v with greatest weight, then V'(T') has the desired partition into pairs. One
of the pairs is {u, w} and the remaining can be obtained from T — {u, w} by
induction since it follows from Jordan’s theorem that C(T—{u, w}) = C(T).
Furthermore, if v € C(T') and {w;, w}} is any pairing of the vertices of V(T')
(V(T)\v if n is odd) then

D d(wi,w) < [d(wi,v) + d(v, w))] = o (v).

i1 i>1

so that the sum of the distances between members of pairs is maximized iff
the pairing is one of the desired partitions into pairs.

3 Average distance and inverse degree

Definition. Let G be a graph with no isolated vertices. The inverse degree
of G is given by
IDG):= ) L

veV(G) (’U)
Among the many conjectures produced by the computer program Graffiti
devised by Fajtlowicz is the following; it was proved by Shi.

Conjecture. (Fajtlowicz: Graffiti #592); Theorem G. (R. Shi (21]) For
a tree of order n > 2, u(T) - ID(T') > n and this bound is sharp.

70



We will use the following to construct a short proof of Shi’s result.

Theorem 1. If T is a tree of order n > 2 then

n+42 n?—2n+2
- < < —
2 <ID(T) < n—1

The lower bound is achieved iff T = P, and the upper iff T = K1 n-1.

Proof: Let T be a tree of order n > 2 for which ID(T’) is minimum. To show
that T = P, we suppose, to the contrary, that v € V(T with d(v) > 3.
Choose vertices © and w adjacent to v and let z be an end vertex, different
from v, of the branch of T at v containing . Set 7" = T —vw +zw. Then

1
ID(T) - ID(T") =1 - % 4 . L

o) " do) =12 dwEm -1 "
Since this is impossible, T' = P,.

Now let T be a tree of order n > 2 for which ID(T') is maximum. To show
that T = K n_1 suppose, to the contrary, that T' contains two vertices v

and w with d(v) = A(T) and d(w) > 1. Choose » adjacent to w so that w
lies in the w — v path in T. Set T/ =T — vw + uv. Then

1 1 1 1
o)1 d@) T dw) =1 dw)
1 1
~ dw)(dw) - 1)  d()(d() +1)

ID(T") - ID(T) =

>0.

Since this is impossible, T = K1 »—1.
The following result is an immediate consequence of Theorem B and
Theorem 1.

Theorem 2. If Ty and T are trees of order n > 2 then

W(Ty) - ID(Ta) > n+1— -72:

Although this is only a mild improvement over Theorem G, the fact that
o(T) is minimized by K »—1 while ID(T') is minimized by P, suggests that
considerable improvement may be obtained using analogs of Theorems B
and 1 with maximum degree A(T') prescribed. This is pursued in Reference

(8]
4 Some extremal ratios

The following two classes of graphs appear frequently as extremal trees in
the study of distance. The first class, 7(n, A), consists of trees with root
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v and maximum degree A. Furthermore, if n is the order of such a tree
we write n = 1+ ALZI=L 4 5 where 0 < s < A(A — 1)” and require v
to have exactly A(A — 1)~! vertices distance i from v for 1 < i < r and
s vertices distance r + 1 from v. Such a tree is well-defined except for the
neighborhoods of the end vertices.

r S

A(A-1) J
A(A-1)r1

Figure 5. The class 7T (n, A) of trees

The second class, T'(n, r), consists of a path of length  — 1 together with
n —r additional vertices all adjacent to the same end vertex of the path.

-

rN-r

Figure 6. The tree T'(n,r)

Before stating, without proofs, some results involving extremal ratios
(the proofs are lengthy) we state and prove an easier result to show the
type of arguments used. If T is a tree of order n, with maximum degree
A =2, and v € C(T), then obviously T = P, and an easy calculation gives
or(v) = [n?/4]. For A > 2 we have the following.

Theorem 8. If T is a tree with order n, maximum degree A > 2, v €
C(T), and the integers r and s are defined by n =: 1 + ASA—Z—I}Z;I +s,
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0<s<A(A-1), then

s(r+1)+ (AA2)2{[(A 2)(r+1) - 1)(A - 1) +1}
[ (A— QgA ) aA<nm
<o(v) < =2,
{thoyrans acq

The lower bound is achieved iff T € T(n,A) and the upper bound is
achieved iff T =T(n,n— A+1).

