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ABSTRACT. Given m unit-capacity bins and a collection z(n)
of n pieces, each with a positive size at most one, the dual bin
packing problem asks for packing 2 maximum number of pieces
into the m bins so that no bin capacity is exceeded. Motivated
by the NP-hardness of the problem, Coffman et al. proposed a
class of heuristics, the prefiz algorithms, and analyzed its worst-
case performance bound. Bruno and Downey gave a probabilis-
tic bound for the FFI algorithm (which is a prefix algorithm
proposed by Coffman et al.), under the assumption that piece
sizes are drawn from the uniform distribution over [0,1]. In this
article we generalize their result: Let F' be an arbitrary distri-
bution over [0,1], and let z(n) denote a random sample of a
random variable X distributed according to F. Then, for any
€> 0, there are A > 0 and N > 0, dependent only on m, € and
F, such that for all » > N,

OPT(z(n),m) —2an
ZZ AL -
Pr(PRE(a:(n),m)-1+e)>1 Me ,
where M is a universal constant. Another probabilistic bound
is also given for 2pLe={rlm) ynder a mild assumption of F.

z(n),m)?

1 Introduction

Given m unit-capacity bins and a collection z(n) = (z1, z3,

v, Zp)ofn

pieces, each with a positive size at most one, the dual bin packing problem -
asks for packing a maximum number of pieces into the m bins so that no bin
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capacity is exceeded. This problem models a wide variety of applications
in operations research and computer science. Example applications include
the problem of storing a maximum number of variable length records on a
disk with m cylinders, or scheduling a maximum number of independent
tasks on m identical processors so as to meet a common deadline, or cutting
as many wood pieces of specified length from m equal-length stock pieces.

Like other bin packing problems, the dual bin packing problem is also
NP-hard [7,9]; in fact, it is NP-hard for every fixed m > 2. Motivated by
the computational complexity of the problem, Coffman et al. [4,9] consid-
ered a class of heuristics, the prefiz algorithms, and showed that all prefix
algorithms obey the worst-case performance bound of 2 — # A prefix algo-
rithm is one that satisfies the following two properties: (1) no larger piece
is packed without packing a smaller piece; (2) no unpacked piece will fit
into any bin in the final packing.

To improve upon the worst-case performance bound of prefix algorithms,
Coffman et al. [4,9] considered a special prefix algorithm, the first-fit-
increasing (FFI) algorithm, which initially sorts the pieces in nondecreasing
piece size, then packs successive pieces from the list into the lowest indexed
bin into which it will fit, and finally terminates when it first fails to pack
a piece. They showed that the FFI algorithm obeys a better worst-case
performance bound of %.

To further improve the worst-case performance bound, Coffman and Le-
ung [3,9] proposed the iterated-first-fit-decreasing (FFD*) algorithm which
works as follows. Assuming that z(n) has been sorted in nondecreasing
piece size, the algorithm first scans z(n) to find the maximum length prefix
z(n) = (z1,z3,...,7;) C z(n) such that i,z < m. It then packs
z{(1)(n) into as many, say m’, bins as required, by scanning right to left
and placing the next smaller piece into the lowest indexed bin into which
it will fit. The algorithm terminates successfully if m’ < m; otherwise, it
constructs z(?(n) by discarding the largest piece in z(!)(n) and then pro-
ceeds as above to pack z(?)(n). This process is repeated until for some 3,
zU)(n) has been packed into m’ < m bins. They showed that the FFD*
algorithm obeys an asymptotic worst-case performance bound of %. Fur-
thermore, they showed that the FFD* algorithm never packs fewer pieces
than the FFI algorithm, for all m, n and z(n).

We denote by z; both a piece and its size. Let PRE(z(n), m), FFI(z(n),
m), FFD x (z(n),m) and OPT(z(n), m) denote the numbers of pieces
packed into the m bins by a prefix algorithm, the FFI algorithm, the FFD*
algorithm and an optimization algorithm, respectively. The above results
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can be stated as follows:
OPT(z(n), m) <9— 1

PRE((n),m) =2 m’ (.1)
OPT(z(n),m) _ 4
FFIam,m =3 (2
OPT(x(n), m) < %FFD * (z(n),m) +3, (1.3)
and
FFD x (z(n), m) > FFI(z(n), m), (14)

for all m, n and z(n).

The earliest result on probabilistic analysis of dual bin packing heuristic
is due to Bruno and Downey [2]. Under the assumption that z(n) is a
random sample from a random variable distributed according to the uniform
distribution over [0,1], they showed that for any € > 0,

OPT(z(n), m)

Pr{EFIGa(n), m)

1
—))21- .
<1+0(\/ﬁ))-1 €, (1.5)
where the constant behind the O-notation depends only on € and m. We
note that (1.5) also holds for any prefix algorithm.

Foster and Vohra [6] showed that for any distribution F over [0,1],

. OPT(z(n), m)
A PRE(z(n),m)

almost surely. Probabilistic analysis of on-line dual bin packing was also
considered. For a given n, choose a ¢, € [0,1], and let H(c,) denote the
number of pieces among z(n) = (z1,...,Z,) that are packed into the m
bins by the following rule: If z; < ¢,, then pack it in a bin into which
it will fit; otherwise, discard it. Assuming that F is a continuous type of
distribution over [0,1] with finite mean and zero in its compact support,
they showed that

tim ) _y

n—oo ¢
in probability, where ¢ is the largest integer such that the sum of the sizes
of the first ¢ smallest pieces among z(n) is no more than m.

In [10] Rhee and Talagrand studied the special case where m is related

to n, i.e.,, m = |an| for some constant 0 < a < 1. They showed that

tim EIOPT(z(n), m)]

n—oo n

b=
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exists, and 2T v =" converges in distribution, whose limit distribu-

tion is the supremum of a certain Gaussian process canonically attached to
F.

In this article we generalize the result of Bruno and Downey [2], by con-
sidering probabilistic bound for any prefix algorithm where piece sizes are
drawn from any distribution F over [0,1]. No further regularity assumption
is made on F. Without loss of generality, we may assume that m > 1, since
all prefix algorithms are optimal for just a single bin. Let z(n) be a random
sample of a random variable X distributed according to F. We show that
for any € > 0, there are A > 0 and N > 0, dependent only on m, € and F,
such that for alln > N,

OPT(z(n), m) -22n
mﬁl'{'é))l—Me 2 s

where M is a universal constant, and A and N can be determined for any

. . i es OPT(z(n),
given e > 0 when F is known. Another probabilistic bound for FzEors 2

is given, under a mild assumption of F. Suppose there are constants a > 1,
b > 0 and C > 0 such that F(t) > Ct® for all 0 < t < b. Then, for any
>0,

Pr(

prCPLEm,m) O(ﬁ)) >1-6,

PRE(z(n),m) ~
where the constant behind the O-notation is dependent only on 8, m, b and
C, and the constant can be calculated when 8, m, b and C are known.

While the dual bin packing problem has the nice property that even
very fast heuristics are asymptotically optimal on the average, regardless
of the input distribution, this is not the case for other variants of the bin
packing problem. Consider the NP-hard bin covering problem in which
the objective is to pack z(n) into a maximum number of bins such that
each bin is filled to a level at least one [1]. For this problem the heuristic
with the best known worst-case performance bound is the iterated-lowest-
fit-decreasing (ILFD) algorithm due to Assmann et al. [1]. It was shown in
(1] that

OPT(z(n))
ILFD(z(n))"
where ILFD(z(n)) and OPT(z(n)) denote the numbers of bins filled by

the ILFD algorithm and an optimization algorithm, respectively.