Proof: Let T be a tree of order » and maximum degree A and suppose
v € C(T). Set n; equal to the number of vertices of T whose distance from

v is 2. Then
n= Zn,- and o(v)= Zzn,
i>0 i>0

Since n; < A and n; < (A —1)n;—; for ¢ > 2, we have

o(v) <ZzA(A-—l)’ 1+s(1‘+1)—A Z(A-—l)'+s(r+1)
i=1 1—0

A )2{[(A 2)(r+1) —1)(A = 1)) 11}

=s(r+1)+(A 5

with equality holding iff n; = A and n; = (A — D)n;—y, for 2 <i < r, ie,
T € T(n,A).

Now suppose T is a tree of order n with maximum degree A, having
v € C(T) and of all such trees T is chosen so that or(v) is maximum.
We prove T = T(n,n — A + 1) by establishing a series of claims. Choose
vertex w to satisfy dr(w) = A. The contrapositive of the final statement
of Jordan’s centroid characterization is used repeatedly in the proof of the
following.
Claim 1. If v = w every branch of T at w is a path.

Suppose, to the contrary, that B is a branch of T at w containing a vertex
z with dp(z) > 2. Let z (# w) be an end vertex of B chosen so that z lies
in the w— 2z path and let y a vertex adjacent to = and not on the w — z path
in T. Denote the weight of the branch of T' at = containing y by a. Define
the tree TV := T — zy + yz. Then T’ has maximum degree A, v € C(T"),
but o7+ (v) — or(v) = a[d(v, z) — d(v,z)] > 0. Since this is impossible, the
claim follows.

The following claim can be proved in the same manner.

Claim 2. Every branch of T at w not containing v is a path and every
branch of T at v not containing w is a path.

Now suppose v # w and let P be the v — w path in T.
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Claim 3. If z € V(P)\{v,w} then dr(z) = 2.

Suppose, to the contrary, that z € V(P)\{v,w} and z is adjacent to a
vertex y not in V(P). Let z # w be an end vertex of some branch of T
at w not containing v. Define T := T — zy + y2. Then T’ has maximum
degree A, v € C(T”), but o/ (v) > or(v) which is impossible.

Claim 4. If v # w then dr(v) =2,

Suppose, to the contrary, that there are two branches A and B of T at
v neither of which contains w. Let z # v and y # v be end vertices of A
and B, respectively, and label the vertex of A adjacent to z as z. We may
assume d(v,z) < d(v,y).

If bw(B) < |n/2) define T' := T — zz + zy. Then T’ has maximum
degree A, v € C(T"), but o7 (v) — op(v) = d(v,y) — d(v,z) > 0, which is
impossible.

If bw(B) = |n/2| label the vertex of A adjacent to v as u and choose an
end vertex ¢ # w of T so that w lies in the = — ¢ path of T. Define the
tree T = T — vu + ut. Then T has maximum degree A, v € C(T”), but
or+(v) — or(v) = d(v, t)bw(A) > 0 which is impossible.

The next claim is simply a summary of the previous four.

Claim 5. Every branch of T at w is a path.

It remains to show that at most one branch of T at w has weight greater
than 1. Let us suppose otherwise and consider the following two cases.
Case 1. v # w. Denote by w;, 1 < i < A — 1 the vertices adjacent to
w and not in the branch of T at w containing v. Suppose, for some 1,
1<i< A-1,d(w;) > 1. We may suppose i = 1. Set T/ := T — {ww; |
2<i<A-1}+{ww; |2 <i < A-1}. Then T’ has maximum degree A
(at wy), v € C(T"), but o7+ (v) — or(v) > A — 2 > 0, which is impossible.
Case 2. v = w. There are two subcases to consider.

If some branch B of T' at w has weight |n/2] choose a vertex w; with
degree 2 and adjacent to w but not in B. Label the remaining vertices
adjacent to w and not in B as w;, 2 < w < A — 2. As above set 7' :=
T—{ww; |2<i< A-1}+{ww; | 2 <i < A—-1}. Then 7' has maximum
degree A (at wy), v € C(T"), but o (v) —op(v) > A —2 > 0, which is
impossible.

If every branch of T at w has weight less than [n/2] let A and B be two
branches of T at w with branch weight at least 2. Choose end vertices =
(# w) and y (# w) from A and B. We may assume d(w, z) < d(w,y). Let
z be the vertex adjacent to z in T. Set TV = T — zz + zy. Then T has
maximum degree A, » € C(T”), but o7 (v) — or(v) = d(w, y) —d(w, 2) > 0,
which is impossible.