Recently, Han et al. [8] showed that for any real number « € [1, 4], there
is a distribution function F, over [0,1] such that if z(n) is a random sample
of a random variable distributed according to F,, then

. OPT(z(n))
A TTFD(m) ~

. 4
n}gnmsup(max{ n >1and ILFD(z(n)) = N}) = 3’
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almost surely. From this result we can conclude that the average-case per-
formance of the ILFD algorithm depends strongly on the input distribution.
Thus, in some sense, the bin covering problem is more difficult to approxi-
mate than the dual bin packing problem.

In the next section we will present a probabilistic bound for general dis-
tributions. Another probabilistic bound for a special class of distributions
will be discussed in Section 3. Finally we draw some concluding remarks
in the last section.

2 Probabilistic Bound for General Distributions

In this section we assume with probability one that the size of each piece is
a positive number. That is, we assume that F is an arbitrary distribution
function over [0,1] with F(0) = 0. For a given F, define the function F~!
from [0,1] to [0,1]:

F~l(z) =min{t: Ft) >zend 0 <t < 1}. (2.1)

Note that F~! is well defined because F(t) is right continuous and non-
decreasing. Also, F~! is nondecreasing since, for any 0 < z; < 22 < 1,
{t: F(t) > m} 2 {t: F(t) > 2 2}.

Let U be a random variable uniformly distributed over [0,1], and let
Y = F~!(U). If X is a random variable distributed according to F, then
X and Y have identical distributions; i.e., forany 0 <z <1,

Pr(Y <z)=Pr(X <z).
This is because U is uniformly distributed and
{u: 0 < F~Y(u) <z} = {u: 0 < u < F(z)}.

Thus, Pr(Y < z) = Pr(F~1(U) < z) = F(z) = Pr(X < z). It follows
that if X;,..., X, are n independent and identically distributed random
variables with distribution F, then for any a; < b;, 1 <i < n,

Pr(nizi{e: < Xi <bi}) = Pr(nfey{a < F7I(UL) < b)), (22)

where Uy, ..., U, are independent and identically distributed according to
the uniform distribution over [0,1].

We need a well-known result in Kolmogorov-Smirnov statistics. Let
u1,...,Un be a random sample from a random variable U which is uni-
formly distributed over [0,1], and let (1), - -+, U(n) e its order statistics.
Then there is a universal constant M such that for all n > 1 and s > 0,

Pricia{ug ~ S 7=1) > 1= Me™™”, (23)
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Let 8 be a real number in (0,1]. From (2.3), it is easy to see that for all
s>0andn >1,

Pr(max{i:1<i<nand0<uyy <B}>2Pn-s/n-1)>1 - Me™2,
(2.4)

We also need a result in combinatorial analysis of the dual bin packing
problem, which was proved in [2]. Suppose we pack z(n) into a single bin
with capacity m by the FFI algorithm. Let S(z(n), m) denote the number
of pieces packed. Then, for any prefix algorithm, we have

OPT(z(n),m) < S(z(n), m) < PRE(z(n),m)+m - 1. (2.5)

The idea of proving our probabilistic bound is as follows. From (2.2)
we can regard every random sample zi,...,Zn as a random sample y; =
F~Yw),...,yn = F~1(uy,), where uy, ..., un is a random sample from the
uniform distribution over [0,1]. Since F(0) = 0, there are three cases to
consider: (1) F is continuous at zero; (2) there is a positive number r¢ such
that F(t) = 0 for all ¢ < ro and F jumps at ro; (3) F is continuous at the
point ro. In the first case, it is clear that when n gets large, there would
be many small u;’s, and hence many small ;’s. Thus a prefix algorithm
would pack many pieces into the m bins, and hence by (2.5), %EET%%
would be very close to 1. In the second case, there would be many pie’ces
with size ro (which is the smallest size) when n gets large. Thus a prefix

algorithm and an optimization algorithm would pack exactly I_% pieces
into each bin, and hence OPT(z(n), m) = PRE(z(n), m). In the last case,
there would be many pieces with size 7y or slightly larger, as n gets large.

In this case, a prefix algorithm and an optimization algorithm would also
pack the same number of pieces into the m bins.

Theorem 1. Let F be an arbitrary distribution over [0,1], and let z(n)
denote a random sample of a random variable X distributed according to
F. Then, for any € > 0, there are A > 0 and N > 0, dependent only on m,
€ and F, such that for alln > N,

OPT(z(n), m) —2xn
ng+e)>l—Me 2n (2:6)

where M is a universal constant.

Pr(

Proof: Let z(n) = (z,,...,Zn) be a random sample of a random variable
distributed according to F. As discussed above, z(n) can be regarded
as a random sample y(n) = (F~(w),..., F~(us)), where uy,...,uy is
a random sample from the uniform distribution over (0,1]. Define ry =
sup{t: F(t) = 0}. Clearly, 0 < rp < 1, since F(t) is a distribution over
[0,1]. We consider the following three cases.
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Case . rog = 0.
From (2.5), we have

OPT(z(n), m) m—1 m—1

PRE(z(n),m) ~ ' PRE@(m),m) ~ ¥ S@@),m)—m+1 @7

Thus, if we could prove that for any € > 0, there is an N > 0, dependent
onlyonm, ¢ and F, such that for all n > N,

1+e€
€

Pr(S(z(r),m) > (m —1)( ) >1—Me 2", (2.8)

the theorem would follow immediately from (2.7) and (2.8). Observe that
for any fixed m, S(z(n), m) is computable, and hence, as a function of z(n),
it is measurable. By (2.2), (2.8) holds if and only if

14¢
€

Pr(S(y(n),m) > (m —1)( ) >1—-Me™ 2 (2.9)

holds.
We now proceed to prove (2.9). In this case we have F('(m_—TflTej) > 0.

Thus there are positive numbers A and N, dependent only on m, € and F,
such that by letting s = vAn in (2.4),

14¢

me
F(m)n- Van—1> (m-1)( —) (2.10)
for all n > N. From (2.4) and (2.10), we have
Pr(max{i: 1 <i<mnand 0 <wug;) < F(m)}
> (m =~ 1)(-%)) > 1~ Me?,

for all n > N. By the definition and monotonicity of F~!, we have forall
n> N,

1 —1,. me
Pr({i:1<i<nand 0 < F () < __(m—l)(1+e)}|
1 +e)) >1—Me 2n,

> (m—1)( -

which means that the event in which at least [(m —1)(2£2)] 3’s have
sizes at most %= occurs with probability greater than 1 — Me~2\»,

Clearly, in this event, S(y(r), m) > (m — 1)(1£2) and hence (2.9) holds.
Case II: 79 > 0 and F(rg) > 0.
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Let X and N be positive numbers such that for all = > N,
Froyn—vVin—1> ? (2.11)
()

For each n > N, we have, by (2.11) and letting s = VAn in (2.4),

Pr(max{i: 1 <i <nand 0 <wug) < F(ro)} > ?) >1— M2,
0

and by the definition and monotonicity of F~!,
Pr(|{i:1<i<nand 0< F () < ro}| > =) >1— Me~2",
To
(2.12)
But in this case, for all n > 1, we have

Pr({(F~'(u1),...,F~}(un)): thereisani,1 <i<n,
such that F~1(u;) < ro}) = 0.

Thus, from (2.12), we have for each n > N,

Pr(|{i:1<i <nand Fl(w) =ro}| > rﬂ) >1—Me 2,
0

which means that the event in which at least [ﬁ-l y;’s have sizes exactly ro
occurs with probability greater than 1 — Me~2**, Since ro is the smallest
size, a prefix algorithm and an optimization algorithm would both pack
exactly [—LJ pieces per bin, and hence OPT(y(n),m) = PRE(y(n),m).

To

Observe that for any fixed m, ﬂﬁ-’—?—‘@% is computable, and hence, as a

PRE(z(n),m
function of z(n), it is measurable. Thus, by (2.2), we have for all n > N,
pr(QELEmm) _ 4y _ p (OPTmhm) _ 1y g _ pre-2im,

PRE(z(n),m) PRE(y(n), m)

Case III: g > 0 and F(rg) =0.