We conclude that T' = T'(n,n — A + 1); easy calculations complete the
proof of the theorem.
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If we optimize the above extremal functions with respect to A we obtain
the following specialization.

Corollary 4. If T is a tree with order n > 2 and v € C(T)), then
2
n—-1<o(v) < {%J

with the equalities holding iff T = K1 n—1 or T = P,, respectively.

Theorem H. (Barefoot, Entringer, and Sz&kely [1]) If w and u are end
vertices of the tree T of order n > 2 and the integers k > 1 and s are
defined by 2n = k% + s, 0 < s < 2k, then

(n=)r+2(n-1) 1
2 _3r+4(n—-1)

or(w)
or(u)

52
where

[2vn] -1, k—-5<s<2k’
For n > 5 equality is achieved iff T = T(n,r).

7-={|.2\/7_7'J—2, 0<s<k—6.

Theorem I. (Barefoot, Entringer, and Székely [1]) If T is a tree of order
n > 2, w is an end vertex of T, v € C(T), and k > 1 and s are defined by
2n=k%+s,0< s <2k, then

n-—2 or(w) _2rmm—r2—r

1+4n2—2n+a = or(v) T r24+2n-3r

where a = 8 if n is even, a =5 if n is odd, and

. |_\/2n_| -1, 0<s<k—-4
"1 lv2n], k—3<s<2k’
For n > 3 the lower bound is obtained iff T consists of a path ujus ... un_1
together with an additional vertex w adjacent to u|(n—1)/2). The upper
bound is obtained iff T = T(n,r).

uq UL (n-1)2] Un-1

Figure 7. The unique graph achieving the lower bound
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Theorem J. (Barefoot, Entringer, and Szekely [1]) If the tree T has order
n and v € C(T') then

<n-1.

l [2r+n—5+

2n(n - 1)(r — 3) o(T)
3 E

2 —7(2n—1)

The lower bound is achieved iff T = T'(n,r) with

_J1vZn], 2n=k*450<s<|k/3|
"TAVERl, 2=k ts k/3) <s< 2k

and the upper bound is achieved iff T = K n_;.

5 Minimum distance spanning trees

A spanning tree T of a connected graph G is said to be a minimum distance
spanning tree if o(T) is minimum over all spanning trees of G. Solutions
to the following problem are of great practical importance in the design of
economical networks.

Problem. Given a connected graph G, find a minimum distance spanning
tree of G.

Because Johnson, Lenstra, and Rinnooy-Kan [16] have shown that the
problem is NP-complete, finding nearly optimal spanning trees is of interest.
If T is any spanning tree of the connected graph G then it is obvious that
o(T) 2 o(G). On the other hand, we have the following result.

Theorem K. (Entringer, Kleitman, and Szekely [7]) A connected graph
G of order n contains a spanning tree T satisfying o(T) < 2(1 - 1) o(G).
Equality is achieved iff G = K, and T = K; ;.

Reference (7] contains two proofs; the first obtains from an averaging
argument with a certain average being taken over a set of rooted spanning
trees each of which is distance preserving from its root. A spanning tree
T of a connected graph G is called distance preserving iff there is a vertex
v € V(G) such that dr(u,v) = dg(u,v) for all u € V(G). We will refer to v
as a root of T and say T is distance preserving from v. For example, every
breadth-first search tree is distance preserving from its root.

The second proof is so short we give it in its entirety. Choose a vertex
r for which g¢(r) is minimum and let T be a rooted distance preserving
spanning tree of G with root r. Choose v € C(T); by Theorem J above
and Zelinka’s result, o(T) < (n — 1)or(v) < (n — 1)or(r). Thus

o(G) = %ue;c) 06(u) 2 3oo(r) = Sor(r) > 2(n—”_1-)a(T).
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We mentioned the two proofs since they lead to distinct algorithms for
finding a spanning tree satisfying the inequality of the theorem.
Algorithm 1. For every vertex v of G, construct a distance preserving
spanning tree T, and compute o(T,). Select the tree which yields the
smallest value.

Algorithm 2. Compute og(v) for each v € V(G) and then construct a
distance preserving spanning tree T, rooted at a vertex v for which o(v) is
minimum.