In this case we have ro < 1; otherwise, F(1) = 0, contradicting the as-
sumption that F is a distribution over [0,1]. Moreover, we may assume that
70 < 3; otherwise, Pr({z(n) = (1,...,%a): 7 > § foralli=1,...,n}) =
1. Consequently, a prefix algorithm and an optimization algorithm would
both pack exactly one piece per bin, and hence the theorem would hold
vacuously.

Define

1—1’0 _
1 e 13 ;
|_-,;J if ;- is not an integer

5 {—'19— if ;1; is an integer
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Note that rp < § <1 when 0 < rg < % Let A and N be positive numbers
such that for all n > N,

F(6)n—vVin-1> % (2.13)

By (2.13) and letting s = v/An in (2.4), we have for all n > N,

Pr(max{i: 1 <i<nand 0 <ug < F(6)} > =) >1— Me 2",
To (2.14)

and by the definition and monotonicity of F~1,

Pr(max{i: 1 <i<nand 0 < F(ug) <6} > Ty >1—Me 2,
To (2.15)

Since F(rg) = 0, we have

Pr({(F~(x1),...,F ' (up)): thereisani,1 <i<n,
such that F~'(u;) < 7o}) =0

Together with (2.15), we have for all n > N,

Pr(max{i: 1 <i<nandro < Fl(ug) <6} > T—) >1— Me 2,
To (2.16)

which means that the event in which at least I-;,"-o'-] yi’s have sizes in the

range (ro, §] occurs with probability greater than 1 — Me~2*,

Now consider the packings of y(n) in the above event by a prefix algorithm
and an optimization algorithm. Without loss of generality, we may assume
that y(n) = (y(1),...,¥m)), Where y),...,¥w) is the order statistics of

Y1, .- -, Yn. Since the sum of the first }"‘; elements of y(n) is greater than

m, only the first [ﬁ-l elements would be considered by both algorithms.
Since the sizes of these pieces are in the range (ro, 6], both algorithms would
pack exactly l%J pieces into each bin if % is not an integer, and (% -1)
pieces if X is an integer.

With the above argument and (2.16), we have for all n > N,
OPT(y(n), m)

Pr P RE (), m)

=1)>1- Me™ 2", (2.17)

Observe that for any fixed m, %}:—&% is computable, and hence, as

a function of z(n), it is measurable. By (2.2) and (2.17), we have for all
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n>N,

OPT(z(n),m) _
PRE(z(n), m)

OPT(y(n), m)

Pr( PRE(y(n), m)

= Pr( =1)>1- Me 2,

3 Probabilistic Bound for Special Distributions

In this section we will consider any distribution F satisfying the following
two properties:

(A1) F(t) is continuous at t = 0.

(A2) F(t) has a lower bound Ct® in the neighborhood [0,3] of 0, where
a21,b>0and C > 0.

We will give a probabilistic bound for this kind of distribution.

Theorem 2. Let F be a distribution over [0, 1] satisfying (A1) and (A2),
and let z(n) be a random sample from F. Then, for any > 0 and any
m>1,

OPT(z(n), m
Pr (P—-R% <1+40( 1/(2 ))) -6, (3.1)

where the constant behind the O-notation is dependent only on 6, m, b and
C.

Proof: Recall the inequality (2.4). For any given ¢ > 0, let s(6) > 0 be
such that Me=22"(®) < 0. Fix s(6) and consider the inequality.

Cny® —s(0)vn—1> %, (3:2)

where v = 2 for some undetermined constants D > 0 and k > 0. Let
A= Cn'y‘"",i — 8(0)yy/n — v. By (A2), we have a > 1. Clearly, for any
fixed m > 1, when k < 2, there are constants D > 0 and N > 0 such
that A > m for all n > N, and when k > 2,,,A—-»ooasn-—»oo, for any
constant D > 0. Thus, for any fixed m > 1, the largest value of k for (3.2)
to hold (as n — 00) is 5=. Consequently, we will choose k to be o= 2. Now,
using s(#), m and C, we choose carefully the constant D so that there is

an No > 0 such that (3.2) holds for all n > No. Let ¢ = (=t e,

m—(m—1)y?

— me . & m-1
’Y—m. Since 5 - =5 asy—»O, we have

1
€= O(nT(ga)')s (33)
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where the constant behind the O-notation is dependent only on v and m,
and hence is dependent only on 8, C, and m. From (3.3) it is easy to see
that there is an N > Np such that 0 < '(m_lf('i_j < b for all n > N. Since

F(t) > Cte for all 0 <t < b, we have

me me

((m 1)+ )) ((m 1)(1+e))a
for all n > N. By (3.2), we have for all n > N,

(1+e)

Starting from (3.4) and using a similar argument as in the proof of Case
I in Theorem 1, we have for all n > N,

OPT(z(n), m)

P b RE( (), m) <

<l4+e)>1-
By (3.3) and by choosing an appropriate constant dependingv on N, we
finally obtain

OPT(z(n), m)

Pr P RE(z(n), m)

1
Sl+0(m)) >1 —0,
where the constant behind the O-notation is dependent only on 8, m, b and
C. (]

4 Conclusions

In this article we have given a probabilistic bound for an arbitrary distribu-
tion and a probabilistic bound for a special class of distributions. Following
the proof of Theorem 1, we see that the constants A and N mentioned in
Theorem 1 can be calculated for any € when the distribution F is known.
Similarly, the constants behind the O-notation in (3.1) and (3.5) can be cal-
culated for any @ and m, when a, b and C are known, or when F is known.
The universal constant M in Theorem 1 is from the Kolmogorov-Smirnov
statistics, which is close to one; M was simply taken as 1 in [2]. Thus the
probabilistic bounds presented in this article can be used to obtain a more
detailed picture about the average-case behaviors of %g{%

All of our results are applicable to the FFI and FFD* algorithms as well.
Note that our results can be useful even if the distribution is not known;
in this case we simply obtain a sample distribution from random samples
of the instances.

95



References

[1] S.F. Assmann, D.S. Johnson, D.J. Kleitman and J.Y-T. Leung, On a
dual version of the one-dimensional bin packing problem, J. of Algo-
rithms 5 (1984), 502-525.

[2] J.L. Bruno and P.J. Downey, Probabilistic bounds for dual bin-
packing, Acta Informatica 22 (1985), 333-345.

[3] E.G. Coffman, Jr. and J.Y-T. Leung, Combinatorial analysis of an
efficient algorithm for processor and storage allocation, SIAM J. on
Computing 8 (1979), 202-217.

[4] E.G. Coffman, Jr., J.Y-T. Leung and D.W. Ting, Bin packing: Maxi-
mizing the number of pieces packed, Acta Informatica 9 (1978), 263—
271.

i5] E.G. Coffman, Jr. and G.S. Lueker, Probabilistic Analysis of Packing
and Partitioning Algorithms, Wiley, New York, 1991.

[6] D. Foster and R. Vohra, Probabilistic analysis of a heuristic for the
dual bin packing problem, Information Processing Letters 31 (1989),
287-290.

[7) M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide
to the Theory of NP-Completeness, Freeman, San Francisco, 1979.

[8] S. Han, D. Hong and J.Y-T. Leung, Probabilistic analysis of a bin
covering algorithm, Operations Research Letters, to appear.

[9] J.Y-T. Leung, Fast Algorithms for Packing Problems, Ph.D. Disserta-
tion, Department of Computer Science, Pennsylvania State University,
University Park, PA, 1977.

[10} W.T. Rhee and M. Talagrand, Dual bin packing with items of random
sizes, Mathematical Programming 58 (1993), 229-242.

96