The left graph of Figure 2 has only the two trees pictured as distance
preserving spanning trees. The center tree is distance preserving from the
vertices of degree 3 and from each vertex adjacent to a vertex of degree 3
(but not simultaneously). The right tree is distance preserving from the
vertices halfway between the vertices of degree 3 (again, not simultane-
ously). Thus the center tree would be selected by Algorithm 1 but either
tree could be selected by Algorithm 2.

We can ask the following questions in an effort to focus on exploration
of the relationships between the various concepts just discussed.
Question 1. Does every graph G have a minimum distance spanning tree
T that is also distance preserving?

Question 2. If the graph G has a minimum distance spanning tree T' that
is distance preserving, is it distance preserving from a vertex v for which
og(v) is minimum?

6 Qn

Given a nontrivial connected graph G define s(G) := miny o(T)/o(G)
where T is a spanning tree of G. In view of Theorem K we know that
1 < s(G) < 2 for every connected graph. If it is known a priori that s(G)
is nearly 2 for some graph G there may be no need to find a spanning tree
with least distance since any spanning tree found using Algorithms 1 or
2 will have approximately the same distance. This notion underlies the
following.

Project. Find graphs G for which s(G) > 2(1 —¢).
Since Kn_1 is the tree of order n with minimum distance,

s(Kn) = (n—1)%/ (’2‘) =2(1 - 1/n).
Consequently s(K,) ~ 2. On the other hand, we have
o(Py,) n+1\ ,n | n? 4
Cﬂ = —= —_——] = =
wo)=5e3- ("3 )3 55
for odd n.
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For our final example we first need the following.

Theorem L. (Burns and Entringer [3]) Let G := K, n,,...n, be a complete
r-partite graph of order n with r-partition {Vi, Va, ..., V,.}, r > 2, satisfying
[Vil]=m;, 1 <i<r,and ny < nz <.+ < n,. A spanning tree T of
G is a minimum distance spanning tree iff ny = 1and T = Ky or
ny > 1 and T is the spanning tree with exactly two internal vertices, one
with degree n — ny and the other with degree n,. This tree has distance
n? —3n+2+nn; —n?.

Letting T be the tree defined in Theorem L for the case r = 2 and
N1 =Ny = m gives
o(T) 5m? —6m +2

$(Kmm) = o(Kmm)  3m2-2m

5
3

It is not clear from these three examples how the value of s(G) depends
on the density of G. Although we do not know of any class of sparse graphs
G, satisfying s(Gn) ~ 2, we Will present speculation that the hypercubes,
Qn, form such a class. So let us focus on the following.

Problem. Find a minimum distance spanning tree of Q,,.

Recognizing that Q, = K2 x Q,—1 we first consider the more general
problem of constructing a minimum distance spanning tree T* of G =
K> x H from a minimum distance spanning tree T of the connected graph
H of order n. Two techniques suggest themselves.

Type I: (See Figure 8) Suppose G = K x H and T is a minimum distance
spanning tree of H. To form a Type I spanning tree T* of Ky x H simply
append one end vertex to each vertex of T. Calling this set of appended
vertices S we have

o(T*) = Z d(u,v) + Z d(u,v) + Z d(u,v)

{u,v}CV(T) wev(n {uv}Cs
=o(T)+ Y, [duv)+1+ > [dwv)+2]
wev(m {u}CV(T)

=40(T) + 2n® — n.
Type II: (See Figure 9) Suppose G = KX H and T is a minimum distance

spanning tree of H. To form a Type II spanning tree T* of K3 x H take
two disjoint copies of T', say T and T”, choose centroid vertices v and v’ in
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T and T’, respectively, and join these vertices with an edge. We have

oT)= > duww)+ Y dww)+ Y. duyw)

{uw}CV(T) ;‘g“;(‘;)) {u,w}Cv(T)
=20(T)+ Y l|d(w,v)+1+d(v,w]
uEV(T)
weV(T')

= 20(T) + nor(v) + n? + nor(v') = 20(T) + 2nor(v) +n?.

H H

Figure 8. Type I spanning tree T of H x K>

H H

Figure 9. Type Il spanning tree T* of H x K

As the following examples show, neither the Type I tree nor the Type II
tree necessarily has smaller distance than the other.

Letting T and Ty; be Type I and Type II, respectively, spanning trees
of K3 x P, we obtain

3 2 _
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while
2 3 2 _g
o(T) = 2("’”3* 1) +on l"ﬂ +n?> W > o(T})
for n > 6.

On the other hand, letting 77" ahd T31 be Type I and Type 11, respectively,
spanning trees of K3 x K ,—1 we obtain

o(TY) =4(n—1)2+2n2-—n=6n2 -9n+4
while
o(Tf) = 2(n — 1)* + 2n(n — 1) + n® = 5n% — 6n.+ 2 < o(T})

for n > 3.

Equality is also possible. Let H = @, (so that H has order 2"). Solving
the recurrence relation for the distance of the Type I spanning tree T}, of

Q) results in

-1
o(Ty) = "74" +on1,

Now let T, be a Type II spanning tree of @, and denote a centroid
vertex of it by v,. Then o(v,) = n2"~! since it satisfies the recurrence
relation o(vp41) = 20(vn) + 2. Next, the recurrence relation o(Ty41) =
20(T,) + (n + 1)4™ gives

U(Tn) -_— nT_14ﬂ + 21!—1.

Thus the Type I and Type II trees have the same distance when G = Q,,.
In fact, more is true.

Theorem M. (McCanna [18]) The Type I and Type II spanning trees are
the same for Q,,.

Empirical results for small n suggest the following.

Conjecture. The tree defined above is a minimum distance spanning tree
of Qn,m>1.

If this conjecture is true, then we would have

1 1
$(Qn) =2 (1 - ;) + s U 2.
7 Other results

Plesnik [19] conjectured that every rational » > 1 is the mean distance

of some graph; this was proved by Truszcynski [22] and independently by

80



Hendry [14]. Later, Hendry [15] showed that given any r > 2 and e > 0
there is a tree T with |u(T) — r| < e. He then asked whether for rational
r > 2 there is always a tree whose average distance is exactly  and Winkler
responded with the following.

Theorem N. (Winkler [29]) Let a rational number r be given. If r > 2,
then there are a (countably) infinite number of nonisomorphic trees whose
mean distance is exactly r. If r < 2 then there is a tree whose mean
distance is v just when r can be written in the form 2 — 2/k, where k is
an integer greater than 1; if k = () for some integer m > 3 or if k=30,
there are exactly two such trees, otherwise only one. Finally, there are two
trees whose mean distance is 2.

Gutman, Yeh, and Chen also have studied the distances realizable by
graphs. In particular, they offer the following.
Conjecture. (Gutman,Yeh, and Chen [13]) There are only finitely many
positive integers that are not the distance of some tree.

Winkler proposed the following (all graphs in the remainder of this sec-
tion are assumed to be nontrivial).
Conjecture. (Winkler [28]) Every connected graph G has a vertex v for
which p(G —v)/u(G) < 4/3.

A weakened form of this conjecture has been proved.

Theorem O. (Bienstock and Gyéri [2]) Every connected graph G has a
vertex v for which u(G —v)/u(G) < 4/3 + O(n=1/5).

A strengthened form of Winkler’s edge analog of his latter conjecture was
also obtained.

Theorem P. (Bienstock and Gyéri [2]) Every connected graph G has an
o(G—e)

edge e for which Z7=2 < 3.
The result s(C,) = 4/3 from section 6 shows that the theorem is sharp
for odd n.

8 Concluding remarks

There are variants in terminology used by others. For examples, distance
of a graph has been called Wiener index and centroid vertices have been
called median vertices. In general median vertices of a connected graph are
defined to be the vertices with minimum distance.

The distance of graphs similar to those in the class T (n, A) of section 4
have been studied by Gutman, Yeh, and Chen [11].

As pointed out by Wiener [23], if T is a tree then ¢(T) can also be calcu-
lated by first calculating a weight p(e) for each edge e and then summing
these weights over all edges. The weight of each edge e = uv is just the
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product of the number of vertices closer to « and the number of vertices
closer to v, i.e., it is the product of the orders of the two components of
T — uv. It is easy to see that the resultant sum is o(7T"). This has been
noticed by Bienstock and Gyéri [2], Gutman [10], and others. The weight
p(e) has been called the path number of the edge e and an analogous def-
inition has been given for the path number of a verter v, i.e., the number
of paths in the tree containing v as an internal vertex. This latter concept
has been explored at some length by Burns and the author [3].

We have limited the bibliography mainly to articles dealing with dis-
tance in trees. To list all papers concerned with distance in graphs would
be impractical. The reader wishing to study distance in the wider context
should consult the bibliographies of references [12] and [19] and the con-
jectures of the Gruffiti program of Fajtlowicz. Those wishing to study the
many applications of graph distance in chemistry can find further materials
in references [4], [12], and [20].
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